A dimer model for the Jones polynomial of pretzel knots

http://arxiv.org/abs/1011.3661

Moshe Cohen

Department of Mathematics and Computer Science,
Bar-Ilan University

Virtual Seminar,
January 19th, 2011
Outline

1 Graph and knot polynomials
 - The balanced overlaid Tait graph Γ
 - Tutte’s activity
 - Main results

2 Constructing the activity matrix
 - The bipartite adjacency submatrix
 - Kauffman’s trick $\kappa(\varepsilon)$ giving a Kasteleyn weighting
 - Writhe weighting $w(\varepsilon)$ and activity weighting $\alpha(\varepsilon)$

3 Examples, more results, and questions
 - The trefoil, 8_{19}, and the $(-2, 3, 7)$-pretzel knot
 - Extending this class; applications to Khovanov homology
 - Future work
A knot K is S^1 embedded in S^3. We orient the knot.

A knot diagram D is the projection of the knot onto \mathbb{R}^2 with under- and over-crossing information.

Theorem (Reidemeister 1926):

Two diagrams represent the same knot \iff

\exists a sequence of Reidemeister moves taking one to the other.
A knot invariant is an evaluation on a knot diagram that is constant under each of the three Reidemeister moves.
Graphs from knots: the signed Tait graph G

A **signed graph** has edges weighted $+1$ or -1.

Checkerboard color the regions of a knot diagram D.

Definition:

The **signed Tait graph** G associated with D has $V(G) = \{\text{colored regions}\}$ and $E(G) = \{\text{crossings of } D\}$.

Positive crossings: \times

Negative crossings: \times

Note that the dual G^* comes from the uncolored regions.
Definition:

The *overlaid Tait graph* $\hat{\Gamma}$ associated with D is bipartite with

$$V(\hat{\Gamma}) = \left[E(G) \cap E(G^*) \right] \sqcup \left[V(G) \sqcup V(G^*) \right]$$

and $E(\hat{\Gamma})$ the half-edges of G and G^*.

Each face in the overlaid Tait graph $\hat{\Gamma}$ is a square.
Definition:

The **balanced overlaid Tait graph** $\hat{\Gamma}$ associated with D is obtained from $\hat{\Gamma}$ by removing two vertices from the larger set that lie on the same face:

```
   * *
  /   \
 /     \   
*     *
|     |
|     |
\       / \
   * *  *
```

“Balanced” means the two vertex sets are the same size.
Graphs from knots: the signed Tait graph G

The oriented knot 8_{19},
Graphs from knots: the signed Tait graph G

a checkerboard coloring,
Graphs from knots: the signed Tait graph G,

the corresponding signed Tait graph G,
Graphs from knots: the signed Tait graph G.

the dual signed Tait graph G^*,
the overlaid Tait graph $\hat{\Gamma}$ (all faces are square),
Graphs from knots: the balanced overlaid Tait graph Γ

and the balanced overlaid Tait graph Γ.

Moshe Cohen

A dimer model for the Jones polynomial of pretzel knots
Definition (Tutte’s Activity words):

For spanning tree S of signed graph G with ordered edges, assign an activity letter to each edge:

<table>
<thead>
<tr>
<th></th>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>L</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>internal</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>\bar{L}</td>
<td>\bar{D}</td>
</tr>
<tr>
<td></td>
<td>external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ℓ</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{\ell}$</td>
<td>\bar{d}</td>
</tr>
</tbody>
</table>

Activity ("live" or "dead") is determined by the ordering:
Tutte’s activity words: Definition

For external edge $e \notin S$, there is a unique cycle in $S \cup \{e\}$. $e \notin S$ is live if it is the lowest-ordered edge in the cycle.

For internal edge $e \in S$, the graph $S\setminus\{e\}$ is disconnected. $e \in S$ is live if it is the lowest-ordered edge that reconnects.

Let $a(e, S)$ be the activity letter for the edge e and the tree S, and let $a(S)$ be the activity word associated to the tree S.
Tutte’s activity words: Example

For the (all positive) graph G
Tutte’s activity words: Example

and the spanning tree S_1,
Tutte’s activity words: Example

the first edge is L,
Tutte’s activity words: Example

the second edge is d.

A dimer model for the Jones polynomial of pretzel knots
and the third edge is also d,
Tutte’s activity words: Example

\[a(S_1) = (Ldd). \]
For the spanning tree S_2, ...
the first edge is \(\ell \),
the second edge is D,
and the third edge is d,
Tutte’s activity words: Example

\[a(S_2) = (\ell Dd). \]
And for the spanning tree S_3,
Tutte’s activity words: Example

the first edge is \(\ell \),
the second edge is ℓ,
Tutte's activity words: Example

and the third edge is D,
Tutte’s activity words: Example

giving the activity word \(a(S_3) = (\ell \ell D) \).
Thus the activity words are (Ldd), (ℓDd), and $(\ell \ell D)$.
Tutte polynomial $T(G; x, y)$

For (unsigned) graph G and edge e, let $G \backslash e$ be the deletion of e and G / e the contraction.

Definition (Tutte):
The (unsigned) Tutte polynomial $T(G; x, y) =$

$$T(G \backslash e; x, y) + T(G / e; x, y) \text{ if } e \text{ is neither a bridge nor a loop,}$$

$$x \# \text{ bridges } y \# \text{ loops} \text{ if all edges are bridges and loops.}$$

Theorem (Tutte):

$$T(G; x, y) = \sum_S x^{\# L} y^{\# \ell} = \sum_S \prod_{e \in E(G)} a(e, S)|_T$$
Tutte polynomial $T(G; x, y)$

The activity evaluations for the Tutte polynomial $T(G; x, y)$

<table>
<thead>
<tr>
<th>$a(e, S)$</th>
<th>L</th>
<th>D</th>
<th>ℓ</th>
<th>d</th>
<th>\bar{L}</th>
<th>\bar{D}</th>
<th>$\bar{\ell}$</th>
<th>\bar{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a(e, S)</td>
<td>_T$</td>
<td>x</td>
<td>1</td>
<td>y</td>
<td>1</td>
<td>$___$</td>
<td>$___$</td>
<td>$___$</td>
</tr>
</tbody>
</table>
Signed Tutte polynomial $Q(G; A, B, \delta)$

Definition (Kauffman):
The signed Tutte polynomial $Q(G; A, B, \delta) =$

\[
\begin{cases}
AQ(G\setminus \overline{e}; A, B, \delta) + BQ(G/\overline{e}; A, B, \delta) & \text{non-bridge/loop } \overline{e}, \\
BQ(G\setminus e; A, B, \delta) + AQ(G/e; A, B, \delta) & \text{non-bridge/loop } e, \\
x \# \text{ bridges} + y \# \text{ loops} & \text{all bridges/loops},
\end{cases}
\]

setting $x = A + B\delta$ and $y = A\delta + B$.

Theorem (Kauffman):

\[
Q(G; A, B, \delta) = \sum_{S} \prod_{e \in E(G)} a(e, S)|_Q
\]
Signed Tutte polynomial $Q(G; A, B, \delta)$

<table>
<thead>
<tr>
<th>$a(e, S)$</th>
<th>L</th>
<th>D</th>
<th>ℓ</th>
<th>d</th>
<th>\bar{L}</th>
<th>\bar{D}</th>
<th>$\bar{\ell}$</th>
<th>\bar{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a(e, S)</td>
<td>_Q$</td>
<td>x</td>
<td>A</td>
<td>y</td>
<td>B</td>
<td>y</td>
<td>B</td>
<td>x</td>
</tr>
</tbody>
</table>

The activity evaluations for the signed Tutte polynomial $Q(G; A, B, \delta)$ with $x = A + B\delta$ and $y = A\delta + B$
Kauffman bracket polynomial $\langle K \rangle$

Definition (Kauffman):

The **Kauffman bracket polynomial** $\langle L \rangle$ of link L satisfies

1. **Smoothing relation:** $\langle L \rangle = A \langle L_0 \rangle + A^{-1} \langle L_\infty \rangle$
2. **Stabilization:** $\langle U \sqcup L \rangle = (-A^2 - A^{-2}) \langle L \rangle$
3. **Normalization:** $\langle U \rangle = 1$.

For knot K with signed Tait graph G,

Theorem (Thistlethwaite):

$$\langle K \rangle = \sum_S \prod_{e \in E(G)} a(e, S) |_V$$
Kauffman bracket polynomial $\langle K \rangle$

<table>
<thead>
<tr>
<th>$a(e, S)$</th>
<th>L</th>
<th>D</th>
<th>ℓ</th>
<th>d</th>
<th>\bar{L}</th>
<th>\bar{D}</th>
<th>$\bar{\ell}$</th>
<th>\bar{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a(e, S)</td>
<td>_V$</td>
<td>$-A^{-3}$</td>
<td>A</td>
<td>$-A^3$</td>
<td>A^{-1}</td>
<td>$-A^3$</td>
<td>A^{-1}</td>
<td>$-A^{-3}$</td>
</tr>
</tbody>
</table>

The activity evaluations for the Kauffman bracket $\langle K \rangle$
The writhe $w(D)$ of an oriented diagram is the sum:

$w(D) = +1 - 1$

Definition (Jones):

The Jones polynomial $V_L(t)$ of link L satisfies, for $A = t^{-1/4}$,

$$V_L(t) = (-A^{-3})^{w(D)} \langle L \rangle.$$

For a knot K with signed Tait graph G,

Theorem (Thistlethwaite):

$$V_K(t) = (-A^{-3})^{w(D)} \sum_S \prod_{e \in E(G)} a(e, S)|_V$$
A \textit{dimer} in a (bipartite) graph is just an edge.

A \textit{perfect matching} μ is a collection of non-incident dimers that covers the graph.
The correspondence between G and Γ

<table>
<thead>
<tr>
<th>Signed Tait graph G</th>
<th>Balanced overlaid Tait graph Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge $e \in E(G)$</td>
<td>edge $\epsilon \in E(\Gamma)$</td>
</tr>
<tr>
<td>Squared incidence matrix</td>
<td>Bipartite adjacency submatrix</td>
</tr>
<tr>
<td>Rooted spanning tree S in G</td>
<td>Perfect matching μ in Γ</td>
</tr>
<tr>
<td>Activity $a(e, S)$</td>
<td>Activity weighting $\alpha(\epsilon)$</td>
</tr>
</tbody>
</table>
The (n_1, n_2, \ldots, n_k)-pretzel knot P with an ordering on the crossings.
Main Theorem:

Summing over all perfect matchings \(\mu \) in \(\Gamma \) and taking the product over all edges \(\varepsilon \in \mu \),

\[
\sum_{\mu} \prod_{\varepsilon \in \mu} \alpha(\varepsilon) = \sum_{S} a(S)
\]

gives the complete list of activity words \(a(S) \) associated with spanning trees \(S \) of \(G \) associated with the diagram of \(P \).
Main results: Jones polynomial

Main Corollary:

Summing over all perfect matchings \(\mu \) in \(\Gamma \) and taking the product over all edges \(\varepsilon \in \mu \),

\[
\sum_{\mu} \prod_{\varepsilon \in \mu} w(\varepsilon) \alpha(\varepsilon)|_V = V_P(t)
\]

gives the Jones polynomial \(V_P(t) \) of \(P \).
Main results: matrix determinant

Computational Corollary:

Let ε_{ij} be the edge $\varepsilon \in E(\Gamma)$ between the i-th vertex coming from the crossings and the j-th vertex coming from the regions.

Let $A = (\kappa(\varepsilon_{ij}) w(\varepsilon_{ij}) \alpha(\varepsilon_{ij}) | V)$ be the activity weighting on the bipartite adjacency submatrix associated with P. Then

$$\det(A) = V_P(t)$$

gives the Jones polynomial $V_P(t)$ of P up to sign.
The results above hold for pretzel knots $\forall k \in \mathbb{N}, |n_i| \in \mathbb{N}$.

One cannot hope to achieve this result for a general knot K.

Theorem (Jaeger-Vertigan-Welsh):

Determining the Jones polynomial is $\#P$-hard.
The **incidence matrix** has rows labelled by edges and columns labelled by vertices.

\[m_{ij} = 0 \text{ if the } i\text{-th edge is not incident with the } j\text{-th vertex.} \]

This \(|E| \times |V|\) matrix is in general not square.

The **squared incidence matrix** is the incidence matrix of the graph together with the incidence matrix for the dual graph with a column of each deleted.

This \(|E| \times [(|V| - 1) + (|F| - 1)]\) matrix is square.
Matrices from graphs: the adjacency matrix

The **adjacency matrix** rows and columns labelled by vertices.

$m_{ij} = 0$ if the i-th vertex is not adjacent to the j-th vertex.

For a bipartite graph, present this square matrix in block form

$$
\begin{pmatrix}
0 & M \\
M^T & 0
\end{pmatrix}
$$

The **bipartite adjacency submatrix** is the block M.

Proposition:

The squared incidence matrix of the Tait graph G is the bipartite adjacency submatrix of the balanced overlaid Tait graph Γ.

Moshe Cohen

A dimer model for the Jones polynomial of pretzel knots
Recall the determinant of a matrix $M = (m_{ij})$

$$det(M) = \sum_{\sigma \in S} \prod_{i} (-1)^{\text{sign}(\sigma)} m_{i\sigma(i)}$$

The **permanent** or **unsigned determinant** is

$$\text{perm}(M) = \sum_{\sigma \in S} \prod_{i} m_{i\sigma(i)}$$
Proposition:

The terms in the permanent expansion of a bipartite adjacency submatrix associated with a(n unsigned) balanced bipartite graph give the complete list of perfect matchings of the graph.

Proof:

Each term in the permanent expansion is a permutation \(\sigma \) matching each vertex \(i \) in the first vertex set to a vertex \(\sigma(i) \) in the second vertex set. \(\square \)
Kauffman’s trick $\kappa(\varepsilon)$: signing the entries

This will be used to sign the corresponding entries in the matrix.

A **Kasteleyn weighting** of a plane bipartite graph is a signing of the edges such that the number of negatives around a particular face is

- odd if the face has length 0 mod 4 or
- even if the face has length 2 mod 4.

Lemma:

Suppose G has a Kasteleyn weighting. Then so does $G\setminus e$.
Proof:

Let e be incident with two faces of length f_1 and f_2. Delete e to replace these with a face of length $f_1 + f_2 - 2$.

<table>
<thead>
<tr>
<th>f_1</th>
<th># negs</th>
<th>f_2</th>
<th># negs</th>
<th>$f_1 + f_2 - 2 \mod 4$</th>
<th># negs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>odd</td>
<td>0</td>
<td>odd</td>
<td>2</td>
<td>even</td>
</tr>
<tr>
<td>0</td>
<td>odd</td>
<td>2</td>
<td>even</td>
<td>0</td>
<td>odd</td>
</tr>
<tr>
<td>2</td>
<td>even</td>
<td>0</td>
<td>odd</td>
<td>0</td>
<td>odd</td>
</tr>
<tr>
<td>2</td>
<td>even</td>
<td>2</td>
<td>even</td>
<td>2</td>
<td>even</td>
</tr>
</tbody>
</table>

Then $\#$ negs changes by 0 or 2 (an even number) compared with the sum of $\#$ negs in f_1 and f_2. □
Kauffman’s trick $\kappa(\varepsilon)$: signing the entries

Kauffman’s trick $\kappa(\varepsilon)$ to distribute signs to the edges of the balanced overlaid Tait graph Γ coming from a knot diagram:

![Graph Diagram]

Proposition:

Kauffman’s trick $\kappa(\varepsilon)$ provides a Kasteleyn weighting.
Proof:

Each face in the overlaid Tait graph $\hat{\Gamma}$ is a square. The balanced overlaid Tait graph Γ is obtained by edge deletions.

The assigning of a negative edge affects exactly one of the NW and SW sides of the square. □
Proposition:

The determinant expansion of a bipartite adjacency submatrix associated with a Kasteleyn-weighted balanced bipartite graph gives the complete list of perfect matchings up to sign.

Proof:

Two permutations differ by a transposition \leftrightarrow

\exists four non-zero terms in a rectangle in the matrix \leftrightarrow

\exists a square face in the graph.

$\exists!$ negative sign in each square, so these have opposite signs in both the matrix and the perfect matching. \square
Proposition:

Given a knot diagram, there is a bijection between perfect matchings of the balanced overlaid Tait graph Γ and rooted spanning trees of the Tait graph G.

Proof:

\[
\{\text{perfect matchings of } \Gamma\} \cong \\
\{\text{permanent expansion of the bipartite adjacency submatrix}\} \cong \\
\{\text{permanent expansion of the squared incidence matrix}\} \cong \\
\{\text{partition of edges } T \subset G \text{ and } T^c \subset G^*\}
\]

T spans; if \exists cycle C, then $*$ must be on one side of C.

T^c spans; \exists cycle in the dual on the same side of C.

Repeat this process, yielding an infinite graph. \(\square\)
Correspondence between edges ε of the overlaid Tait graph $\hat{\Gamma}$ and directed edges e of the (directed) Tait graph G.
The **writhe weighting** $w(\varepsilon)$ on $\varepsilon \in E(\Gamma)$ is $(-A)^{-3}$ or $(-A)^3$:
Let ε_{ij} be the edge $\varepsilon \in E(\Gamma)$ btwn the i-th vertex coming from the crossings and the j-th vertex coming from the regions.

The **writhe weighting** $w(\varepsilon_{ij})$ is determined by the sign of the i-th vertex coming from the crossings.

At the level of the bipartite adjacency submatrix, this means multiplying all entries in each row by $(-A)^{-3}$ or $(-A)^3$.
Activity weighting $\alpha(\varepsilon)$: edges $\varepsilon \in E(\Gamma)$

The bipartition of the vertices in Γ is really the tripartition

$V(\Gamma) = [E(G) \cap E(G^*)] \sqcup [V(G)] \sqcup [V(G^*)] = V_E \sqcup V_V \sqcup V_F$

Definition

The *activity weighting* $\alpha(\varepsilon)$ on $\varepsilon = v_i v_j \in E(\Gamma)$ is given by:

- an edge incident with $v_i \in V_E$ is $+$ or $-$ if $e \in E(G)$ is $+$ or $-$;
- an edge incident with $v_j \in V_V$ is internal, and
- an edge incident with $v_j \in V_F$ is external; and
- an edge is live if it connects the lowest-ordered $v_i \in V_E$ to the vertex $v_j \in V_V \sqcup V_F$ and dead otherwise.
Activity weighting $\alpha(\varepsilon)$: bipartite adjacency submatrix

The entries of the bipartite adjacency submatrix associated to the balanced overlaid Tait graph Γ obey the following rules:

- ordered rows associated with V_E are all positive or all negative;
- columns associated with V_V are internal and V_F are external;
- the first non-zero entry in a column is live, the rest are dead.
Graph and knot polynomials

Constructing the activity matrix

Examples, more results, and questions

The bipartite adjacency submatrix

Kauffman’s trick \(\kappa(\varepsilon) \) giving a Kasteleyn weighting

Writhe weighting \(w(\varepsilon) \) and activity weighting \(\alpha(\varepsilon) \)

\[
\begin{bmatrix}
L & \ell & L \\
D & : & D \\
& \ddots & \ddots \\
& \ddots & L \\
& & D \\
\end{bmatrix}
\]
A note on the proof

The proof that the terms in the determinant expansion give the

exact activity words for the pretzel knots comes from

a technical lemma (C.) on the activity of paths.

One difficulty to extending this class is producing

a complete list of activity words for more general knots.
Example 1: the Jones polynomial for the trefoil

Example 1: the $(1, 1, 1)$-pretzel knot
Example 1: the Jones polynomial for the trefoil

Tait graph G

![Tait Graph](image)
Example 1: the Jones polynomial for the trefoil

balanced overlaid Tait graph Γ
Example 1: the Jones polynomial for the trefoil

The spanning trees give activity words \((Ldd), (ℓDd),\) and \((ℓℓD)\):

\[
\left(\begin{array}{c|cc}
L & ℓ & \\
D & -d & ℓ \\
D & -d & \\
\end{array}\right)
\]

With writhe \((-A^{-3})^{-3}\), the determinant is \(A^4 + A^{12} - A^{16} = t^{-1} + t^{-3} - t^{-4}\), the Jones polynomial of the trefoil.
Example 2: the Jones polynomial for 8_{19}

\textit{Example 2:} the $(-2, 3, 3)$-pretzel knot
Example 2: the Jones polynomial for 8_{19}

Tait graph G

![Tait graph G](image-url)
Example 2: the Jones polynomial for 8_{19}

balanced overlaid Tait graph Γ
Example 2: the Jones polynomial for 8_{19}

With writhe $(-A^{-3})^8$, the determinant is $-A^{-32} + A^{-20} + A^{-12}$
$= -t^8 + t^5 + t^3$, the Jones polynomial of 8_{19}.

\[
\begin{pmatrix}
\bar{L} & \bar{\ell} \\
\bar{D} & -d \\

\begin{array}{ccc}
-L & D & D \\
D & -L & -L \\
D & -L & -L \\
\end{array}
\end{pmatrix}
\]
Example 3: the Jones polynomial for the \((-2, 3, 7)\)-pretzel knot

\[
\begin{pmatrix}
\bar{L} \\
\bar{D}
\end{pmatrix}
\begin{pmatrix}
-L \\
D \\
-D \\
L
\end{pmatrix}

= \begin{pmatrix}
\bar{L} \\
\bar{D} \\
\bar{L} \\
\bar{D}
\end{pmatrix}
\begin{pmatrix}
\ell \\
-d \\
\ell \\
d \\
\ell \\
d \\
d \\
d
\end{pmatrix}

With writhe \((-A^{-3})^{12}\), the determinant is

\[-A^{-40} + A^{-36} - A^{-32} + A^{-16} + A^{-8} = -t^{10} + t^9 - t^8 + t^2.\]
Property: (Subdivision/Doubling)

Let $e_n \in E(G)$ be incident with the omitted vertex and face. Then if the activity weighting on Γ provides a dimer model for G, this can be extended to one for $G \cup \{e_{n+1}\}$ that subdivides or doubles e_n.

![Graph Diagram](image-url)
Leaving the class of pretzel knots

Proof:

Row e_n in squared incidence matrix only has D and d.

Subdivide to get a new row e_{n+1} and a new vertex column.

Entries in this column are 0 except for L and D.

Determinant expansion terms give DD and dD, preserving
the first n pivots, or Ld, preserving the first $n-1$ pivots.

These cases are exactly the possibilities for activity words.

The dual case of doubling works similarly. □
Another corollary to the Main Theorem

Reduced Khovanov homology chain complex $\widetilde{\mathcal{C}Kh}$:

<table>
<thead>
<tr>
<th>$a(e, S)$</th>
<th>L</th>
<th>D</th>
<th>ℓ</th>
<th>d</th>
<th>\overline{L}</th>
<th>\overline{D}</th>
<th>$\overline{\ell}$</th>
<th>\overline{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a(e, S)</td>
<td>_K$</td>
<td>uv</td>
<td>v</td>
<td>u^{-1}</td>
<td>1</td>
<td>u^{-1}</td>
<td>1</td>
<td>u</td>
</tr>
</tbody>
</table>
Corollary:

Summing over all perfect matchings μ in Γ and taking the product over all edges $\varepsilon \in \mu$,

$$\sum\prod_{\mu \varepsilon \in \mu} \alpha(\varepsilon)|\kappa$$

gives the two-variable polynomial $\widetilde{CKh}_P(q, t)$ for the reduced Khovanov chain complex of P up to sign.
Questions

What can these easy computations teach us about the Jones polynomial of the class of pretzel knots?

The activity weighting can be extended to a larger class of knots, but how far can it go?

The first-order differential of reduced Khovanov homology can be found in the activity matrix, but the higher-order ones?