ON WEIGHTED ESTIMATES OF NON-INCREASING
REARRANGEMENTS

A. K. Lerner

Department of Mathematics, Odessa State University
2, Dvoryanskaya str. 270 000 Odessa, UKRAINE

Dedicated to Professor P. L. Ul’yanov on the occasion of his 70th birthday

Abstract

Let \(\omega \) be a weight satisfying Muckenhoupt’s condition \(A_\infty \). In present paper the estimate of rearrangement \(f_\omega^*(t) \) was obtained

\[
f_\omega^*(t) \leq 2(M_\lambda^\# f)^*_\omega(2t) + f_\omega^*(2t) \quad (0 < t < \infty),
\]

where \(f \) is any measurable function, \(M_\lambda^\# f \) is local sharp maximal function due to John [12] and Strömberg [18]. Before (Bennett, DeVore and Sharpley [3], Bagby and Kurtz [1]) the similar estimates were expressed in terms of Fefferman-Stein sharp-function \(f^\# \) which is sufficiently larger then \(M_\lambda^\# f \).

In paper several applications of this estimate were pointed out.

1 Introduction

A non-negative locally integrable on \(\mathbb{R}^n \) function \(\omega(x) \) is called a weight. With any weight function we associate the measure \(\omega(E) = \int_E \omega(x) \, dx \). In case \(\omega(x) \equiv 1 \), \(\omega(E) = |E| \) is the Lebesgue measure. We shall assume that \(\omega(\mathbb{R}^n) = +\infty \).

Let \(f \) be a measurable function on \(\mathbb{R}^n \). The distribution function for \(f \) with respect to the measure \(\omega \) is defined by the equality

\[
\mu_f(\lambda) = \omega\{x \in \mathbb{R}^n : |f(x)| > \lambda\} \quad (0 < \lambda < \infty).
\]

Assume that \(\mu_f(\lambda) < \infty, \lambda > 0 \). We say that the function \(f_\omega^*(t) \) is a non-increasing rearrangement of \(f \) with respect to the measure \(\omega \) if it is non-increasing on \((0, +\infty) \) and equimeasurable with \(|f(x)| \), that is,

\[
|\{t \in (0, +\infty) : f_\omega^*(t) > \lambda\}| = \mu_f(\lambda)
\]

for any \(\lambda > 0 \). We shall assume that the rearrangement is continuous from the left. Then it is uniquely determined and can be defined by the equality

\[
f_\omega^*(t) = \inf\{\lambda > 0 : \mu_f(\lambda) < t\}
\]
or by (see [5, p. 32], [14]):

\[f^*_\omega(t) = \sup_{\omega(E) = t} \inf_{x \in E} |f(x)| \quad (0 < t < \infty) \]

(by virtue of the conditions on \(\omega \), for any \(t > 0 \), a set \(E \) exists with \(\omega(E) = t \). Denote \(f^{**}_\omega(t) = t^{-1} \int_0^t f^*_\omega(\tau) d\tau \). If \(\omega \) is the Lebesgue measure we use the notations \(f^*(t) \), \(f^{**}(t) \).

We say that the weight function \(\omega \) satisfies Muckenhoupt’s condition \(A_\infty \) if there exist constants \(c, \delta > 0 \) such that for any cube \(Q \), and for any measurable subset \(E \subset Q \), holds the inequality

\[\omega(E) \leq c \left(\frac{|E|}{|Q|} \right)^\delta \omega(Q). \]

Many other equivalent definitions of \(A_\infty \) can be found in the paper [6] of Coifman and Fefferman.

In this paper an estimate for the rearrangement \(f^*_\omega(t) \) (\(\omega \in A_\infty \)) in terms of the maximal function \(M^\#_f \) is obtained.

For a given measurable function \(f \) the maximal function \(M^\# f \) is defined as

\[M^\# f(x) = \sup_{Q \ni x} \inf_{c \in \mathbb{R}} (|f - c|\chi_Q)^*(\lambda|Q|), \quad 0 < \lambda \leq 1, \]

(the supremum is taken over all cubes \(Q \) containing the point \(x \); \(\chi_Q \) denotes the characteristic function of \(Q \)).

The definition (1.1) was given by John [12] in 1965. Later, in 1972, Fefferman and Stein [10] introduce the maximal function \(f^\# \) which measure the mean oscillations. It is defined as follows

\[f^\#(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - f_Q| dy \quad (f_Q = |Q|^{-1} \int_Q f). \]

The space \(BMO \) consists of all locally integrable functions such that \(f^\# \in L^\infty \) and the \(BMO \)-semi-norm is defined as \(\|f\|_* = \|f^\#\|_\infty \).

Since \(tf^*(t) \leq tf^{**}(t) \leq \|f\|_1 \), it is clear that \(\lambda M^\#_f(x) \leq f^\#(x) \)

\((0 < \lambda \leq 1)\). Thus

\[\lambda ||M^\#_f||_\infty \leq \|f\|_* \quad (0 < \lambda \leq 1). \]

John [12] and Strömberg [18] proved that, in case \(\lambda \leq 1/2 \), the converse statement is also true. The following theorem holds.

Theorem [12, 18]. If \(0 < \lambda \leq 1/2 \) then

\[\|f\|_* \leq c ||M^\#_f||_\infty \]
where c depends only on the dimension.

Bennett, DeVore and Sharpley proved in [3] the inequality: For any function $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ and any cube $Q \subset \mathbb{R}^n$,
\begin{equation}
(f \cdot \chi_Q)^*(t) - (f \cdot \chi_Q)^*(t) \leq c(f^#)^*(t) \quad (0 < t < |Q|/6).
\end{equation}
This result implies, in particular, the theorem of Fefferman and Stein [10]:
\begin{equation}
\|Mf\|_p \asymp \|f^#\|_p \quad (1 < p < \infty)
\end{equation}
(Mf is the standard maximal operator of Hardy – Littlewood).

Afterwards Bagby and Kurtz [1] established the weighted inequality: If $\omega \in A_\infty$, then for any function $f \in L^1_{\text{loc}}(\mathbb{R}^n)$,
\begin{equation}
f^*_\omega(t) \leq c(f^#)^*_\omega(2t) + f^*_\omega(2t) \quad (t > 0).
\end{equation}
There and in the consequent paper [2] similar estimates connecting the rearrangements of the functions Mf and $f^#$, as well as of Tf and Mf, are obtained (Tf is the singular integral operator of Calderón – Zygmund). These estimates are ”rearrangemental” analogies of earlier known ”good λ inequalities” [10, 6].

The main result of the present paper is an estimate which is more precise than (1.3). Namely, we show that if $\omega \in A_\infty$, f is a measurable function, and Q is an arbitrary cube, then
\begin{equation}
(f \cdot \chi_Q)^*_\omega(t) \leq 2(M^# f)^*_\omega(2t) + (f \cdot \chi_Q)^*_\omega(2t) \quad (0 < t < \omega(Q)),
\end{equation}
\begin{equation}
f^*_\omega(t) \leq 2(M^# f)^*_\omega(2t) + f^*_\omega(2t) \quad (0 < t < \infty).
\end{equation}
Moreover, with the help of these inequalities certain known results concerning estimates of the L^p_ω- and BMO-norms of maximal and singular integral operators can be obtained.

2 Auxiliary propositions

A measure ω is said to satisfy the doubling condition ($\omega \in D$), if for any cube Q holds $\omega(2Q) \leq c\omega(Q)$. The condition A_∞ yields D, but the inverse is not true (see [9]).

Lemma 2.1. Assume that the measure ω satisfies the doubling condition D and let $0 < \lambda < 1$.

3
(i) If Q_0 is a cube and $E \subset Q_0$ is an arbitrary measurable set of positive measure with $\omega(E) \leq \lambda \omega(Q_0)$, then there exist mutually disjoint cubes $\{Q_i\} \subset Q_0$ covering E and such that

$$\lambda \omega(Q_i) < \omega(Q_i \cap E) \leq c_\omega \lambda \omega(Q_i).$$

(ii) If $E \subset \mathbb{R}^n$ is an arbitrary measurable set of finite positive ω-measure, then there exist mutually disjoint cubes $\{Q_i\}$ covering E and satisfying inequality (2.1).

Proof. Item (i) follows from the Calderón – Zygmund ”weight” lemma (see [15]): If $\frac{1}{\omega(Q_0)} \int_{Q_0} |f(y)| \omega(y) \, dy \leq \lambda$ then there exist mutually disjoint cubes $\{Q_i\} \subset Q_0$ such that $\lambda < \frac{1}{\omega(Q_i)} \int_{Q_i} |f(y)| \omega(y) \, dy \leq c_\omega \lambda$ and $|f(x)| \leq \lambda$ for almost all $x \in Q_0 \setminus \bigcup_i Q_i$ (the proof is the same as that of the ordinary lemma of Calderón – Zygmund [16, p. 27]). Letting $f(y) = \chi_E(y)$ we get (i). For the proof of item (ii), it is necessary to decompose \mathbb{R}^n into sufficiently big non-overlapping cubes Q_k in such a way that $\omega(E \cap Q_k) \leq \lambda \omega(Q_k)$. We can do this because the set E has a finite ω-measure. Then it remains to apply item (i) to each cube Q_k. The lemma is proved.

Remark 2.1. It is meant in the formulation of Lemma 2.1 that the cubes Q_i cover the set E almost everywhere, i.e., $|E \setminus \bigcup_i Q_i| = 0$. Note else that in the lemma cited in [15] the family $\{Q_i\}$ of cubes may be empty in case $|f(x)| \leq \lambda$ almost everywhere. But, in our case, this is impossible since we take $\lambda < 1$ and $f(x) = \chi_E(x)$.

Lemma 2.2. Let $\omega \in D$. Then, for any measurable function f and for every cube Q, the following inequality holds

$$(f \cdot \chi_Q)\omega(\lambda \omega(Q)) \leq 2 \inf_{c \in \mathbb{R}} \left((f - c) \chi_Q \right)\omega(\lambda \omega(Q)) + (f \cdot \chi_Q)\omega((1 - \lambda) \omega(Q))$$

$(0 < \lambda < 1)$.

Proof. If $1/2 \leq \lambda < 1$, then the lemma is trivial. Assume that $0 < \lambda < 1/2$. For any constant c we have

$$|c| \leq \inf_{x \in \bar{Q}} (|c - f(x)| + |f(x)|) \leq \left(|c - f| + |f| \right)\omega(\lambda \omega(Q))$$

$$\leq \left((f - c) \chi_Q \right)\omega(\lambda \omega(Q)) + (f \cdot \chi_Q)\omega((1 - \lambda) \omega(Q)).$$

Therefore

$$(f \cdot \chi_Q)\omega(\lambda \omega(Q)) \leq \left((f - c) \chi_Q \right)\omega(\lambda \omega(Q)) + |c|$$
\[
\leq 2 \left((f - c) \chi_Q \right)_\omega^* (\lambda \omega(Q)) + (f \cdot \chi_Q)_\omega^* ((1 - \lambda) \omega(Q)).
\]

The proof is completed.

Remark 2.2. It is clear that the last lemma is valid under even more general conditions on \(\omega \).

Consider now the weighted analogy of the function \(M^\#_\lambda f \):

\[
M^\#_\lambda, \omega f(x) = \sup_{Q \ni x} \inf_{c \in \mathbb{R}} \left((f - c) \chi_Q \right)_\omega^* (\lambda \omega(Q)) \quad (0 < \lambda \leq 1).
\]

Lemma 2.3. If \(\omega \) satisfies the condition \(A_{\infty} \), then for every \(\lambda \leq 1 \) there exists \(\lambda', \lambda'' \leq 1 \) such that

\[
(2.2) \quad M^\#_{\lambda'} f(x) \leq M^\#_{\lambda, \omega} f(x) \leq M^\#_{\lambda''} f(x)
\]

for all \(x \in \mathbb{R}^n \).

Proof. Let \(E \subset Q \) and \(\omega(E) = \lambda \omega(Q) \). Then it follows from the definition of \(A_{\infty} \) that for certain \(c, \delta > 0 \) we have

\[
|E| \geq \frac{\lambda^{1/\delta}}{c} |Q|.
\]

Thus

\[
\inf_{x \in E} |f(x) - \xi| \leq \left((f - \xi) \chi_Q \right)_\omega^* \left(\frac{\lambda^{1/\delta}}{c} |Q| \right), \quad \xi \in \mathbb{R}.
\]

Taking a supremum over all \(E \subset Q \) with \(\omega(E) = \lambda \omega(Q) \), we get

\[
\left((f - \xi) \chi_Q \right)_\omega^* (\lambda \omega(Q)) \leq \left((f - \xi) \chi_Q \right)_\omega^* \left(\frac{\lambda^{1/\delta}}{c} |Q| \right), \quad \xi \in \mathbb{R}.
\]

This inequality yields the right-hand side of (2.2) with \(\lambda' = \lambda^{1/\delta} / c \).

Assume that \(E \subset Q \) and \(|E| = \lambda'' |Q| \). Then \(|Q \setminus E| = (1 - \lambda'') |Q| \) and hence \(\omega(Q \setminus E) \leq c (1 - \lambda'')^\delta \omega(Q) \). Therefore

\[
\omega(E) \geq (1 - c (1 - \lambda'')^\delta) \omega(Q)
\]

and

\[
\inf_{x \in E} |f(x) - \xi| \leq \left((f - \xi) \chi_Q \right)_\omega^* ((1 - c (1 - \lambda'')^\delta) \omega(Q)).
\]

Letting \(\lambda = 1 - c (1 - \lambda'')^\delta \) we get \(\lambda'' = 1 - (1 - \lambda)^{1/\delta} \). Inequality (2.2) is proved with \(\lambda'' = 1 - (1 - \lambda)^{1/\delta} / c \), \(\lambda' = \lambda^{1/\delta} / c \).
Denote by $L^p(\mathbb{R}^n)$ the space of all functions f for which

$$
\|f\|_{p,\omega} = \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx \right)^{1/p} < \infty.
$$

By virtue of the equimeasurability of the rearrangement the following equality holds:

$$
\int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx = \int_0^\infty (f^\ast_\omega(t))^p \, dt \quad (p > 0).
$$

Lemma 2.4. Let the functions f, g satisfy the inequality

$$
f^\ast_\omega(t) \leq cg^\ast_\omega(\gamma t) + f^\ast_\omega(2t) \quad (0 < t < \infty, \gamma > 0).
$$

Assume that $f^\ast_\omega(+\infty) = 0$. Then

$$
\|f\|_{p,\omega} \leq c \|g\|_{p,\omega} \quad (0 < p < \infty).
$$

Proof. Applying consecutively (2.4) we get

$$
f^\ast_\omega(t) \leq \sum_{k=0}^\infty g^\ast_\omega(2^k \gamma t) \leq \frac{c}{\log 2} \sum_{k=0}^\infty \int_{2^k \gamma t}^{2^{k+1} \gamma t} \frac{g^\ast(s)}{s} \, ds = \frac{c}{\log 2} \int_t^\infty \frac{g^\ast(s)}{s} \, ds.
$$

Hence, from Hardy inequation [16, p. 319] and (2.3), it follows that

$$
\|f\|_{p,\omega} = \|f^\ast_\omega\|_p \leq \frac{2c}{\log 2} \cdot \frac{1}{\gamma} \left\| \int_t^\infty \frac{g^\ast(s)}{s} \, ds \right\|_p \leq \frac{2c}{\log 2} \cdot \frac{1}{\gamma} \|g\|_{p,\omega} \quad (1 \leq p < \infty).
$$

If $0 < p < 1$ the arguments are similar since in this case (2.4) implies that

$$
(f^\ast_\omega(t))^p \leq (cg^\ast(\gamma t))^p + (f^\ast_\omega(2t))^p.
$$

The lemma is proved.

3 The basic inequality

Theorem 3.1. Let ω satisfy the doubling condition. Then, for any measurable function f and for every cube Q, the following inequalities hold

$$
(f \cdot \chi_Q)^\ast_\omega(t) \leq 2(M^\#_{\lambda,\omega} f)^\ast_\omega(t) + (f \cdot \chi_Q)^\ast_\omega(2t) \quad (0 < t \leq \omega(Q)/5c_\omega),
$$

$$
f^\ast_\omega(t) \leq 2(M^\#_{\lambda,\omega} f)^\ast_\omega(t) + f^\ast_\omega(2t) \quad (0 < t < \infty),
$$

where c_ω is the constant from (2.1), $0 < \lambda \leq 1/5c_\omega$.

6
Proof. Fix an arbitrary cube $Q \subset \mathbb{R}^n$. Let $\lambda \leq 1/5c_\omega$, $t \leq \omega(Q)/5c_\omega$ and let $E \subset Q$ be an arbitrary measurable set with $\omega(E) = t$. According to Lemma 2.1 (i) there exist mutually disjoint cubes $\{Q_i\} \subset Q$ covering E and such that

\begin{equation}
\omega(Q_i \cap E) > \frac{1}{5c_\omega} \omega(Q_i), \tag{3.3}
\end{equation}

\begin{equation}
\sum_i \omega(Q_i) \geq 5 \sum_i \omega(Q_i \cap E) = 5\omega(E) = 5t. \tag{3.4}
\end{equation}

Select from them the cubes $\{Q_i'\}$ which are contained in the set

$$E^* = \{ x \in \mathbb{R}^n : M_{\lambda,\omega}^f(x) > (M_{\lambda,\omega}^f)_{\omega}(2t) \},$$

In other words, for Q_i' the following inequality holds

$$\inf_{c} ((f - c)\chi_{Q_i'})_{\omega}(\lambda\omega(Q_i')) \leq (M_{\lambda,\omega}^f)_{\omega}(2t).$$

This relation and Lemma 2.2 yield

\begin{equation}
(f \cdot \chi_{Q_i'})_{\omega}(\omega(Q_i')/5c_\omega) \leq 2 \inf_{c} ((f - c) \cdot \chi_{Q_i'})_{\omega}(\lambda\omega(Q_i')) + (f \cdot \chi_{Q_i'})_{\omega}((1 - 1/5c_\omega)\omega(Q_i')) \\
\leq 2(M_{\lambda,\omega}^f)_{\omega}(2t) + (f \cdot \chi_{Q_i'})_{\omega}((1 - 1/5c_\omega)\omega(Q_i')). \tag{3.5}
\end{equation}

Further, since $\omega(E^*) \leq 2t$ and the cubes Q_i are mutually disjoint, taking into account (3.4), we get $\sum_i \omega(Q_i') \geq 3t$. Thus

$$\inf_i (f \cdot \chi_{Q_i'})_{\omega}((1 - 1/5c_\omega)\omega(Q_i')) \leq (f \cdot \chi_{Q_i'})_{\omega}((1 - 1/5c_\omega)2t) \leq (f \cdot \chi_{Q_i'})_{\omega}(2t).$$

Hence, by virtue of (3.3) and (3.5), we have

\begin{align*}
\inf_{x \in E} |f(x)| & \leq \inf_{x \in E \cap Q_i'} |f(x)| \leq \inf_{i} (f \cdot \chi_{Q_i'})_{\omega}(\omega(Q_i' \cap E)) \\
& \leq \inf_i (f \cdot \chi_{Q_i'})_{\omega}(\omega(Q_i')/5c_\omega) \leq 2(M_{\lambda,\omega}^f)_{\omega}(2t) + (f \cdot \chi_{Q_i'})_{\omega}(2t).
\end{align*}

Taking supremum in this inequality over all sets $E \subset Q$ with $\omega(E) = t$, we get (3.1). Inequality (3.2) may be proved either in the same manner using Lemma 3.1 (ii), or from (3.1) passing to the limit as $Q \to \mathbb{R}^n$. The theorem is proved.
extend the idea of transition from "good λ inequalities" to estimates of rearrangements.

Lemma 2.3 and inequality (3.2) yields the following statement.

Corollary 3.1. If ω ∈ A∞, then for every measurable function f we have

\[
(3.6) \quad f_\ast(t) \leq 2(M_\lambda \# f)_\ast(2t) + f_\ast(2t) \quad (0 < t < \infty, \; 0 < \lambda < \lambda_0(\omega)).
\]

Inequality (3.6) and Lemma 2.4 imply immediately

Theorem 3.2. Let ω ∈ A∞. Then, for any f satisfying \(f_\ast(+\infty) = 0\), holds the inequality

\[
(3.7) \quad \|f\|_{L^p}\omega \leq c_{p,\omega} \|M_\lambda \# f\|_{L^p}\omega \quad (0 < p < \infty, \; 0 < \lambda < \lambda_0(\omega)).
\]

In the non-weighted case this result was proved in [11].

4 Certain estimates for operators

The right-hand side of inequality (3.7) contains the \(L^p_\omega\)-norm of the function \(M_\lambda \# f\). As mentioned already in the introduction

\[
(4.1) \quad \|f\|_\ast \leq c_{n,\lambda} \|M_\lambda \# f\|_\infty
\]

for \(0 < \lambda \leq 1/2\).

It is shown in this section that application of our basic inequality (3.6) and John – Strömberg inequality (4.1), allow us to give short proofs of certain known results.

To this end consider first how the operator \(M_\lambda \#\) acts on the operators \(Mf\) and \(Tf\). Set

\[
Mf(x) = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} |f(y)| \, dy \right).
\]

Theorem 4.1. Assume that \(f \in L^1_{\text{loc}}(\mathbb{R}^n)\). If \(Mf(x) < \infty\) almost everywhere, then

\[
(4.2) \quad M_\lambda \#(Mf)(x) \leq c_{n,\lambda} f_\ast(x) \quad (0 < \lambda \leq 1)
\]

for all \(x \in \mathbb{R}^n\).

Proof. Fix a cube \(Q\). Let \(x \in Q\) and let \(Q'\) be an arbitrary cube containing \(x\). If \(Q' \subset 3Q\), then

\[
(4.3) \quad |f|_{Q'} \leq |f - f_{3Q}|_{Q'} + |f|_{3Q} \leq M((f - f_{3Q})\chi_{3Q})(x) + \inf_{\xi \in Q} Mf(\xi).
\]
Assume that $Q' \not\subset 3Q$. Then $Q \subset 3Q'$ and in this case
\[
|f|_{Q'} \leq |f - f_{3Q'}|_{Q'} + |f|_{3Q'} \leq 3^{n} \inf_{\xi \in Q} f^\#(\xi) + \inf_{\xi \in Q} Mf(\xi).
\]
Hence, using (4.3), we get
\[
(4.4) \quad Mf(x) \leq M((f - f_{3Q})\chi_{3Q})(x) + 3^{n} \inf_{\xi \in Q} f^\#(\xi) + \inf_{\xi \in Q} Mf(\xi)
\]
for all $x \in Q$. Making use of the fact that the operator M is of weak type (1,1) [16, p. 15] and (4.4), we get
\[
\inf_{c}((Mf - c)\chi_{Q})^*(\lambda|Q|) \leq ((Mf - \inf_{Q} Mf)\chi_{Q})^*(\lambda|Q|) \leq (M((f - f_{3Q})\chi_{3Q}))^*(\lambda|Q|) + 3^{n} \inf_{\xi \in Q} f^\#(\xi) \leq \frac{c_{n}}{\lambda|Q|} \int_{3Q} |f(y) - f_{3Q}| \, dy + 3^{n} \inf_{\xi \in Q} f^\#(\xi).
\]
Taking supremum over all Q containing x we get (4.2). The theorem is proved.

Note that a weaker variant of inequality (4.2) for the local case was given without proof in [11].

Corollary 4.1.

(i) If $f \in BMO(\mathbb{R}^{n})$ and $Mf(x) < \infty$ a.e., then $Mf \in BMO(\mathbb{R}^{n})$ and
\[
\|Mf\|_{*} \leq c_{n}\|f\|_{*}.
\]

(ii) If $\omega \in A_{\infty}$, then
\[
(4.5) \quad (Mf)_{\infty}^{\omega}(t) \leq c_{n,\omega}(f^\#)_{\infty}^{\omega}(2t) + (Mf)_{\infty}^{\omega}(2t) \quad (t > 0)
\]
for any function $f \in L_{1}^{1}(\mathbb{R}^{n})$.

(iii) If $\omega \in A_{\infty}$, then
\[
(4.6) \quad \|Mf\|_{L_{p}^{\omega}} \leq c_{n,p,\omega}\|f^\#\|_{L_{p}^{\omega}} \quad (0 < p < \infty)
\]
for all functions f with $(Mf)_{\omega}^{\infty}(+\infty) = 0$.

Item (i) follows from inequalities (4.1), (4.2). This result was proved in [3]. Inequality (4.5) was obtained in [1]. It follows immediately from (3.6) and (4.2). Inequality (4.6) is the weighted Fefferman – Stein theorem [10]. It follows either from (3.7) or (4.5).
Suppose that the kernel \(k(x) \) satisfies the standard conditions:

\[
|k(x)| \leq \frac{c}{|x|^n}, \quad \int_{R_1<|x|<R_2} k(x) \, dx = 0 \quad (0 < R_1 < R_2 < \infty),
\]

(4.7)

\[
|k(x) - k(x - y)| \leq \frac{c|y|^{\alpha}}{|x|^{n+\alpha}} \quad (|y| \leq |x|/2, \alpha > 0).
\]

Set, for \(f \in L^p(\mathbb{R}^n) \) \((1 \leq p < \infty)\),

\[
T_f(x) = \text{P.V.} \int_{\mathbb{R}^n} f(y)k(x - y) \, dy,
\]

\[
T^*_f(x) = \sup_{\varepsilon > 0} \left| \int_{|x-y| > \varepsilon} f(y)k(x - y) \, dy \right|.
\]

Theorem 4.2. For all \(f \in L^p(\mathbb{R}^n) \) \((1 \leq p < \infty)\) we have

\[
M^\#_{\lambda} (Tf)(x) \leq c_{n,\lambda} Mf(x),
\]

(4.8)

\[
M^\#_{\lambda} (T^*_f)(x) \leq c_{n,\lambda} Mf(x).
\]

(4.9)

This theorem was proved in [11]. To prove it, decompose the function into two parts. Let \(x \) be the center of the cube \(Q \). Set \(f_1 = f \cdot \chi_{3Q}, \ f_2 = f \cdot \chi_{\mathbb{R}^n \setminus 3Q} \). By virtue of the weak type \((1,1)\) of the operator \(T \) (see [16, p. 42]), we have

\[
(Tf_1)^*(\lambda|Q|) \leq \frac{c}{\lambda|Q|} \int_{3Q} |f(y)| \, dy \leq c' Mf(x).
\]

On the other hand, using the conditions (4.7) on the kernel, it is not difficult to show that for all \(z', z'' \in Q \) holds the estimate

\[
|Tf_2(z') - Tf_2(z'')| \leq c Mf(x).
\]

This yields (4.8). Inequality (4.9) can be proved in a similar way.

The above theorem and inequalities (3.6), (4.1) imply

Corollary 4.2.

(i) If \(f \in L^p \cap L^\infty(\mathbb{R}^n) \), then \(Tf, T^*_f \in BMO(\mathbb{R}^n) \). Moreover,

\[
\|Tf\| \leq c_n \|f\|_\infty, \quad \|T^*_f\| \leq c_n \|f\|_\infty.
\]

(ii) If \(\omega \in A_\infty \), then

\[
(Tf)_\omega^*(t) \leq c_{n,\omega} (Mf)_\omega^*(2t) + (Tf)^*_\omega(2t) \quad (t > 0),
\]

10
\[(T^* f)^*(t) \leq c_{n, \omega}(Mf)^*(2t) + (T^* f)^*(2t) \quad (t > 0)\]
for all \(f \in L^p(\mathbb{R}^n)\) \((1 \leq p < \infty)\).

(iii) If \(\omega \in A_\infty\), then
\[
\|T^* f\|_{L^p(\omega)} \leq c_{n,p,\omega}\|Mf\|_{L^p(\omega)} \quad (0 < p < \infty)
\]
for all functions \(f\) with \((T^* f)^*(+\infty) = 0\).

Item (i) goes back to Stein [17]. Item (ii) was obtained in [2]. More precisely, in the paper of Bagby and Kurtz [2], it was proved that for any \(\gamma \in (0, 1)\) there exists a constant \(c(\gamma)\) such that
\[
(T^* f)^*(t) \leq c(\gamma)(Mf)^*(\gamma t) + (T^* f)^*(2t) \quad (t > 0),
\]
and hence, their method does not allow to take \((Mf)^*(2t)\). Inequality (4.10) was proved in [6].

Cordoba and Fefferman proved in [8] the inequality
\[
(Tf)^\#(x) \leq c_{p}M_p f(x) \quad (1 < p < \infty)
\]
where \(M_p f(x) = (M|f|^p)^{1/p}(x)\). We shall show now that this inequality can be improved. To this end, we use the following estimate obtained in Jawerth and Torchinsky [11]: For all \(f \in L^1_{\omega}(\mathbb{R}^n)\) and all \(x \in \mathbb{R}^n\),
\[
(c_1MM^\# f(x) \leq f^\#(x) \leq c_2MM^\# f(x)
\]
where \(0 < \lambda < \lambda_0(n)\), \(c_1\) and \(c_2\) depends on \(n\) and \(\lambda\). The relations (4.8) and (4.12) imply the inequality:
\[
(Tf)^\#(x) \leq c_{M}M f(x).
\]

This inequality is more precise than (4.11) since, as shown in [7],
\[
MM_p f(x) \leq c_M p f(x) \quad (p > 1)
\]
and thus
\[
MM f(x) \leq MM_p f(x) \leq c_M p f(x)
\]
for \(p > 1\).

Let us note some consequences from inequality (3.1). Denote by \(BMO(\omega)\) the space of all functions \(f\) such that
\[
\|f\|_{\omega, \omega} \equiv \sup_{Q \subset \mathbb{R}^n} \frac{1}{\omega(Q)} \int_Q |f(y) - f_{Q, \omega}| \omega(y) dy < \infty
\]
Let us start with the John–Nirenberg theorem [13] in the weight case. The claim that this theorem can be extended to the case of weights satisfying the doubling condition was mentioned already in [15].

Theorem 4.3 [John–Nirenberg]. Let $\omega \in D$. Then, for every function $f \in BMO(\omega)$ and every cube Q holds the inequality:

$$((f - f_Q,\omega)^{\ast}_{\omega}(t) \leq c \|f\|_{*\omega} \log^+ \frac{2\omega(Q)}{t} \quad (0 < t < \infty),$$

or, equivalently,

$$\omega\{x \in Q : |f(x) - f_Q,\omega| > \alpha\} \leq 2\omega(Q) \exp\left(-\frac{\alpha}{c \|f\|_{*\omega}}\right) \quad (0 < \alpha < \infty)$$

where c depends only on ω.

Proof. It follows from inequality (3.1) that

$$(f - f_Q,\omega)^{\ast}_{\omega}(t) \leq 10c\omega \|f\|_{*\omega} + ((f - f_Q,\omega)^{\ast}_{\omega}(2t)$$

for $t < \omega(Q)/5c_{\omega}$. But

$$((f - f_Q,\omega)^{\ast}_{\omega}(t) \leq \frac{5c\omega}{\omega(Q)} \int_Q |f(x) - f_Q,\omega| \omega(x) \, dx \leq 5c\omega \|f\|_{*\omega}$$

provided $t \geq \omega(Q)/5c_{\omega}$. Thus inequality (4.13) is valid for all $t > 0$.

Suppose now that $\omega(Q)/2^{k+1} < t \leq \omega(Q)/2^k$. Applying (4.13) k times we get

$$((f - f_Q,\omega)^{\ast}_{\omega}(t) \leq 10c\omega \|f\|_{*\omega}(k + 1) \leq \frac{10c\omega}{\log 2} \|f\|_{*\omega} \log^+ \frac{2\omega(Q)}{t}.$$

The theorem is proved.

Remark 4.1. Just in the same way the weighted analogy of John and Strömberg theorem follows from (3.1) : For any cube Q there exists a constant $a_{Q,\omega}$ such that

$$((f - a_{Q,\omega})^\ast_{\omega}(t) \leq c \|M_{\lambda,\omega}^f\|_{\infty} \log^+ \frac{2\omega(Q)}{t} \quad (0 < t < \infty, \; 0 < \lambda \leq 1/5c_{\omega}).$$

Hence

$$\frac{1}{\omega(Q)} \int_Q |f(y) - f_{Q,\omega}| \omega(y) \, dy \leq 2\frac{1}{\omega(Q)} \int_Q |f(y) - a_{Q,\omega}| \omega(y) \, dy$$

12
\[
\leq \frac{c\|M_{\lambda,\omega}^# f\|_{\infty}}{\omega(Q)} \int_0^{\omega(Q)} \log^+ \frac{2\omega(Q)}{t} dt \leq c\|M_{\lambda,\omega}^# f\|_{\infty}.
\]

Thus
\[
(4.14) \quad \|f\|_{*,\omega} \asymp \|M_{\lambda,\omega}^# f\|_{\infty}.
\]

Since for \(\lambda \leq 1/2 \) we have \(\|f\| \asymp \|M_{\lambda} f\|_{\infty} \), the inequality (4.14) and Lemma 2.3 imply the result of Muckenhoupt and Wheeden [15], namely: If \(\omega \in A_\infty \), then \(BMO(\omega) = BMO \).

We shall show next that (3.1) implies the inequality of Bennett, DeVore and Sharpley (1.2). Indeed, integrating inequality (3.1) we get
\[
(f \cdot \chi_Q)_{\omega}^{**}(t) - (f \cdot \chi_Q)_{\omega}^{*}(t) \leq 2((f \cdot \chi_Q)_{\omega}^{*}(t) - (f \cdot \chi_Q)_{\omega}^{**}(2t)) \leq 4(M_{\lambda,\omega}^# f)_{\omega}^{**}(2t) \quad (0 < t < \omega(Q)/5c_\omega, 0 < \lambda \leq 1/5c_\omega).
\]

Let \(\omega \) be the Lebesgue measure. Then, according to Hardy – Littlewood – Hertz inequality (see [4]), we have
\[
c_1 f^{**}(t) \leq (Mf)^*(t) \leq c_2 f^{**}(t) \quad (0 < t < \infty).
\]

The left-hand side of this inequality, (4.12) and (4.15) yield (1.2).

Acknowledgement. The author is grateful to V. I. Kolyada under the guidance of whom this work was completed.

References

