NOTE

ON THE SYNTACTIC TRANSFORMATION SEMIGROUP OF A LANGUAGE GENERATED BY A FINITE BIPREFIX CODE

Stuart W. MARGOLIS

Department of Mathematics, University of Vermont, Burlington, VT 05401, U.S.A.

Communicated by M. Nivat
Received December 1981
Revised April 1982

Abstract. Let \(P \) be a finite biprefix code and let \(\mathcal{X} = (Q, S) \) be the syntactic transformation semigroup \(X \) of \(P \). We show that if \(e \in S \) is an idempotent, then the ts \(X_e = (Q_e, eSe) \) consists of partial one to one maps. We also show that any ts of partial one to one maps divides a ts of partial one to one maps which is the syntactic ts of a finite biprefix code.

1. Introduction

Let \(A \) be a finite set. A subset \(P \) of the free semigroup \(A^+ \) is a prefix if \(P \cap PA^+ = \emptyset \). A suffix is defined dually and a biprefix is a set which is both a prefix and a suffix. A prefix \(P \) is complete if \(P^* \cap wA^+ \neq \emptyset \) for all \(w \in A^+ \).

It is well known that the subsemigroup \(P^+ \) generated by a prefix \(P \) is free. In fact, \(P^+ \) satisfies the following condition: If \(w \in A^+ \) and \(P^* w \cap P^+ \neq \emptyset \) then \(w \in P^+ \).

An important tool for studying \(P^+ \) is the syntactic semigroup \(S(P^+) \). We recall that \(S(P^+) \) is the quotient of \(A^+ \) by the largest congruence such that \(P^+ \) is a union of classes. This study was initiated by Schützenberger in [10] and we refer the reader to Chapter 8 of [3] for basic results. We also recall Kleene's theorem which states that a subset \(L \) of \(A^+ \) is rational (i.e. regular) if and only if \(S(L) \) is finite.

Recently there have been a number of results showing how an arbitrary finite semigroup divides a semigroup of the form \(S(P^+) \) where \(P \) is a rational prefix code. Indeed Schützenberger shows [11] that any finite semigroup is a subsemigroup of \(S(P^+) \) where \(P \) is a complete rational biprefix. In [6] Pin proves that any semigroup divides \(S(P^+) \) for some finite prefix \(P \), a result that is refined in [7] and [5].

On the other hand, it is well known that a finite complete prefix is a biprefix if and only if \(S = S(P^+) \) is nil-simple, [3]. That is, for all \(s \in S \), there is an \(n \) such that \(s^n \) is in the minimal ideal of \(S \). It is easy to show that a finite semigroup \(S \) is nil-simple if and only if \(eSe \) is a group for all idempotents \(e \in S \).
In view of these results, it is reasonable to ask if every finite semigroup \(S \) divides \(S(P^+) \) where \(P \) is a finite biprefix. The main result of this paper shows that this is not true by proving that if \(P \) is a finite biprefix, then \(eS(P^+)e \) is a subsemigroup of an inverse semigroup for any idempotent \(e \in S(P^+) \). More generally, if \(X = (Q, S(P^+)) \) is the syntactic transformation semigroup (ts) of \(P^+ \), then \(X_e = (Q_e, eS(P^+)e) \) is an injective ts. That is each transformation of \(X_e \) is partial one-one. We call such a ts, locally injective.

Let \(A = \{a, b\} \). We remark that the syntactic ts of \(P^+ = \{a, ba\}^+ \) is locally injective, so that the converse of the above result is not true. We will show however, using the techniques of [7], that any injective ts divides the syntactic ts of a finite biprefix. For other results on injective biprefixes see [2], [8], and [9].

All undefined notions and terminology can be found in [1] or [3]. In particular, an \(A \)-automaton \(\mathcal{A} = (Q, A) \) is a partial function \(Q \times A \rightarrow Q \) where \(Q \) is a finite set. The ts of \(\mathcal{A} \) is the pair \(X = (Q, S) \) where \(S \) is the semigroup generated by the partial functions in \(A \).

2. The main result

Let \(A \) be a finite set and let \(P \subseteq A^+ \) be a rational prefix. Let \(\mathcal{A} = (Q, A) \) be the minimal automaton of \(P^+ \). We recall that there is an \(i \in Q \) such that \(P^+ = \{w \mid iw = i\} \). More generally if \(q \in Q \), let \(\mathcal{A}_q = \{w \in A^+ \mid qw = q\} \). Let \(Pa = \{v \in A^* \mid vA^+ \cap P \neq \emptyset\} \) and let \(Pq = \{v \in A^* \mid A^+v \cap P \neq \emptyset\} \).

Lemma 1. Let \(P \) be a finite prefix and let \(\mathcal{A} = (Q, A) \) be the minimal automaton of \(P^+ \). If \(v \in \mathcal{A}_q \) for some \(q \in Q \), then \(v = xdy \) for some \(x \in Pa, d \in P^*, y \in Pa \). Furthermore \(xy \in P \cup \{1\} \).

Proof. We recall that the states of \(\mathcal{A} \) are the sets of the form \(s^{-1}P^+ = \{w \mid sw \in P^+\} \) for \(s \in Pa \) and that \(i = P^+ \). Let \(q = s^{-1}P^+ \). Since \(P \) is finite, there exists a prefix \(x \) of \(v \) such that \(sx \in P \cup \{1\} \). Therefore, \(x \in Pa \). Let \(c \) be the longest prefix of \(x^{-1}v \) such that \(c \in P^* \). Then \(v = xdy \) for some \(y \in Pa \). Furthermore, \(qx = i \) and \(ly = q \) and it follows that \(xy \in P \cup \{1\} \). \(\Box \)

Proposition 2. Let \(P \) be a finite biprefix and let \(\mathcal{A} = (Q, A) \) be the minimal automaton of \(P^+ \). Suppose there are \(q, q' \in Q \), and \(v \in \mathcal{A}_q \cap \mathcal{A}_{q'} \). If there is \(w \in A^* \) such that \(qw = q'w \neq \emptyset \), then \(q = q' \).

Proof. Since \(\mathcal{A} \) is transitive, we can assume that \(qw = q'w = i \) the state stabilized by \(P^+ \). By Lemma 1, \(v \) factors

\[
\nu = xdy = x'd'y'
\]
where
\[x, x' \in P \omega, \quad d, d' \in P^*, \quad y, y' \in P \omega, \quad yx, y'x' \in P \cup \{1\}. \]

It follows that \(iy = q, \ iy' = q' \). By our assumption on \(w \), we have \(yw \in P^* \) and \(y'w \in P^* \). Without loss of generality, there is \(z \in A^* \) such that \(y' = zy \) by (1).

Therefore \(y'x'd'y'w \in P^* \). But,
\[y'x'd'y'w = y'x'd'zyw. \]
Since \(y'x'd' \in P^* \), it follows that \(zyw \in P^* \) since \(P \) is a prefix. Using the fact that \(P \)

is a suffix and \(yw \in P^* \), we have \(z \in P^* \).

Thus \(q' = iy' = izy = iy = q \). \(\square \)

Let \(X = (Q, S) \) be a ts. If \(e \in S \) is an idempotent, let \(X_e = (Qe, eSe) \). \(X \) is injective, if each \(s \in S \) is partial one–one. \(X \) is locally injective if \(X_e \) is injective for all idempotents \(e \in S \).

Theorem 3. Let \(P \) be a finite biprefix and let \(X = (Q, S) \) be the syntactic ts of \(P^+ \). Then \(X \) is locally injective.

Proof. Let \(\mathcal{A} = (Q, A) \) be the minimal automaton of \(P^+ \). Then \(X \) is the ts of \(\mathcal{A} \)
and \(S = S(P^+) \) is the syntactic semigroup of \(P^+ \). Let \(\eta : A^+ \rightarrow S \) be the syntactic morphism. Let \(e = e^2 \in S \) and let \(v \in e \eta^{-1} \). Assume that there are \(q, q' \in Qe \) and \(s \in eSe \) such that \(qs = q's \neq 0 \). Let \(w \in s \eta^{-1} \). Then \(qw = q \) and \(q'w = q' \) since \(\{q, q'\} \subseteq Qe \). Therefore \(v \in \mathcal{A}_q \cap \mathcal{A}_{q'} \) and since \(qw = q'w \neq 0 \) Proposition 2 implies that \(q = q' \). \(\square \)

Corollary. Let \(P \) be a finite biprefix. If the syntactic ts \(X = (Q, S) \) of \(P^+ \) is a transformation monoid, then \(X \) is injective.

Proof. By the above \(X = X_1 \) is injective. \(\square \)

We now show that any injective ts \(X = (Q, S) \) divides the syntactic ts of a finite biprefix. We first recall some results from [7].

Let \(\mathcal{A} = (Q, \Sigma) \) be a \(\Sigma \)-automaton, with \(Q = \{1, \ldots, n\} \). Let \(A = \{a\} \cup \Sigma \) with \(a \in \Sigma \). The prefix \(P(\mathcal{A}) = \{a^2 \sigma a^2n-2\sigma | 1 \leq i \leq n, \sigma \in \Sigma, i \sigma \neq \emptyset \} \) is called the Pin Code of \(\mathcal{A} \).

The following appears in [7].

Theorem 4. Let \(X \) be the ts of \(\mathcal{A} \), and let \(Y \) be the syntactic ts of \(P(\mathcal{A})^+ \). Then \(X \) divides \(Y \).

Lemma 5. The ts \(X \) of \(\mathcal{A} \) is an injective ts if and only if \(P(\mathcal{A}) \) is a biprefix.
Proof. First note that X is injective if and only if each $\sigma \in \Sigma$ induces an injective function on Q. Furthermore $a^i \sigma a^{2n-2ir}$ is a suffix of $a^i \tau a^{2n-2ir}$ if and only if $\sigma = \tau$, $i \leq j$ and $i \sigma = j \sigma$. Therefore, X is injective if and only if $P(\mathcal{A})$ is a prefix. \hfill \square

Lemma 5 was also observed by Pin (private communication).

Theorem 6. If \mathcal{A} is an injective automaton, then so is the minimal automaton of $P(\mathcal{A})^+$.

Proof. Let $Y = (P, A)$ be the minimal automaton of $P(\mathcal{A})^+$. In [7] it is shown that

$$P = \{ q_j \mid - m \leq j \leq 2^n \} \quad \text{where} \quad m = \max_{\sigma \in \Sigma} \left(2^n - 2^{ir} \right)$$

and

$$q_j = (a^j)^{-1} P(\mathcal{A})^+, \quad 0 \leq j \leq 2^n$$

and

$$q_{-j} = a^j P(\mathcal{A})^*, \quad 1 \leq j \leq m.$$

Furthermore

$$q_{j+1} = \begin{cases} q_j & \text{if } j+1 \leq 2^n, \\ \text{undefined} & \text{otherwise} \end{cases}$$

and if $\sigma \in \Sigma$,

$$q_{\sigma} = \begin{cases} q - 2^n + 2^{ir} & \text{if } i \sigma \neq 0 \text{ and } j = 2^i, \\ \text{undefined} & \text{otherwise}. \end{cases}$$

It follows easily from these results, that if each $\sigma \in \Sigma$ induces an injective function on Q, then each letter of A induces an injective function on P. \hfill \square

Corollary 1. Every injective ts divides an injective ts which is the syntactic ts of a finite biprefix.

Recall that a variety of finite semigroups is a collection of finite semigroups closed under division and direct product. A variety of rational languages is a collection of rational languages closed under union, complementation, quotients and inverse morphism. Eilenberg's Theorem sets up a one to one correspondence between varieties of finite semigroups and varieties of rational languages. See [1] and [3] for details.

Following Pin [7] we say that a variety \mathcal{V} of rational languages is described by a class \mathcal{C} of prefixes if \mathcal{V} is the smallest variety containing P^+ for all $P \in \mathcal{C}$. Let \mathcal{A} be the variety of rational languages corresponding to the variety \mathcal{A} of semigroups generated by inverse semigroups.

Corollary 2. \mathcal{A} is described by its finite biprefixes.
Proof. Let $S \in \text{In}$. Then S divides an inverse semigroup T. As is well known, T has a faithful representation by injective functions on T. The results now follow from Corollary 1 and Eilenberg’s Theorem.

If X is a finite subset of A^+, define the complexity Xc of X to be the complexity of the semigroup $S(X^+)$. See [12] for an exposition of complexity theory.

The following is proved in [4].

Theorem 7. The complexity of X is less than or equal to $\text{card}(X)$.

If X is a biprefix we have

Theorem 8. Let X be a finite biprefix. Then $Xc \leq 1$.

Proof. Let $Y = (P, T)$ be the syntactic ts of X^+. By Theorem 3, Y is locally injective. In particular, the transformation monoid $\tilde{2}'$ does not divide Y. Recall that $\tilde{2}'$ has two states and the identity map and the two constant maps as transformations. It follows from the results of [1, Chapter 4], that $Yc \leq 1$. Since $Yc = Tc$, the theorem is proved.

3. Some open problems

(1) Find necessary and sufficient conditions for a finite prefix P to be such that the syntactic ts of P^+ is locally injective.

Any finite biprefix and any finite very pure prefix is locally injective. J.E. Pin (private communication) has given the following construction of locally injective finite prefixes. Let A and B be alphabets and let $f: A^+ \rightarrow B^+$ be a non-trivial morphism such that Af is a complete biprefix.

Let P be a finite very pure prefix. Then Pf is a locally injective prefix which is neither a biprefix nor very pure. Are all finite locally injective prefixes which are not very pure nor biprefix obtained this way?

(2) Let Lin be the variety of semigroups S such that eSe divides an inverse semigroup for all idempotents $e \in S$. Is Lin described by its finite prefixes?

The author has constructed an automaton $\mathcal{A} = (Q, \Sigma)$ such that the ts of \mathcal{A} is locally injective, but the syntactic ts of $P(\mathcal{A})^-$ is not locally injective. A positive solution to this problem would be useful in applying the theory of prefixes to the complexity theory of ts where locally injective ts's play an important role.

References

