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A Hausdorff topological group is called minimal if it does not admit a strictly 
coarser Hausdorff group topology. This paper mostly deals with the topological 
group H+(X) of order-preserving homeomorphisms of a compact linearly ordered 
connected space X. We provide a sufficient condition on X under which the 
topological group H+(X) is minimal. This condition is satisfied, for example, by: 
the unit interval, the ordered square, the extended long line and the circle (endowed 
with its cyclic order). In fact, these groups are even a-minimal, meaning, in this 
setting, that the compact-open topology on G is the smallest Hausdorff group 
topology on G. One of the key ideas is to verify that for such X the Zariski and the 
Markov topologies on the group H+(X) coincide with the compact-open topology. 
The technique in this article is mainly based on a work of Gartside and Glyn [21].

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A Hausdorff topological group G is minimal [17,36] if it does not admit a strictly coarser Hausdorff 
group topology or, equivalently, if every injective continuous group homomorphism G → P into a Hausdorff 
topological group is a topological group embedding.

All topological spaces are assumed to be Hausdorff and completely regular (unless stated otherwise). 
Let X be a compact topological space. Denote by H(X) the group of all homeomorphisms of X, endowed 
with the compact-open topology τco. In this setting H(X) is a topological group and the natural action 
H(X) ×X → X is continuous.

Clearly, every compact topological group is minimal. The groups R and Z, on the other hand, are 
not minimal. Moreover, Stephenson showed in [36] that an LCA group is minimal if and only if it is 
compact. Nontrivial examples of minimal groups include Q/Z with the quotient topology, [36], and S(X), 
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the symmetric group of an infinite set (with the pointwise topology). The minimality of the latter was proved 
by Gaughan [22] and (independently) by Dierolf and Schwanengel [9]. For more information on minimal 
groups we refer to the surveys [8,10,11] and the book [12].

The following is a question of Stoyanov (cited in [1], for example):

Question 1.1 (Stoyanov). Is it true that for every compact homogeneous space X the topological group 
H(X) is minimal?

One important positive example of such a space is the Cantor cube 2ω. Indeed, in [20] Gamarnik proved 
that H(2ω) is minimal. Recently van Mill [29] provided a counterexample to Question 1.1 proving that for 
the n-dimensional Menger universal continuum X, where n > 0, the group H(X) is not minimal.

It is well known that the Hilbert cube [0, 1]ω is a homogeneous compact space as well. The following 
question of Uspenskij [39] remains unanswered: is the group H([0, 1]ω) minimal?

Definition 1.2.

1. [11] A topological group G is a-minimal if its topology is the smallest possible Hausdorff group topology 
on G.

2. [11] A compact space X is M -compact (aM -compact) if the topological group H(X) is minimal (respec-
tively, a-minimal).

3. A compact ordered space X is M+-compact (aM+-compact) if the topological group H+(X) of all 
order-preserving homeomorphisms of X is minimal (respectively, a-minimal).

Several questions naturally arise at this point:

Question 1.3.

1. [11] Which (notable) compact spaces are M -compact? aM -compact?
2. Which compact ordered spaces are M+-compact? aM+-compact?

The two point compactification of Z is a compact LOTS X such that H+(X) and H(X) are not minimal 
(Example 4.1). Thus not every compact LOTS is M+-compact or M -compact.

Clearly, every a-minimal group is minimal. It is well known that (Z, τp) with its p-adic topology is a 
minimal topological group. Since such topologies are incomparable for different p’s, it follows that (Z, τp) is 
not a-minimal.

Recall a few results:

1. (Gaughan [22]) The symmetric group S(X) is a-minimal. Since H(X∗) is precisely S(X) we obtain that 
the 1-point compactification X∗ of a discrete set X is aM -compact.

2. (Banakh–Guran–Protasov [2]) Every subgroup of S(X) that contains Sω(X) (permutations of finite 
support) is a-minimal (answers a question of Dikranjan [28]).

3. (Gamarnik [20]) [0, 1]n is M -compact (for n ∈ N) if and only if n = 1.
4. (Gartside and Glyn [21]) [0, 1] and S1 are aM -compact.
5. (Gamarnik [20]) The Cantor cube 2ω is M -compact.
6. (Uspenskij [38]) Every h-homogeneous compact space is M -compact.
7. (van Mill [29]) n-dimensional Menger universal continuum X, where n > 0, is not M -compact (answers 

Stoyanov’s Question 1.1).
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Recall that a zero-dimensional compact space X is h-homogeneous if all non-empty clopen subsets of X
are homeomorphic to X. In particular, 2ω is h-homogeneous. Hence, (6) is a generalization of (5).

The concept of an a-minimal group is in fact an intrinsic algebraic property of an abstract group G
(underlying a given topological group). a-Minimality is interesting for several reasons. For instance, it is 
strongly related to some fundamental topics like Markov’s and Zariski’s topologies.

For additional information about a-minimality (and minimality) see the recent survey [11]. For Markov’s 
and Zariski’s topologies see [15,14,2,16]. We recall the definitions.

Definition 1.4. Let G be a group.

1. The Zariski topology ZG is generated by the sub-base consisting of the sets {x ∈ G : xε1g1x
ε2g2 · · ·xεngn

�= e}, where e is the unit element of G, n ∈ N, g1, . . . , gn ∈ G, and ε1, . . . , εn ∈ {−1, 1}.
2. The Markov topology MG is the infimum (taken in the lattice of all topologies on G) of all Hausdorff

group topologies on G.

Note that (G, ZG) and (G, MG) are quasi-topological groups. That is the inverse and the translations 
are continuous. They are not necessarily topological groups. In fact, if G is abelian then ZG and MG are 
not group topologies, unless G is finite, [14, Corollary 3.6]. Here we give some simple properties. Regarding 
assertion (3) in the following lemma see for example [11, Definition 2.1].

Lemma 1.5. Let G be an abstract group. Suppose that τ is a Hausdorff group topology on G. Then

(1) ZG ⊆ MG ⊆ τ .
(2) ZG = MG = τ if and only if τ ⊆ ZG. In this case (G, τ) is a-minimal.
(3) MG is a (not necessarily, Hausdorff) group topology if and only if (G, MG) is an a-minimal topological 

group.

Proof.

(1) Follows directly from the definitions.
(2) Follows from (1).
(3) Note that MG is always a T1-topology. Hence, if MG is a topological group topology then it is Hausdorff. 

Taking into account the definition of MG we can conclude that this topology is the smallest Hausdorff 
group topology on G. Hence, (G, MG) is a-minimal. �

Question 1.6 (Markov). For what groups G the Markov and Zariski topologies coincide?

A review of some old and new partial answers can be found in [16]. Below, in Theorem 3.4, we give 
additional examples of groups for which ZG = MG.

In the present paper we mainly deal with the groups H+(X). Given an ordered compact space X, we 
are interested in the group H+(X) of order-preserving homeomorphisms. For a compact space X the group 
H(X) is complete (with respect to the two-sided uniformity) and therefore H+(X) is also complete (as a 
closed subgroup of a complete group).

In certain cases the minimality of H(X) can be deduced from the minimality of H+(X), as the following 
lemma shows.

Lemma 1.7. Let X be a compact LOTS such that H+(X) is minimal. If H+(X) is a co-compact subgroup of 
H(X), then H(X) is minimal.
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This lemma is a corollary of Lemma 2.2. Co-compactness of H+(X) in H(X) means that the coset space 
H(X)/H+(X) is compact.

If X is a linearly ordered continuum, then by Lemma 2.3 the subgroup H+(X) has at most index 2 in 
H(X). So, in this case, from the minimality of H+(X) we can deduce by Lemma 1.7 the minimality of H(X). 
For example, it is true for X = [0, 1]. Note that H[0, 1] = H+[0, 1] � Z2, the topological semidirect product 
of H+[0, 1] and Z2, where Z2 is the two element group. However, in general, it is unclear how to infer the 
minimality of a topological group G from the minimality of G � Z2. For instance, in [11, Example 4.7] it is 
shown that there exists a non-minimal group G such that G � Z2 is minimal.

Recall the following result of Gartside and Glyn:

Theorem 1.8. ([21]) For any metric one dimensional manifold (with or without boundary) M , the compact-
open topology on the full homeomorphism group H(M) is the unique minimum Hausdorff group topology on 
H(M).

The one dimensional compact manifolds, up to homeomorphism, are the closed interval [0, 1] and the 
circle S1. In view of Definition 1.2 this result can be reformulated in the following way.

Theorem 1.9. ([21]) H[0, 1] and H(S1) are a-minimal groups.

Extending some ideas of Gartside–Glyn [21] to linearly ordered spaces we give some new results about 
minimality of the groups H+(X) of order preserving homeomorphisms.

Theorem. (See Theorem 3.4.) Let (X, τ≤) be a compact connected LOTS that satisfies the following condi-
tion:

(A) for every pair of elements a < b in X the group H+[a, b] is nontrivial.

Then:

(1) For the topological group G = H+(X) and G = H(X) the Zariski and Markov topologies coincide with 
the compact-open topology. That is, ZG = MG = τco.

(2) The topological groups H+(X) and H(X) are a-minimal.
(3) X is aM+-compact and aM -compact.

According to results of Hart and van Mill [25] (see Section 4.2) there exists a connected compact LOTS 
X which is H+-rigid, that is, H+(X) is trivial (in fact, H(X) is trivial). Hence, condition (A) of the theorem 
above is not always satisfied for general ordered continua. Moreover, one may derive from results of [25] that 
there exists a connected compact LOTS X for which H+(X) = H(X) = Z, a discrete copy of the integers 
Z, and H[c, d] is trivial for some pair c < d in X (Proposition 4.2).

In Section 4 we give some concrete examples of spaces that satisfy condition (A) of Theorem 3.4. The 
following linearly ordered spaces X are aM+-compact, that is the groups H+(X) (and, in fact, also H(X)) 
are a-minimal:

1. [0, 1];
2. the lexicographically ordered square I2;
3. the extended long line L∗;
4. the ordinal space [0, κ];
5. the unit circle S1 (in this case we work with a cyclic order, Definition 2.6).
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Note that the groups H+(X) play a major role in many research lines. See, for example, [23,32,24].

2. Preliminaries

In what follows, every compact topological space will be considered as a uniform space with respect to 
its natural (unique) uniformity.

For a topological group (G, γ) and its subgroup H denote by γ/H the natural quotient topology on the 
coset space G/H.

Lemma 2.1 (Merson’s Lemma). Let (G, γ) be a not necessarily Hausdorff topological group and H be a not 
necessarily closed subgroup of G. If γ1 ⊆ γ is a coarser group topology on G such that γ1|H = γ|H and 
γ1/H = γ/H, then γ1 = γ.

Lemma 2.2. Let H be a co-compact complete subgroup of a topological group G. If H is minimal then G is 
minimal too.

Proof. Denote by τ the given topology on G, and let γ ⊆ τ be a coarser Hausdorff group topology. Since 
H is minimal, we know that γ|H = τ |H . Furthermore, H is γ-closed in G because H is complete. Since 
(G/H, γ/H) is Hausdorff and (G/H, τ/H) is compact we have γ/H = τ/H. Thus, by Merson’s Lemma 2.1, 
we conclude that γ = τ . �
2.1. Ordered topological spaces

A linear order on a set X is, as usual, a binary relation ≤ which is reflexive, antisymmetric, transitive 
and satisfies in addition the totality axiom: for all a, b ∈ X either a ≤ b or b ≤ a.

For a set X equipped with a linear order ≤, the order topology (or interval topology) τ≤ on X is generated 
by the subbase that consists of the intervals (←, a) = {x ∈ X : x < a}, (b, →) = {x ∈ X : b < x}. A linearly 
ordered topological space (or LOTS) is a triple (X, τ≤, ≤) where ≤ is a linear order on X and τ≤ is the order 
topology on X. For every pair a < b in X the definition of the intervals (a, b), [a, b] is understood. Every 
linearly ordered compact space X has the smallest and the greatest element; so, X = [s, t] for some s, t ∈ X.

Sometimes we say: linearly ordered continuum, instead of compact and connected LOTS.

Lemma 2.3. Let (X, τ≤) be a linearly ordered continuum. Then every f ∈ H(X) is either order-preserving 
or order-reversing. In particular, the index of H+(X) in H(X) is at most 2.

Proof. Assume for contradiction that there exists f ∈ H(X) such that f is neither order-preserving nor 
order-reversing. Thus there exist three points x1, x2, x3 ∈ X such that x1 < x2 < x3 and either f(x1) <
f(x2) ∧ f(x2) > f(x3) or f(x1) > f(x2) ∧ f(x2) < f(x3). Both cases lead to a contradiction. We give the 
details for the first case (the second case is similar).

Suppose x1 < x2 < x3 and f(x1) < f(x2) ∧ f(x2) > f(x3). Since X is linearly ordered there are two 
possibilities to consider.

1. f(x1) < f(x3) < f(x2): then by the Intermediate Value Theorem (applied to the interval [x1, x2]) there 
exists x1 < x0 < x2 such that f(x0) = f(x3), which is a contradiction since f is 1 − 1.

2. f(x3) < f(x1) < f(x2): then again by the Intermediate Value Theorem (applied to the interval [x2, x3]) 
there exists x2 < x0 < x3 such that f(x0) = f(x1), which is a contradiction because f is 1 − 1.

Each case leads to a contradiction, and this fact concludes the proof. �
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In the sequel we use several times the following simple “localization lemma”.

Lemma 2.4. Let X be a LOTS and let a < b be a given pair of elements in X. If h ∈ H+[a, b], then for the 
natural extension ĥ :X → X, with ĥ(x) = x for every x ∈ X \ (a, b) = (←, a] ∪ [b, →), we have ĥ ∈ H+(X).

The idea of the following lemma was kindly provided to us by K.P. Hart.

Lemma 2.5. Let X be a linearly ordered continuum. The following conditions are equivalent:

(A) for every pair of elements a < b in X the group H+[a, b] is nontrivial,
(B) for every pair of elements a < b in X the group H+[a, b] is nonabelian.

Proof. Let a < b in X. Assuming (A) there exists a nontrivial h1 ∈ H+[a, b]. So, h1(u) �= u for some 
u ∈ (a, b). We can suppose that a < u < h1(u) < b (indeed, if h1(u) < u, replace h1 by h−1

1 and u by 
h1(u)). Since X is a continuum, the interval (u, h1(u)) is nonempty. Choose an arbitrary v ∈ (u, h1(u)). By 
the continuity of h1 there exists a sufficiently small neighborhood O of u such that

s < v < h1(t)

for every s, t ∈ O. Without restriction of generality we can assume that O is the interval [x1, x2], where 
x1 < x2. Clearly, h1(x1) < h1(x2), so

a < x1 < x2 < h1(x1) < h1(x2) < b.

Now apply condition (A) to the interval [h1(x1), h1(x2)]. There exists a nontrivial h2 ∈ H+[h1(x1), h1(x2)]. 
Similarly, as for h1 and [a, b], one may choose, for h2 and [h1(x1), h1(x2)], a subinterval [y1, y2] of 
[h1(x1), h1(x2)] such that

h1(x1) < y1 < y2 < h2(y1) < h2(y2) < h1(x2).

We can treat h2 as an element of H+[a, b] by the natural extension (assuming that h2(x) = x outside of 
[h1(x1), h1(x2)]).

The interval [h−1
1 (y1), h−1

1 (y2)] is a nonempty subinterval of [x1, x2]. Now observe that for every z ∈
[h−1

1 (y1), h−1
1 (y2)] we have z < h1(x). Therefore, h2(z) = z. So, we get

h1(h2(z)) = h1(z) ∈ [y1, y2],

while

h2(h1(z)) ∈ [h2(y1), h2(y2)].

Since y2 < h2(y1), we can conclude that h2 ◦ h1 �= h1 ◦ h2 and H+[a, b] is nonabelian. �
Definition 2.6. (See, for example, [6,27].) A ternary relation R ⊆ X3 on a set X is said to be a cyclic ordering
if:

1.
{
a�=b�=c �=a
(a,b,c)/∈R ⇔ (c, b, a) ∈ R.

2. (a, b, c) ∈ R ⇒ (b, c, a) ∈ R.
3.

{
(a,b,c)∈R

(a,c,d)∈R
⇒ (a, b, d) ∈ R.
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Let X be a topological space and R be a cyclic ordering on X. A homeomorphism f :X → X is orientation 
preserving if f preserves R, meaning that (z, y, x) ∈ R implies (f(z), f(y), f(x)) ∈ R. The set of all such 
autohomeomorphisms is a subgroup of H(X) which we denote by H+(X).

3. Order-preserving homeomorphisms and a-minimality

Using some results of Nachbin we extend the ideas of Gartside and Glyn [21] to compact connected 
linearly ordered spaces (Theorem 3.4).

For the purposes of this section we fix the following notations. Let (X, τ≤) be a compact LOTS with its 
unique compatible uniform structure μ and denote s = minX, t = maxX. For every f ∈ C(X) and ε > 0
define

Uf,ε := {(x, y) ∈ X ×X : |f(x) − f(y)| ≤ ε}.

Denote by C+(X, [0, 1]) the set of all continuous order-preserving maps f :X → [0, 1].

Lemma 3.1. (Nachbin [31].) Let X be a compact LOTS.

1. C+(X, [0, 1]) separates the points of X.
2. The family {Uf,ε : f ∈ C+(X, [0, 1]), ε > 0} is a subbase of the uniformity μ for every compact LOTS 

X.

Proof. (1) It is a fundamental result of Nachbin [31, p. 48 and 113].
(2) Use (1) and the following observation. For every compact space X and a point-separating family F of 

(uniformly) continuous functions X → [0, 1], the corresponding weak uniformity μF on X is just the natural 
unique compatible uniformity μ on X. The family of entourages {Uf,ε : f ∈ F, ε > 0} is a uniform subbase 
of μ = μF . �
Definition 3.2. Let α ∈ μ be an entourage. We say that a finite chain A := {c0, c1, · · · , cn} in X is an 
α-connected net if:

1. s = c0 ≤ c1 ≤ · · · ≤ cn = t;
2. (x, y) ∈ α for every x, y ∈ [ci, ci+1] and 0 ≤ i ≤ n − 1.

Notation: A ∈ Γ(α).

Note that (x, y) ∈ α2 for every x ∈ [ck, ck+1] and y ∈ [ck+1, ck+2].

Lemma 3.3. Let (X, τ≤) be a compact LOTS with its unique compatible uniform structure μ. The following 
are equivalent:

1. X is connected;
2. for every α ∈ μ there exists an α-connected net.

Proof. (1) ⇒ (2)
In the setting of Definition 3.2 every finite chain which contains an α-connected net is also an α-connected 

net. It follows that it is enough to verify the definition for entourages from any given uniform subbase of μ. 
So, in our case, by Lemma 3.1, it is enough to check that there exists an α-connected net for every α = Uf,ε. 
We have to show that Γ(Uf,ε) is nonempty for every f ∈ C+(X, [0, 1]) and every ε > 0.
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Since X is connected and compact the continuous image f(X) ⊆ [0, 1] is a closed subinterval, say 
f(X) = [u, v].

Fix n ∈ N large enough such that v−u
n ≤ ε. For every natural i with 0 < i < n choose ci ∈ X with 

f(ci) = (v−u)i
n + u and c0 = s, cn = t. Then

A := {c0, c1, . . . , cn} ∈ Γ(Uf,ε).

Indeed, since f is order-preserving, for every x, y ∈ X with x, y ∈ [ci, ci+1] we have

f(x), f(y) ∈ [f(ci), f(ci+1)].

So |f(x) − f(y)| ≤ v−u
n ≤ ε. Therefore, (x, y) ∈ α = Uf,ε.

(2) ⇒ (1)
Assume to the contrary that X is not connected. Since X is a compact LOTS it follows that the order 

is not dense. That is, there exist a < b in X such that the interval (a, b) is empty. Then the function 
f :X → [0, 1], where f(x) = 0 for x ≤ a and f(x) = 1 for b ≤ x is continuous. Choose any 0 < ε < 1 and 
define α := Uf,ε ∈ μ. Then Γ(α) is empty. �

Assertion (2) of the following theorem for X := [0, 1] generalizes a result of [21] mentioned above in 
Theorem 1.9. We modify the arguments of [21] and use Lemmas 1.5, 2.5 and 3.3.

Theorem 3.4. Let (X, τ≤) be a compact connected LOTS that satisfies the following condition:

(A) for every pair of elements a < b in X the group H+[a, b] is nontrivial.

Then:

(1) For the topological groups G = H+(X) and G = H(X) the Zariski and Markov topologies coincide with 
the compact-open topology. That is, ZG = MG = τco.

(2) The topological groups H+(X) and H(X) are a-minimal.
(3) X is aM+-compact and aM -compact.

Proof. Assertion (2) follows from (1) by applying Lemma 1.5. By Definition 1.2 assertion (3) is a reformu-
lation of (2). So it is enough to prove (1).

Below G denotes one of the groups H+(X) or H(X). Denote by τco the (compact-open) topology on G. 
By Lemma 1.5 it is equivalent to show that τco ⊆ ZG.

For every interval (a, b) ⊆ X (with a < b) the group H+[a, b] is nontrivial (condition (A)) and thus, by 
Lemma 2.5, this group is nonabelian. Taking into account Lemmas 2.5 and 2.4 choose p, q ∈ H+(X) such 
that pq �= qp and p(x) = q(x) = x for every x /∈ (a, b). Define

T (a, b) := {g ∈ G : gpg−1 does not commute with q}. (3.1)

Claim 3.5. e ∈ T (a, b) ∈ ZG.

Proof. Indeed, rewrite the definition of T (a, b) to obtain

T (a, b) = {g ∈ G : (gpg−1)q(gpg−1)−1q−1 �= e}

and use Definition 1.4 to conclude that T (a, b) ∈ ZG. The fact that e ∈ T (a, b) is trivial by the choice of 
p, q. �
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Claim 3.6. For every g ∈ T (a, b) there exists x ∈ (a, b) such that g(x) ∈ (a, b). That is, g(a, b) ∩ (a, b) �=
∅ ∀g ∈ T (a, b).

Proof. Assuming the contrary, there exists g ∈ T (a, b) such that g(a, b) ∩ (a, b) = ∅. Equivalently, (a, b) ∩
g−1(a, b) = ∅. Hence, g−1(x) /∈ (a, b) for every x ∈ (a, b). By the choice of p we have pg−1(x) = g−1(x) and 
so gpg−1(x) = x for every x ∈ (a, b). On the other hand, q(x) = x for every x ∈ X \ (a, b) (by the choice of 
q). It follows that gpg−1 and q commute, which contradicts the definition of T (a, b) in (3.1). �

Let α be the collection of all finite intersections of T (a, b)’s. By Claim 3.5 (using that ZG is a topology) 
we obtain α ⊆ ZG. Both τco and ZG are completely determined by the neighborhood base at e ∈ G. So, in 
order to see that τco ⊆ ZG it suffices to show the following.

Claim 3.7. Every open neighborhood U of e in G, with the compact-open topology τco, contains an element 
T from α.

Proof. Let μ be the unique compatible uniformity on X. A basic neighborhood of e has the form:

Oε := {g ∈ G : (g(x), x) ∈ ε ∀ x ∈ X},

where ε ∈ μ. Choose a symmetric entourage ε1 ∈ μ such that ε2
1 ⊆ ε. For ε1 by Lemma 3.3 choose an 

ε1-connected net

c0 < c1 < · · · < cn

of X. We can suppose that X is nontrivial and n > 0.
By Equation (3.1), we have the corresponding T (ci, ci+1) ⊆ G for every index 0 ≤ i ≤ n − 1. Define

T :=
n−1⋂
i=0

T (ci, ci+1).

Now it is enough to show:

T ⊆ Oε. (3.2)

Assuming the contrary let h ∈ T but h /∈ Oε. Then there exists x ∈ X such that (h(x), x) /∈ ε. Pick 
minimal index k between 0 and n − 1 such that x ∈ [ck, ck+1]. Then by a remark after Definition 3.2 we 
have (x, y) ∈ ε2

1 ⊆ ε for every y ∈ [ck−1, ck+2]. If k = 0, we replace ck−1 by c0. Similarly, we replace ck+2 by 
cn if k = n − 1.

Hence,

h(x) ∈ X \ [ck−1, ck+2] = [c0, ck−1) ∪ (ck+2, cn]. (3.3)

Note that one of the intervals in the union can be empty.
From Claim 3.6 for every index 0 ≤ i ≤ n − 1 choose xi such that

xi, h(xi) ∈ (ci, ci+1). (3.4)

We show that there is no such h ∈ G. By Lemma 2.3 any autohomeomorphism h ∈ H(X) is either 
order-preserving or order-reversing. By Equation (3.4) we have h(xi) < h(xi+1), where xi < xi+1. So, h can 
be only order-preserving.
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Now, we show that h is not order-preserving. Indeed, we have the following two cases:

(1) h(x) ∈ (ck+2, cn].
Then, h(xk+1) < h(x), while x < xk+1.

(2) h(x) ∈ [c0, ck−1).
Then, h(x) < h(xk−1), while xk−1 < x.

In both cases we get a contradiction. This completes the proof of Equation (3.2) and hence of our 
theorem. �
Corollary 3.8. Let (X, τ≤) be a compact connected LOTS that satisfies the following condition:

(C) for every pair of elements a < b in X there exist c, d ∈ X with a ≤ c < d ≤ b such that [c, d] is separable 
(equivalently, the subspace [c, d] ⊆ X is homeomorphic to the real unit interval [0, 1]).

Then ZG = MG = τco and the groups G = H+(X), G = H(X) are a-minimal (that is, X is aM+-compact 
and aM -compact).

Proof. Recall (see, for example, [18, Exercise 6.3.2]) that a separable linearly ordered continuum is homeo-
morphic to [0, 1]. It is well known and easy to see that H+[0, 1] is nonabelian (Section 4.4). Also, up to the 
inversion, there exists only one linear order on [0, 1] inducing the natural topology [27, Cor. 4.1]. We see 
that (C) implies that H+[c, d] (being a copy of H+[0, 1]) is nonabelian. So, we can apply Theorem 3.4. �
4. Some examples

4.1. Not every compact LOTS is M+-compact

The following example shows that H+(X) is not necessarily minimal.

Example 4.1. Denote by Z∗ the two-point compactification of Z. One can easily verify that H+(Z∗) is a 
discrete copy of Z and thus not minimal. That is, the compact LOTS Z∗ is not M+-compact. Note that Z∗

is also not M -compact as it directly follows from [11, Theorem 4.25].

4.2. Rigid ordered compact spaces

Let us say that a topological space X is H-rigid if the group H(X) is trivial. Similarly, let us say that 
a linearly ordered space X is H+-rigid if the group H+(X) is trivial. Certainly, if X is H-rigid then it is 
also H+-rigid. There are many known examples of H-rigid compact spaces, and in particular of compact 
ordered H-rigid spaces. Most of the examples of the latter kind (Jonsson, Rieger, de Groot-Maurice) are 
zero-dimensional. It seems that the first (“naive”) example of a nontrivial connected compact ordered H-rigid 
space was constructed by Hart and van Mill [25]. Note also that, under the diamond principle, there exists 
an H-rigid Suslin continuum (Jensen, see in [37, p. 268]).

Using results of [25], one may show the following.

Proposition 4.2. There exists an ordered continuum X with H+(X) = H(X) = Z, a discrete copy of the 
integers.

So, we get a connected compact LOTS X such that H+(X) is not minimal (or, X is not M+-compact). 
Hence, Theorem 3.4 does not remain true for general ordered continua.
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We sketch the proof of Proposition 4.2. Let L := [a, b] be the ordered continuum constructed in [25, 
Section 5]. This space has very few continuous selfmaps. Any continuous map f :L → L is a canonical 
retraction. That is, there exists a pair u ≤ v ∈ L such that

f(x) = u ∀x ≤ u, f(x) = x ∀u ≤ x ≤ v, f(x) = v ∀x ≥ v.

In particular, L is H-rigid. Moreover, for every topological embedding f :L → L we have f = id. Note also 
the following special property which we use below: if f(a) = a then either f(x) = x for every x ∈ U on some 
neighborhood U of a, or f is the constant map f(x) = a for every x ∈ L.

Now the desired continuum X will be the two point compactification of some locally compact connected 
LOTS Y , the “long L”. More precisely, the corresponding linearly ordered set Y is the lexicographically 
ordered set Z × [a, b). Endow Y with its usual interval topology. Every subinterval in Y of the form

Ln := [(n, a), (n + 1, a)] = {(n, x) : x ∈ [a, b)]} ∪ {(n + 1, a)}

is naturally order isomorphic with L for every n ∈ Z. Our aim is to show that H+(X) = H(X) = Z. 
First of all we have a naturally defined (shift) homeomorphism σ :X → X where σ(n, x) = (n + 1, x) for 
every n ∈ Z, x ∈ [a, b). We claim that any other homeomorphism f :X → X is σk (the k-th iteration) 
for some k ∈ Z. Indeed, if f(L0) ⊆ Lk for some k ∈ Z then f(L0) = Lk. Moreover it is easy to see that 
f = σk. Now assume that f(L0) ⊆ Lk is not true for every k ∈ Z. Then there exists k ∈ N such that 
f(0, a) < (k, a) < f(0, b). Consider the retraction

h :X → X,h(z) = (k, a) ∀z ≤ (k, a), and h(z) = z ∀z > (k, a).

Then the composition h ◦ f restricted on L0 defines a nonconstant continuous map L0 → Lk which moves 
(0, a) to (k, a). This induces a continuous nonconstant selfmap q :L → L such that q(x) = a ∀ x ∈ U for 
some neighborhood U of a. By the special property of L mentioned above, we get a contradiction. These 
arguments show that algebraically H+(X) = H(X) = Z. Finally observe that H+(X) is discrete in the 
compact-open topology.

4.3. The ordinal space

For every ordinal number κ the space [0, κ] is a compact LOTS. This space is scattered and hence not 
connected for every κ > 0. Nonetheless, one can show that H+[0, κ] is trivial (hence a-minimal). We start 
by noting that [0, κ] is certainly a well-ordered set.

Lemma 4.3. ([7, Corollary 4.1.9]) If two well-ordered sets A and B are order-isomorphic, then the isomor-
phism is unique.

It follows from Lemma 4.3 that the identity is the only order-preserving automorphism of a well-ordered 
set.

Corollary 4.4. Every well-ordered compact LOTS X (e.g., the ordinal space X = [0, κ]) is H+-rigid. That 
is, H+(X) = {e} (thus X is aM+-compact).

This example shows that the condition of Theorem 3.4 is not necessary.
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4.4. The unit interval

The group H+[0, 1] (and, hence, also any H+[a, b] for every two reals a < b) is not abelian. Take, for 
example, the following pair f, h of noncommuting elements. Define f(x) = x2, h(x) = 0.5x for 0 ≤ x ≤ 0.5
and h(x) = 1.5x −0.5 for 0.5 ≤ x ≤ 1. So, the continuum [0, 1] clearly satisfies the conditions of Theorem 3.4. 
Therefore, the groups H+[0, 1] and H[0, 1] are a-minimal.

4.5. The ordered square

Let I = [0, 1] and define the lexicographic order on I × I. Then I2 = (I × I, τ≤), the unit square with 
the order topology, is a compact and not metrizable space. We show that it satisfies the conditions of 
Corollary 3.8. It is connected (see [35, Section 48]). As to the second condition, let K = [(a1, b1), (a2, b2)] ⊆
I2 be a closed interval. If a1 = a2 then K is homeomorphic to [0, 1] ⊆ R. Otherwise, if a1 < a2, K
contains an interval homeomorphic to [0, 1] ⊆ R (for example [(a1+a2

2 , 0), (a1+a2
2 , 1)]). Thus condition (C) 

of Corollary 3.8 is satisfied. Hence, H+(I2) and H(I2) are a-minimal (and I2 is both aM+-compact and 
aM -compact).

4.6. The extended long line

Let L be the set [0, ω1) × [0, 1) where ω1 is the least uncountable ordinal. Considering L with the 
lexicographic order, the set L with the topology induced by this order is called the long line. Let L∗ = L ∪{ω1}
and extend the ordering on L to L∗ by letting a < ω1 for all a ∈ L. The space L∗ with the order topology 
is a compact space called the extended long line. In fact, L∗ is the one point compactification of L.

Several properties of this space can be found in [26,30,33]. The extended long line satisfies the conditions 
of Corollary 3.8. Indeed, it is well known that L∗ is a compact connected LOTS. Also, L (the long line) is 
locally homeomorphic (by an order-preserving homeomorphism) to the interval (0, 1). In case the interval 
in question is of the form [a, ω1], we can verify condition (C) for a subinterval [a, b] of [a, ω1], where b �= ω1. 
So, H+(L∗) and H(L∗) are a-minimal. Hence, L∗ is both aM+-compact and aM -compact.

4.7. The circle

Recall the definition of the natural cyclic ordering (Definition 2.6) on the unit circle S1. Identify S1, as 
a set, with [0, 1) and define a ternary relation R ⊆ [0, 1)3 as follows: (z, y, x) ∈ R if and only if (x − y)(y −
z)(x − z) > 0. Denote by H+(S1) the Polish group of all orientation preserving homeomorphisms of the 
circle S1.

The arguments of Theorem 3.4 (or, of [21, Theorem 1]) can be easily modified for the circle S1, hence:

Theorem 4.5. The group H+(S1) is a-minimal.

Note that the coset space H+(S1)/ St(z) is naturally homeomorphic to the circle, where St(z) is the 
stabilizer group of any given z ∈ S1. So the minimality of H+(S1) can be derived from the minimality of 
H+[0, 1] using Lemma 2.2 and the fact that St(z) is topologically isomorphic to H+[0, 1].

Since H+(S1) is a closed normal subgroup of H(S1), and H(S1)/H+(S1) ∼= Z2, we can use Lemma 2.2 one 
more time to deduce the minimality of H(S1).

A Hausdorff topological group is totally minimal if every Hausdorff quotient is minimal [13]. Every mini-
mal algebraically (or, at least, topologically) simple minimal group is totally minimal. H+(S1) is algebraically 
simple as can be seen (for example) in [34,23]. Although the group H+[0, 1] is not algebraically simple, it is 
topologically simple. Indeed, by [19, Theorem 14], H+[0, 1] has exactly five normal subgroups: {e}, H+[0, 1], 
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Q1, Q0, Q := Q0 ∩Q1. It is easy to see that Q is dense in H+[0, 1]. This yields that H+[0, 1] is topologically 
simple.

Corollary 4.6. H+(S1) and H+[0, 1] are totally minimal groups.

5. Some questions

A more general version of Question 1.3 is the following.

Question 5.1. When appropriate subgroups G of H(X) (say, the automorphism groups of some structures 
on X) are minimal (a-minimal)?

We already know that the Cantor cube 2ω is M -compact [20].

Question 5.2.

1. Is the Cantor cube 2ω aM -compact?
2. Is the Cantor set X ⊆ [0, 1], as a linearly ordered compact LOTS, M+-compact? aM+-compact?
3. Is the space 2λ M -compact (or, aM -compact) for every cardinal λ?

Question 5.3.

1. Is it true that every M -compact space is also aM -compact?
2. Is it true that every linearly ordered connected M+-compact space is aM+-compact?
3. Is it true that for ordered continua condition (A) of Theorem 3.4 is really weaker than condition (C) of 

Corollary 3.8?

In view of Markov’s Question 1.6 and Theorem 3.4 we have several good reasons to pose the following 
question.

Question 5.4. For what compact (linearly ordered) spaces X the Markov and Zariski topologies coincide on 
the group G = H(X) (resp., G = H+(X))?

Various properties of the homeomorphism group H(X) of several important 1-dimensional continua X
were intensively studied from several points of view. Among others is the case where X is the pseudo-arc
or the Lelek Fan. About the latter case, see, for example, the very recent works of Bartošova–Kwiatkowska 
[3,4] and Ben Yaacov–Tsankov [5].

Question 5.5. Let X be the pseudo-arc or the Lelek fan. Is it true that H(X) is minimal? a-minimal?

It is well known that the pseudo-arc is a homogeneous compactum. So the previous question is related 
to Stoyanov’s Question 1.1. Another property of the pseudo-arc is that it is a chainable continuum. Recall 
that a compact space X is chainable if every (finite) open cover ε has a finite open refinement α that is an 
ε-small chain, that is, α = {O1, . . . , On}, where Oi ∩ Oj �= ∅ ⇔ |i − j| ≤ 1 and every Oi is ε-small. Every 
linearly ordered continuum is chainable. This follows, for example, by Lemma 3.3. Therefore, it would be 
interesting to extend Theorem 3.4 to some broader class of chainable continua.
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