The equivalence modulo non-stationary ideals

M. Moreno
(Joint with D. Aspero, T. Hyttinen, and V. Kulikov)

Department of Mathematics and Statistics
University of Helsinki

Arctic Set Theory 3
January 2017
Outline

1. Classifying First-order countable Theories
2. The Main Gap in the Borel hierarchy
3. The Generalized Baire Space
4. Properties of E^κ_μ and E^2_μ
Outline

1 Classifying First-order countable Theories

2 The Main Gap in the Borel hierarchy

3 The Generalized Baire Space

4 Properties of E^κ_μ and E^2_μ
Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α.

What is the behavior of $I(T, \alpha)$?

- **Löwenheim-Skolem Theorem:**
 \[\exists \alpha \geq \omega \ I(T, \alpha) \neq 0 \Rightarrow \forall \beta \geq \omega \ I(T, \beta) \neq 0. \]

- **Morley’s categoricity:**
 \[\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1 \]

- **Shelah’s Main Gap Theorem:** Either, for every uncountable cardinal α, $I(T, \alpha) = 2^\alpha$, or $\forall \alpha > 0 \ I(T, \aleph_\alpha) < \beth_1(\| \alpha \|)$.

Approaches

- Shelah’s stability theory.
 Classify the models of T by cardinal invariants and clearly differentiate between the theories that can be classified and those that cannot.

- Descriptive set theory:
 It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.
The topology

κ is a cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set 2^κ with the bounded topology. For every $\zeta \in 2^{<\kappa}$, the set

$$[\zeta] = \{ \eta \in 2^\kappa \mid \zeta \subset \eta \}$$

is a basic open set.

The collection of Borel subsets of 2^κ is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ.
Reductions

A function $f : 2^\kappa \to 2^\kappa$ is Borel, if for every open set $A \subseteq 2^\kappa$ the inverse image $f^{-1}[A]$ is a Borel subset of 2^κ.

Let E_1 and E_2 be equivalence relations on 2^κ. We say that E_1 is Borel reducible to E_2, if there is a Borel function $f : 2^\kappa \to 2^\kappa$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq_B E_2$.
Coding structures

Fix a language \(\mathcal{L} = \{ P_n \mid n < \omega \} \)

Definition

Let \(\pi \) be a bijection between \(\kappa^{<\omega} \) and \(\kappa \). For every \(f \in 2^\kappa \) define the structure \(A_f \) with domain \(\kappa \) by: for every tuple \((a_1, a_2, \ldots, a_n) \) in \(\kappa^n \)

\[
(a_1, a_2, \ldots, a_n) \in P_{m}^{A_f} \iff f(\pi(m, a_1, a_2, \ldots, a_n)) = 1
\]

Definition (The isomorphism relation)

Given \(T \) a first-order complete countable theory in a countable vocabulary, we say that \(f, g \in 2^\kappa \) are \(\cong^\kappa_T \) equivalent if

- \(A_f \models T, A_g \models T, A_f \cong A_g \)

or

- \(A_f \not\models T, A_g \not\models T \)
The complexity

We can define a partial order on the set of all first-order complete countable theories

\[T \preceq^\kappa T' \iff \simeq^\kappa_T \preceq B \simeq^\kappa_T \]
Outline

1. Classifying First-order countable Theories

2. The Main Gap in the Borel hierarchy

3. The Generalized Baire Space

4. Properties of E^κ_μ and E^2_μ
Shelah’s Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T’ is not, then T is less complex than T’ and their complexity are not close.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem in the space 2^κ?
Countable

\[T = Th(\mathbb{Q}, \leq). \]

\(T' \), the theory of vector space over the field of rational numbers.

By the Borel-reducibility hierarchy:

\[T \preceq^\omega T' \]

\[T' \not\preceq^\omega T \]

By the stability theory \(T' \) is simpler than \(T \).
Uncountable

Theorem (Shelah)
If T is classifiable, then \cong^κ_T is Δ^1_1.

Theorem (S. Friedman, Hyttinen, Kulikov)
If T is unstable then \cong^κ_T is not Δ^1_1.

Theorem (S. Friedman, Hyttinen, Kulikov)
If T is unstable and T' is classifiable, then $T \not\leq^\kappa T'$.
The Equivalence Modulo Non-stationary Ideals

Definition

For every $X \subseteq \kappa$ stationary, we define E_X^2 as the relation

$$E_X^2 = \{(\eta, \xi) \in 2^\kappa \times 2^\kappa \mid (\eta^{-1}[1] \triangle \xi^{-1}[1]) \cap X \text{ is not stationary}\}$$

where \triangle denotes the symmetric difference.

When $X = \{\alpha < \kappa \mid cf(\alpha) = \lambda\}$, we will denote E_X^2 by E_λ^2.
Looking above the Gap

Theorem (S. Friedman, Hyttinen, Kulikov)

Suppose $\kappa = \lambda^+ = 2^\lambda$ and $\lambda^{<\lambda} = \lambda$.

- If T is an unstable or superstable with OTOP, then $E^2_\lambda \leq_B \equiv^\kappa_T$.
- If $\lambda \geq 2^\omega$ and T is a superstable with DOP, then $E^2_\lambda \leq_B \equiv^\kappa_T$.

Theorem (S. Friedman, Hyttinen, Kulikov)

Suppose that for all $\gamma < \kappa$, $\gamma^\omega < \kappa$ and T is a stable unsuperstable. Then $E^2_\omega \leq_B \equiv^\kappa_T$.
Looking below the Gap

Theorem (S. Friedman, Hyttinen, Kulikov)

If T is a classifiable theory, then for all regular cardinal $\lambda < \kappa$, $E^2_{\lambda} \not\leq_B \equiv^\kappa_T$

Theorem (Hyttinen, Kulikov, M.)

Denote by S^κ_λ the set $\{\alpha < \kappa | cf(\alpha) = \lambda\}$.

Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. If $\diamondsuit(S^\kappa_\lambda)$ holds, then $\equiv^\kappa_T \leq_B E^2_{\lambda}$.

The Main Gap in the Borel hierarchy

A Generalized Borel-reducibility Counterpart

Theorem (Hyttinen, Kulikov, M.)

Suppose $\kappa = \lambda^+$ and $\lambda^\omega = \lambda$. If T is a classifiable theory and T' is a stable unsuperstable theory, then $\equiv_T \leq_B E_\omega \leq_B \equiv_T$, and $E_\omega \not\leq_B \equiv_T$.

Let $H(\kappa)$ be the following property: If T is classifiable and T' is not, then $T \leq^\kappa T'$ and $T' \not\leq^\kappa T$.

Theorem (Hyttinen, Kulikov, M.)

Suppose $\kappa = \lambda^+$, $2^\lambda > 2^\omega$ and $\lambda^{<\lambda} = \lambda$. If $V = L$, then $H(\kappa)$ holds.
Question:
Is there a Borel reducibility counterpart of the Main Gap Theorem that does not need to force diamonds?

It can be studied in two ways:

• Does it holds $E^2_\omega \leq_B \cong^\kappa_T$ for every theory T non-classifiable under some cardinal assumptions that imply $\diamondsuit(S^\kappa_\omega)$?

• Is there a Borel reducibility counterpart of the Main Gap Theorem in another space?
Outline

1. Classifying First-order countable Theories
2. The Main Gap in the Borel hierarchy
3. The Generalized Baire Space
4. Properties of E^κ_μ and E^2_μ
The generalized Baire space

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^κ with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{ \eta \in \kappa^\kappa \mid \zeta \subset \eta \}$$

is a basic open set.

The collection of Borel subsets of κ^κ is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ.
Reductions in GBS

Let E_1 and E_2 be equivalence relations on κ^κ. We say that E_1 is Borel reducible to E_2, if there is a Borel function $f : \kappa^\kappa \to \kappa^\kappa$ that satisfies

$$(x, y) \in E_1 \iff (f(x), f(y)) \in E_2.$$

We write $E_1 \leq_B E_2$.
Coding structures in GBS

Fix a language $\mathcal{L} = \{P_n|n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ. For every $f \in \kappa^\kappa$ define the structure A_f with domain κ by: for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_{\pi}^A \iff f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^\kappa$ are \equiv^T equivalent if

- $A_f \models T, A_g \models T, A_f \cong A_g$

 or

- $A_f \not\models T, A_g \not\models T$

M. Moreno (UH)
The Equivalence Modulo Non-stationary Ideals in GBS

We say that \(f, g \in \kappa^\kappa \) are \(E^\kappa_\lambda \) equivalent if the set \(\{ \alpha < \kappa | f(\alpha) = g(\alpha) \} \) contains an unbounded set that is closed under \(\lambda \)-limits.

Theorem (Hyttinen, M.)

Suppose \(T \) is a classifiable theory and \(\lambda < \kappa \) is a regular cardinal.
Then \(\equiv_T^\kappa \leq_B E^\kappa_\lambda \).
Orthogonal Chain Property (OCP)

Lemma (Hyttinen, M.)

If a theory T has the OCP, then T is not classifiable.

Theorem (Hyttinen, M.)

Suppose T is a classifiable theory, T' is an stable theory with the OCP, and κ an inaccessible cardinal. Then $\equiv^\kappa_T \leq_B E^\kappa_\omega \leq_B \equiv^\kappa_{T'}$.
The Generalized Baire Space

Strong DOP (S-DOP)

Lemma

If a theory T has the S-DOP, then T is not classifiable.

Theorem (M.)

Suppose T is a classifiable theory, T' is a superstable theory with the S-DOP, $\lambda \geq 2^\omega$, and κ an inaccessible cardinal. Then $\simeq^\kappa_T \leq_B E^\kappa_\lambda \leq_B \simeq^\kappa_{T'}$.
Motivation

- It is consistent that there is a generalized Borel reducibility counterpart of the Main Gap Theorem in the space 2^κ.

- For κ inaccessible, the classifiable theories are at most as complex as the theories with OCP or S-DOP.

1. For which λ holds $E_\lambda^\kappa \leq_B E_\lambda^2$?
2. For which λ holds $E_\omega^2 \leq_B E_\lambda^2$?
Properties of E^κ_μ and E^2_μ

Outline

1. Classifying First-order countable Theories
2. The Main Gap in the Borel hierarchy
3. The Generalized Baire Space
4. Properties of E^κ_μ and E^2_μ
\[\Sigma^1_1 \]-completeness

Theorem (Hyttinen, Kulikov)

If \(V = L \), then \(E^\kappa_\mu \) is \(\Sigma^1_1 \)-complete for every \(\mu < \kappa \).

Corollary

If \(V = L \) and \(T \) is a theory with the OCP or the S-DOP, then \(\cong^\kappa_T \) is \(\Sigma^1_1 \)-complete.
Borel*-codes

For every regular cardinal $\gamma < \kappa$ define the following Borel*-code. Define T_γ as the tree whose elements are all the increasing elements of $\kappa^{\leq \gamma}$, ordered by end-extension. For every element of T_γ that is not a leaf, define

$$H_\gamma(x) = \begin{cases} \bigcup & \text{if } x \text{ has an immediate predecessor } x^- \text{ and } H_x(x^-) = \cap \\ \cap & \text{otherwise} \end{cases}$$

and for every leaf b define $H_\gamma(b)$ by:

$$(\eta, \xi) \in H_\gamma(b) \iff \alpha = \sup(\text{ran}(b))(\eta(\alpha) = \xi(\alpha)).$$

Let us denote by $T_\gamma \upharpoonright \alpha$ the subtree of $T_\gamma \cap \alpha^{\leq \gamma}$ with

$$\{ b \in T_\gamma \upharpoonright \alpha \mid b \text{ a leaf} \} = \{ b \in T_\gamma \mid b \text{ a leaf} \} \cap \{ b \in T_\gamma \cap \alpha^{\leq \gamma} \mid b \text{ a leaf} \}$$

and H_γ^α is H_γ restricted to $\{ b \in T_\gamma \upharpoonright \alpha \mid b \text{ a leaf} \}$.
Borel*-reflection

Definition

For every $\gamma < \lambda < \kappa$ regular cardinals, we say that S^κ_γ Borel*-reflects to S^κ_λ if the following holds for every $\eta, \xi \in \kappa^\kappa$:

$$II \uparrow B^* (T_\gamma, H_\gamma, (\eta, \xi)) \iff II \uparrow B^* (T_\gamma \upharpoonright \alpha, H_\gamma^\alpha, (\eta, \xi))$$

for λ-club many α's in S^κ_λ.

Lemma

If S^κ_γ Borel*-reflects to S^κ_λ, then $E^\kappa_\gamma \leq_B E^\kappa_\lambda$.

M. Moreno (UH)
\(\Diamond\)-reflection

Definition

Let \(X, Y\) be subsets of \(\kappa\) and suppose \(Y\) consists of ordinals of uncountable cofinality. We say that \(X \Diamond\) reflects to \(Y\) if there exists a sequence \(\{D_\alpha\}_{\alpha \in Y}\) such that:

- \(D_\alpha \subset \alpha\) is stationary in \(\alpha\).
- if \(Z \subset X\) is stationary, then \(\{\alpha \in Y \mid D_\alpha = Z \cap \alpha\}\) is stationary.

Theorem (S. Friedman, Hyttinen, Kulikov)

If \(X \Diamond\)-reflects to \(Y\), then \(E_2^X \leq_B E_2^Y\).
Lemma

Suppose $\lambda^{<\lambda} = \lambda$ and $\gamma < \lambda$ regular cardinals. If $S^\kappa_\gamma \diamond$-reflects to S^κ_λ, then S^κ_γ Borel*-reflects to S^κ_λ.

Lemma

Suppose that κ is a weakly compact cardinal and that $V = L$. Then there is a forcing extension where $\lambda^{++} = \kappa$ and

1. $E^2_\lambda \leq_B E^2_{\lambda^+}$.
2. $E^K_\lambda \leq_B E^K_{\lambda^+}$.

Lemma

The following is consistent:
There are λ^+ many disjoint stationary subsets of $S^{\lambda^{++}}_\lambda$ such that $S^{\lambda^{++}}_\lambda$ \Diamond-reflects to S_γ for every $\gamma < \lambda^+$.

Corollary

The following is consistent:

$$E^{\lambda^{++}}_\lambda \leq_B E^2_{\lambda^+}.$$
Questions

1. For which λ and κ holds $E_\lambda^{\kappa} \leq_B E_\lambda^2$?

2. Is it consistent that $E_\lambda^2 \leq_B E_\omega^2$?
Properties of E^κ_μ and E^2_μ

References

- T. Hyttinen and V. Kulikov, *On Σ^1_1-complete equivalence relations on the generalized Baire space*, Mathematical Logic Quarterly 61, 66-81. 2015.

Properties of E^k_μ and E^2_μ

References