A Borel-reducibility Counterpart of Shelah’s Main Gap Theorem

Tapani Hyttinen, Vadim Kulikov, Miguel Moreno
University of Helsinki
December 16, 2015

Abstract

We study the Borel-reducibility of isomorphism relations of complete first order theories and show the consistency of the following: For all such theories T and T', if T is classifiable and T' is not, then the isomorphism of models of T' is strictly above the isomorphism of models of T with respect to Borel-reducibility. In fact, we can also ensure that a range of equivalence relations modulo various non-stationary ideals are strictly between those isomorphism relations. The isomorphism relations are considered on models of some fixed uncountable cardinality obeying certain restrictions.

1 Introduction

Throughout this article we assume that κ is an uncountable cardinal that satisfies $\kappa^{< \kappa} = \kappa$. The generalized Baire space is the set κ^κ with the bounded topology. For every $\zeta \in \kappa^{< \kappa}$, the set

$$[\zeta] = \{ \eta \in \kappa^\kappa \mid \zeta \subset \eta \}$$

is a basic open set. The open sets are of the form $\bigcup X$ where X is a collection of basic open sets. The collection of κ-Borel subsets of κ^κ is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ. A κ-Borel set is any element of this collection. We usually omit the prefix “κ-”. In [Vau74] Vought studied this topology in the case $\kappa = \omega_1$ assuming CH and proved the following:

Theorem. A set $B \subset \omega_1^{\omega_1}$ is Borel and closed under permutations if and only if there is a sentence φ in $L_{\omega_1^\omega}$ such that $B = \{ \eta \mid A_\eta \models \varphi \}$.

This result was generalized in [FKH14] to arbitrary κ that satisfies $\kappa^{< \kappa} = \kappa$. Mekler and Väänänen continued the study of this topology in [MV93].

We will work with the subspace 2^κ with the relative subspace topology. A function $f : 2^\kappa \to 2^\kappa$ is Borel, if for every open set $A \subseteq 2^\kappa$ the inverse image $f^{-1}[A]$ is a Borel subset of 2^κ. Let E_1 and E_2 be equivalence relations on 2^κ. We say that E_1 is Borel reducible to E_2, if there is a Borel function $f : 2^\kappa \to 2^\kappa$ that satisfies $(x,y) \in E_1 \iff (f(x), f(y)) \in E_2$. We call f a reduction of E_1 to E_2. This is denoted by $E_1 \leq_B E_2$ and if f is continuous, then we say that E_1 is continuously reducible to E_2 and this is denoted by $E_1 \leq_c E_2$.

The following is a standard way to code structures with domain κ with elements of 2^κ. To define it, fix a countable relational vocabulary $L = \{ P_n \mid n < \omega \}$.

1
Definition 1.1. Fix a bijection $\pi : \kappa^\omega \to \kappa$. For every $\eta \in 2^\kappa$ define the L-structure A_η with domain κ as follows: For every relation P_m with arity n, every tuple (a_1, a_2, \ldots, a_n) in κ^n satisfies

$$(a_1, a_2, \ldots, a_n) \in P^A_m \iff \eta(m, a_1, a_2, \ldots, a_n) = 1.$$

Note that for every L-structure A there exists $\eta \in 2^\kappa$ with $A = A_\eta$. For club many $\alpha < \kappa$ we can also code the L-structures with domain α:

Definition 1.2. Denote by C_π the club $\{\alpha < \kappa \mid \pi[\alpha^\omega] \subseteq \alpha\}$. For every $\eta \in 2^\kappa$ and every $\alpha \in C_\pi$ define the structure $A_\eta|\alpha$ with domain α as follows: For every relation P_m with arity n, every tuple (a_1, a_2, \ldots, a_n) in α^n satisfies

$$(a_1, a_2, \ldots, a_n) \in P^A_m|\alpha \iff \eta|\alpha(m, a_1, a_2, \ldots, a_n) = 1.$$

For every $\alpha \in C_\pi$ and every $X \subseteq \alpha$ we will denote the structure A_F by A_X, where F is the characteristic function of X. We will work with two equivalence relations on 2^κ: the isomorphism relation and the equivalence modulo the non-stationary ideal.

Definition 1.3 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary. We define \cong_T^κ as the relation

$$\{(\eta, \xi) \in 2^\kappa \times 2^\kappa \mid (A_\eta \models T, A_\xi \models T, A_\eta \cong A_\xi) \text{ or } (A_\eta \not\models T, A_\xi \not\models T)\}.$$

We will omit the superscript “κ” in \cong_T^κ when it is clear from the context. For every first order theory T in a countable vocabulary there is an isomorphism relation associated with T, \cong_T^κ. For every stationary $X \subset \kappa$, we define an equivalence relation modulo the non-stationary ideal associated with X:

Definition 1.4. For every $X \subset \kappa$ stationary, we define E_X as the relation

$$E_X = \{(\eta, \xi) \in 2^\kappa \times 2^\kappa \mid \eta^{-1}[1] \triangle \xi^{-1}[1] \cap X \text{ is not stationary}\}$$

where \triangle denotes the symmetric difference.

For every regular cardinal $\mu < \kappa$ denote $\{\alpha < \kappa \mid cf(\alpha) = \mu\}$ by S_μ^κ. A set C is a μ-club if it is unbounded and closed under μ-limits, i.e. if $S_\mu^\kappa \setminus C$ is non-stationary. Accordingly, we will denote the equivalence relation E_X for $X = S_\mu^\kappa$ by E^2_{μ}-club. Note that $(f, g) \in E^2_{\mu}$-club if and only if the set $\{\alpha < \kappa \mid f(\alpha) = g(\alpha)\}$ contains a μ-club.

2 Reduction to E_X

Classifiable theories (superstable with NOTOP and NDOP) have a close connection to the Ehrenfeucht-Fraïssé games (EF-games for short). We will use them to study the reducibility of the isomorphism relation of classifiable theories. The following definition is from [HM15, Def 2.3]:

Definition 2.1 (The Ehrenfeucht-Fraïssé game). Fix an enumeration $\{X_\gamma\}_{\gamma < \kappa}$ of the elements of $P_\kappa(\kappa)$ and an enumeration $\{f_\gamma\}_{\gamma < \kappa}$ of all the functions with both the domain and range in $P_\kappa(\kappa)$. For every $\alpha \leq \kappa$ the game $\text{EF}^\alpha_{\omega}(A|_\alpha, B|_\alpha)$ on the restrictions $A|_\alpha$ and $B|_\alpha$ of the structures A and B with domain κ is defined as follows: In the n-th move, first I chooses an ordinal $\beta_n < \alpha$ such that $X_{\beta_n} \subset \alpha$ and $X_{\beta_{n-1}} \subseteq X_{\beta_n}$. Then II chooses an ordinal $\theta_n < \alpha$ such that $\text{dom}(f_{\theta_n}), \text{ran}(f_{\theta_n}) \subset \alpha$, \ldots
by symmetry). By the definition of Lemma 2.3.
Assume T is a classifiable theory and every two models A equivalent are isomorphic. On the other hand

Remark 2. In [HM15, Lemma 2.7] it was proved that there exists a club C_{EF} of α such that the relation defined by the game
\[
\{(A, B) \mid \text{II } \uparrow \text{EF}^\alpha(A, B, \langle A \upharpoonright \alpha, B \upharpoonright \alpha \rangle)\}
\]
is an equivalence relation.

Remark 2. Shelah proved in [She90], that if T is classifiable then every two models of T that are $L_{\infty, \kappa}$-equivalent are isomorphic. On the other hand $L_{\infty, \kappa}$-equivalence is equivalent to EF^κ-equivalence. So for every two models A and B of T we have $\text{II } \uparrow \text{EF}^\alpha(A, B) \iff A \cong B$ and $\text{I } \uparrow \text{EF}^\alpha(A, B) \iff A \not\cong B$.

Lemma 2.3. Assume T is a classifiable theory and $\mu < \kappa$ is a regular cardinal. If $\diamondsuit_\kappa(X)$ holds then \cong^T_κ is continuously reducible to E_X.

Proof. Let $\{S_\alpha \mid \alpha < \kappa\}$ be a sequence testifying $\diamondsuit_\kappa(X)$ and define the function $F : 2^\kappa \to 2^\kappa$ by
\[
F(\eta)(\alpha) = \begin{cases} 1 & \text{if } \alpha \in X \cap C_\mu \cap C_{EF}, \text{ II } \uparrow \text{EF}^\alpha(A_\eta \upharpoonright \alpha, A_{S_\alpha}) \text{ and } A_\eta \upharpoonright \alpha \models T \\ 0 & \text{otherwise.} \end{cases}
\]

Let us show that F is a reduction of \cong^T_κ to E_X, i.e. for every $\eta, \xi \in 2^\kappa$, $(\eta, \xi) \in \cong^T_\kappa$ if and only if $(F(\eta), F(\xi)) \in E_X$. Notice that when $\alpha \in C_\mu$, the structure $A_\eta \upharpoonright \alpha$ is defined and equals $A_\eta \upharpoonright \alpha$.

Consider first the direction from left to right. Suppose first that A_η and A_ξ are models of T and $A_\eta \cong A_\xi$. Since $A_\eta \cong A_\xi$, we have $\text{II } \uparrow \text{EF}^\alpha(A_\eta, A_\xi)$. By Lemma 2.2 there is a club C such that $\text{II } \uparrow \text{EF}^\alpha(A_\eta \upharpoonright \alpha, A_{S_\alpha})$ for every α in C. Since the set $\{\alpha < \kappa \mid A_\eta \upharpoonright \alpha \models T, A_{S_\alpha} \upharpoonright \alpha \models T\}$ contains a club, we can assume that every $\alpha \in C$ satisfies $A_\eta \upharpoonright \alpha \models T$ and $A_{S_\alpha} \upharpoonright \alpha \models T$. If $\alpha \in C$ is such that $F(\eta)(\alpha) = 1$, then $\text{II } \uparrow \text{EF}^\alpha(A_\eta \upharpoonright \alpha, A_{S_\alpha})$. Since $\text{II } \uparrow \text{EF}^\alpha(A_\eta \upharpoonright \alpha, A_{S_\alpha})$ and $\alpha \in C_{EF}$, we can conclude that $\text{II } \uparrow \text{EF}^\alpha(A_\xi \upharpoonright \alpha, A_{S_\alpha})$. Therefore for every $\alpha \in C$, $F(\eta)(\alpha) = 1$ implies $F(\xi)(\alpha) = 1$. Using the same argument it can be shown that for every $\alpha \in C$, $F(\xi)(\alpha) = 1$ implies $F(\eta)(\alpha) = 1$. Therefore $F(\eta)$ and $F(\xi)$ coincide in a club and $(F(\eta), F(\xi)) \in E_X$.

Let us now look at the case where $(\eta, \xi) \in \cong^T_\kappa$ and A_η is not a model of T (the case $T \models A_\xi$ follows by symmetry). By the definition of \cong^T_κ we know that A_ξ is not a model of T either, so there is $\varphi \in T$ such that $A_\eta \models \neg \varphi$ and $A_\xi \models \neg \varphi$. Further, there is a club C such that for every $\alpha \in C$ we have $A_\eta \upharpoonright \alpha \models \neg \varphi$ and $A_\xi \upharpoonright \alpha \models \neg \varphi$. We conclude that for every $\alpha \in C$ we have that $A_\eta \upharpoonright \alpha$ and $A_\xi \upharpoonright \alpha$ are not models of T, and $F(\eta)(\alpha) = F(\xi)(\alpha) = 0$, so $(F(\eta), F(\xi)) \in E_X$.

Let us now look at the direction from right to left. Suppose first that A_η and A_ξ are models of T, and $A_\eta \not\cong A_\xi$. 3
By Remark 2, we know that $I \uparrow \mathcal{EP}_\omega^\kappa(A_\eta, A_\xi)$. By Lemma 2.2 there is a club C of α with
\[I \uparrow \mathcal{EP}_\omega^\kappa(A_\eta |_\alpha, A_\xi |_\alpha), \]
$A_\xi |_\alpha \models T$ and $A_\eta |_\alpha \models T$.

Since $\{\alpha \in X \mid \eta \cap \alpha = S_\alpha\}$ is stationary by the definition of $\Diamond_\kappa(X)$, also the set
\[\{\alpha \in X \mid \eta \cap \alpha = S_\alpha\} \cap C_\pi \cap C_{\mathcal{EF}} \]
is stationary and every α in this set satisfies $II \uparrow \mathcal{EP}_\omega^\kappa(A_\eta |_\alpha, A_{S_\alpha})$. Therefore
\[C \cap \{\alpha \in X \mid \eta \cap \alpha = S_\alpha\} \cap C_\pi \cap C_{\mathcal{EF}} \]
is stationary and a subset of $\mathcal{F}(\eta)^{-1}\{1\} \triangle \mathcal{F}(\xi)^{-1}\{1\}$, where \triangle denotes the symmetric difference. We conclude that $\mathcal{F}(\eta), \mathcal{F}(\xi) \notin E_X$.

Let us finally assume that $(\eta, \xi) \notin \equiv_T$ and $A_\eta \not\models T$ (the case $A_\xi \not\models T$ follows by symmetry). Assume towards a contradiction that $(\mathcal{F}(\eta), \mathcal{F}(\xi)) \in E^2_{\mu-club}$. Let C be a club that testifies $(\mathcal{F}(\eta), \mathcal{F}(\xi)) \in E^2_{\mu-club}$, i.e. $C \cap (\mathcal{F}(\eta)^{-1}\{1\} \triangle \mathcal{F}(\xi)^{-1}\{1\}) \cap X = \emptyset$. Since $A_\eta \not\models T$, the set $\{\alpha < \kappa \mid A_\eta |_\alpha \not\models T\}$ contains a club. Hence, we can assume that for every $\alpha \in C$, $A_\eta |_\alpha \not\models T$ which implies that $\mathcal{F}(\eta)(\alpha) = 0$ and $\mathcal{F}(\xi)(\alpha) = 0$ for every $\alpha \in C$.

By the definition of \equiv_T, $A_\eta \models \not T$ implies $A_\xi \models T$. Therefore the set $\{\alpha < \kappa \mid A_\xi |_\alpha \models T\}$ contains a club. So there is a club C' such that every $\alpha \in C'$ satisfies $A_\xi |_\alpha \models T$ and $\mathcal{F}(\xi)(\alpha) = 0$. Since $\{\alpha \in X \mid \xi \cap \alpha = S_\alpha\}$ is stationary, again by the definition of $\Diamond_\kappa(X)$, also $\{\alpha \in X \mid \eta \cap \alpha = S_\alpha\} \cap C_\pi \cap C_{\mathcal{EF}}$ is stationary and every α in this set satisfies $II \uparrow \mathcal{EP}_\omega^\kappa(A_\eta |_\alpha, A_{S_\alpha})$. Therefore,
\[C' \cap \{\alpha \in X \mid \xi \cap \alpha = S_\alpha\} \cap C_\pi \cap C_{\mathcal{EF}} \neq \emptyset, \]
a contradiction.

To show that \mathcal{F} is continuous, let $[\eta |_\alpha]$ be a basic open set, $\xi \in \mathcal{F}^{-1}[\eta |_\alpha]$. Then $\xi \in [\xi |_\alpha]$ and $[\xi |_\alpha] \subseteq \mathcal{F}^{-1}[\eta |_\alpha]$. We conclude that \mathcal{F} is continuous.

To define the reduction \mathcal{F} it is not enough to use the isomorphism classes of the models A_{S_α}, as opposed to the equivalence classes of the relation defined by the EF-game. It is possible to construct two non-isomorphic models with domain κ such that their restrictions to any $\alpha < \kappa$ are isomorphic. For example the models $M = (\kappa, P)$ and $N = (\kappa, Q)$, with $\kappa = \lambda^+$,
\[P = \{\alpha < \kappa \mid \alpha = \beta + 2n, n \in \mathbb{N} \text{ and } \beta \text{ a limit ordinal}\} \]
and
\[Q = \{\alpha < \lambda \mid \alpha = \beta + 2n, n \in \mathbb{N} \text{ and } \beta \text{ a limit ordinal}\} \]
are non-isomorphic but $M |_\alpha \models N |_\alpha$ holds for every $\alpha < \kappa$.

The Borel reducibility of the isomorphism relation of classifiable theories was studied in [FHK14] and one of the main results is the following.

Theorem 2.4. ([FHK14, Thm 77]) If a first order theory T is classifiable, then for all regular cardinals $\mu < \kappa$, $E^2_{\mu-club} \not\equiv^B \mathcal{F}$.

Corollary 2.5. Assume that $\Diamond_\kappa(S^\mu_\mu)$ holds for all regular $\mu < \kappa$. If a first order theory T is classifiable, then for all regular cardinals $\mu < \kappa$ we have $\equiv^C_T \leq^C E^2_{\mu-club}$ and $E^2_{\mu-club} \not\equiv^B \mathcal{F}$.
3 Non-classifiable Theories

In [FHK14] the reducibility to the isomorphism of non-classifiable theories was studied. In particular the following two theorems were proved there:

Theorem 3.1. ([FHK14, Thm 79]) Suppose that for all $\gamma < \kappa$, $\gamma^\omega < \kappa$ and T is a stable unsuperstable theory. Then $E^2_{\omega\text{-club}} \leq_c \cong_T$.

1. If T is unstable or superstable with OTOP, then $E^2_{\lambda\text{-club}} \leq_c \cong_T$.
2. If $\lambda \geq 2^\omega$ and T is superstable with DOP, then $E^2_{\lambda\text{-club}} \leq_c \cong_T$.

Theorem 3.2. ([FHK14, Thm 86]) Suppose that for all $\gamma < \kappa$, $\gamma^\omega < \kappa$ and T is a stable unsuperstable theory. Then $E^2_{\omega\text{-club}} \leq_c \cong_T$.

Clearly from Theorems 3.1 and 3.2 and Corollary 2.3 we obtain the following:

Theorem 3.3. Suppose that $\kappa = \lambda^+ = 2^\lambda$ and $\lambda^{<\lambda} = \lambda$ and $\Diamond_k(S^\kappa_k)$ holds.

1. If T_1 is classifiable and T_2 is unstable or superstable with OTOP, then $\cong_{T_1} \leq_c \cong_{T_2}$ and $\cong_{T_2} \leq B \cong_{T_1}$.
2. If $\lambda > 2^\omega$, T_1 is classifiable and T_2 is superstable with DOP, then $\cong_{T_1} \leq_c \cong_{T_2}$ and $\cong_{T_2} \leq B \cong_{T_1}$.

Theorem 3.4. Suppose that for all $\gamma < \kappa$, $\gamma^\omega < \kappa$ and $\Diamond_k(S^\kappa_k)$ holds. If T_1 is classifiable and T_2 is stable unsuperstable, then $\cong_{T_1} \leq_c \cong_{T_2}$ and $\cong_{T_2} \leq B \cong_{T_1}$.

Corollary 3.5. Suppose $\kappa = \kappa^{<\kappa} = \lambda^+$ and $\lambda^\omega = \lambda$. If T_1 is classifiable and T_2 is stable unsuperstable, then $\cong_{T_1} \leq_c \cong_{T_2}$ and $\cong_{T_2} \leq B \cong_{T_1}$.

Proof. In [She10] Shelah proved that if $\kappa = \lambda^+ = 2^\lambda$ and S is a stationary subset of $\{ \alpha < \kappa \mid cf(\alpha) \neq cf(\lambda) \}$, then $\Diamond_k(S)$ holds. Since $\lambda^\omega = \lambda$, we have $cf(\lambda) \neq \omega$ and $\Diamond_k(S^\kappa_k)$ holds. On the other hand $\kappa = \lambda^+$ and $\lambda^\omega = \lambda$ implies $\gamma^\omega < \kappa$ for all $\gamma < \kappa$. By Theorem 3.4 we conclude that if T_1 is a classifiable theory and T_2 is a stable unsuperstable theory, then $\cong_{T_1} \leq_c \cong_{T_2}$ and $\cong_{T_2} \leq B \cong_{T_1}$.

Theorem 3.6. Let $H(\kappa)$ be the following property: If T is classifiable and T' not, then $\cong_{T'} \leq_c \cong_{T'}$ and $\cong_{T'} \leq B \cong_{T'}$. Suppose that $\kappa = \kappa^{<\kappa} = \lambda^+ = 2^\lambda > 2^\omega$ and $\lambda^{<\lambda} = \lambda$.

1. If $V = L$, then $H(\kappa)$ holds.
2. There is a κ-closed forcing notion \mathbb{P} with the κ^+-c.c. which forces $H(\kappa)$.

Proof. 1. This follows from Theorems 3.3 and 3.4.

2. Let $\mathbb{P} = \{ f : X \to 2 \mid X \subseteq \kappa, |X| < \kappa \}$ with the order $p \leq q$ if $q \subseteq p$. It is known that \mathbb{P} has the κ^+-c.c. [Kun11, Lemma IV.7.5] and is κ-closed [Kun11, Lemma IV.7.14]. It is also known that \mathbb{P} preserves cofinalities, cardinalities and subsets of κ of size less than κ [Kun11, Thm IV.7.9, Lemma IV.7.15]. Therefore, in $V[G]$, κ satisfies $\kappa = \kappa^{<\kappa} = \lambda^+ > 2^\omega$ and $\lambda^{<\lambda} = \lambda$. It is known that \mathbb{P} satisfies $\mathbb{P} \models \Diamond_k(S^\kappa_k)$ for every regular cardinal $\mu < \kappa$. Therefore, by Theorems 3.3 and 3.4 $H(\kappa)$ holds in $V[G]$.

Definition 3.7. A tree T is a κ^+, κ-tree if it does not contain chains of length κ and its cardinality is less than κ^+. It is closed if every chain has a unique supremum.
2. A pair \((T, h)\) is a Borel\(^*\)-code if \(T\) is a closed \(\kappa^+, \kappa\)-tree and \(h\) is a function with domain \(T\) such that if \(x \in T\) is a leaf, then \(h(x)\) is a basic open set and otherwise \(h(x) \in \{\cup, \cap\}\).

3. For an element \(\eta \in 2^\kappa\) and a Borel\(^*\)-code \((T, h)\), the Borel\(^*\)-game \(B^*(T, h, \eta)\) is played as follows. There are two players, I and II. The game starts from the root of \(T\). At each move, if the game is at node \(x \in T\) and \(h(x) = \cap\), then I chooses an immediate successor \(y\) of \(x\) and the game continues from this \(y\). If \(h(x) = \cup\), then II makes the choice. At limits the game continues from the (unique) supremum of the previous moves by Player I. Finally, if \(h(x)\) is a basic open set, then the game ends, and II wins if and only if \(\eta \in h(x)\).

4. A set \(X \subseteq 2^\kappa\) is a Borel\(^*\)-set if there is a Borel\(^*\)-code \((T, h)\) such that for all \(\eta \in 2^\kappa\), \(\eta \in X\) if and only if II has a winning strategy in the game \(B^*(T, h, \eta)\).

Note that a strategy in a game \(B^*(T, h, \eta)\) can be seen as a function \(\sigma : \kappa^\kappa \rightarrow \kappa\), because every \(\kappa^+ \kappa\)-tree can be seen as a downward closed subtree of \(\kappa^\kappa\).

Theorem 3.8. Suppose that \(\kappa = \kappa^\kappa = \lambda^+, 2^\lambda > 2^\omega\) and \(\lambda^\lambda = \lambda\). Then the following statements are consistent.

1. If \(T_1\) is classifiable and \(T_2\) is not, then there is an embedding of \((\mathcal{P}(\kappa), \subseteq)\) to \((B^*(T_1, T_2), \leq_B)\), where \(B^*(T_1, T_2)\) is the set of all Borel\(^*\)-equivalence relations strictly between \(\cong_{T_1}\) and \(\cong_{T_2}\).

2. If \(T_1\) is classifiable and \(T_2\) is unstable or superstable, then

\[
\cong_{T_1} \leq_c E_{\lambda\text{-club}} \leq c \cong_{T_2} \leq E_{\lambda\text{-club}} \wedge E_{\lambda\text{-club}} \not\subseteq B \cong_{T_1} E_{\lambda\text{-club}} \not\subseteq B \cong_{T_1}.
\]

Proof. We will start the proof with two claims.

Claim 3.9. If \(\Diamond_\kappa(S)\) holds in \(V\) and \(Q\) is \(\kappa\)-closed, then \(\Diamond_\kappa(S)\) holds in every \(Q\)-generic extension.

Proof. Let us proceed by contradiction. Suppose \((S_\alpha)_{\alpha \in S}\) is a \(\Diamond_\kappa(S)\)-sequence in \(V\) but not in \(V[G]\), for some generic \(G\). Fix the names \(\hat{\mathcal{C}}, \hat{X} \in V^Q\) and \(p \in G\), such that:

\[
p \models (\hat{\mathcal{C}} \subseteq \kappa) \wedge (\hat{X} \subseteq \kappa) \wedge \forall \alpha \in \hat{\mathcal{C}}[\hat{S}_\alpha \neq \hat{X} \cap \alpha]).
\]

Working in \(V\), we choose by recursion \(p_\alpha, \beta_\alpha, \theta_\alpha\) and \(\delta_\alpha\) such that:

1. \(p_\alpha \in Q\), \(p_0 = p\) and \(p_\alpha \geq p_\gamma\) if \(\alpha \leq \gamma\).
2. \(\beta_\alpha \leq \beta_\gamma\) if \(\alpha \leq \gamma\).
3. \(\beta_\alpha \leq \theta_\alpha, \delta_\alpha < \beta_{\alpha+1}\).
4. If \(\gamma\) is a limit ordinal, then \(\beta_\gamma = \delta_\gamma = \bigcup_{\alpha < \gamma} \beta_\alpha\).
5. \(p_{\alpha+1} \models (\delta_\alpha \in \hat{\mathcal{C}} \wedge \hat{X} \cap \hat{\beta}_\alpha = \hat{\delta}_\alpha)\).

We will show how to choose them such that 1-5 are satisfied. First, for the successor step assume that for some \(\alpha < \kappa\) we have chosen \(p_{\alpha+1}, \beta_\alpha, \theta_\alpha\) and \(\delta_\alpha\). We choose any ordinal satisfying 3 as \(\beta_{\alpha+1}\). Since \(p_{\alpha+1} \models (\hat{\mathcal{C}} \subseteq \kappa)\), there exists \(q \in Q\) stronger than \(p_{\alpha+1}\) and \(\delta < \kappa\) such that \(q \models (\delta \in \hat{\mathcal{C}} \wedge \hat{\beta}_\alpha \leq \hat{\delta})\). Now set \(\delta_{\alpha+1} = \delta\). Since \(Q\) is \(\kappa\)-closed, there exists \(Y \in \mathcal{P}(\hat{\beta}_{\alpha+1})\) and \(r \in Q\) stronger than \(q\) such that \(r \models \hat{X} \cap \hat{\beta}_{\alpha+1} = \hat{Y}\). By \(\Diamond_\kappa(S)\) in \(V\), the set \(\{\gamma < \kappa \mid Y = S_\gamma\}\) is stationary, so we can choose the least ordinal \(\theta_{\alpha+1} \geq \beta_{\alpha+1}\) such that \(r \models \hat{X} \cap \hat{\beta}_{\alpha+1} = \hat{S}_{\theta_{\alpha+1}}\). Clearly \(r = p_{\alpha+2}\) satisfies 1 and 5.
For the limit step, assume that for some limit ordinal \(\alpha < \kappa \) we have chosen \(p_\gamma, \beta_\gamma, \theta_\gamma \) and \(\delta_\gamma \) for every \(\gamma < \alpha \). Note that by 4 we know how to choose \(\beta_\alpha \) and \(\delta_\alpha \). Since \(Q \) is \(\kappa \)-closed, there exists \(p_\alpha \) that satisfies 1. We choose \(\theta_\alpha \) as in the successor case with \(q = p_\alpha \) and \(p_{\alpha+1} \) as the condition \(r \) used to choose \(\theta_\alpha \).

Define \(A, B \) and \(C_\delta \) by \(B = \bigcup_{\alpha < \kappa} S_{\theta_\alpha} \) and \(C_\delta = \{ \alpha \in S \mid B \cap \alpha = S_{\theta_\alpha} \} \). Let \(\delta_\alpha \subseteq A \bigcap C_\delta \). Then by 1, 2 and 5, for every \(\gamma > \alpha \) we have \(p_{\gamma+1} \models (\delta_{\theta_\alpha} = \delta_{\theta_\alpha} \cap \beta_{\alpha}) \). Therefore, \(S_{\theta_\alpha} = B \bigcap \beta_{\alpha} \) and \(\delta_{\alpha} \subseteq A \bigcap C_\delta \) and so by 4 we have \(S_{\theta_\alpha} = B \bigcap \delta_{\alpha} = S_{\theta_\alpha} \). But now by 5 we get \(p_{\alpha+1} \models (\delta_{\theta_\alpha} \in \bigcap X \bigcap \delta_{\alpha} = S_{\theta_\alpha}) \) which is a contradiction.

Claim 3.10. For all stationary \(X \subseteq \kappa \), the relation \(E_X \) is a Borel*-set.

Proof. The idea is to code the club-game into the Borel*-game: in the club-game the players pick ordinals one after another and if the limit is in a predefined set \(A \), then the second player wins. Define \(T_X \) as the tree whose elements are all the increasing elements of \(\kappa^{<\lambda} \), ordered by end-extension. For every element of \(T_X \) that is not a leaf, define

\[
H_X(x) = \bigcup_{\gamma < \alpha} x^{-} \cap H_X(x^{-}) = \bigcap_{\alpha \notin \gamma} x^{-}
\]

and for every leaf \(b \) define \(H_X(b) \) by:

\[
(\eta, \xi) \in H_X(b) \quad \iff \quad \text{for every } \alpha \in \text{ran}(\gamma) \cap X(\eta(a) = \xi(a))
\]

where \(\alpha \in \text{lim}(\text{ran}(b)) \) if \(\sup(\text{ran}(b)) = \alpha \).

Let us assume there is a winning strategy \(\sigma \) for Player II in the game \(B^+(T_X, H_X, (\eta, \xi)) \) and let us conclude that \((\eta, \xi) \in E_X \). Clearly by the definition of \(H_X \) we know that \(\eta \) and \(\xi \) coincide in the set \(B = \{ \alpha < \kappa \mid | \sigma[\text{dom}(\sigma) \cap \alpha^{<\lambda}] \subseteq \lambda^{<\lambda} \cap X \}. \) Since \(\lambda^{<\lambda} = \lambda \), we know that \(B' = \{ \alpha < \kappa \mid \sigma[\text{dom}(\sigma) \cap \alpha^{<\lambda}] \subseteq \lambda^{<\lambda} \} \) is closed and unbounded. Therefore, there exists a club that doesn’t intersect \((\eta^{-1}[1] \Delta \xi^{-1}[1]) \cap X \).

For the other direction, assume that \((\eta^{-1}[1] \Delta \xi^{-1}[1]) \cap X \) is not stationary and denote by \(C \) the club that does not intersect \((\eta^{-1}[1] \Delta \xi^{-1}[1]) \cap X \). The second player has a winning strategy for the game \(B^+(T_X, H_X, (\eta, \xi)) \): she makes sure that, if \(b \) is the leaf in which the game ends and \(A \subseteq \text{ran}(b) \) is such that \(\sup(\text{ran}(b)) \in X \), then \(\sup(\text{ran}(b)) \in C \). This can be done by always choosing elements \(f \in \kappa^{<\lambda} \) such that \(\sup(\text{ran}(f)) \in C \).

Let \(P \) be \(\{ f : X \rightarrow 2 \mid X \subseteq \kappa, |X| < \kappa \} \) with the order \(p \leq q \) if \(q \subseteq p \). It is known that in any \(P \)-generic extension, \(V[G] \), \(\Diamond_x \) holds for every \(S \in V \), \(S \) a stationary subset of \(\kappa \).

1. In [FHK14, Thm 52] the following was proved under the assumption \(\kappa = \lambda^+ \) and GCH:

 For every \(\mu < \kappa \) there is a \(\kappa \)-closed forcing notion \(Q \) with the \(\kappa^+ \)-c.c. which forces that there are stationary sets \(K(A) \subseteq S_\mu^x \) for each \(A \subseteq \kappa \) such that \(E_{K(A)} \notin B \) if and only if \(A \notin B \).

In [FHK14, Thm 52] the proof starts by taking \((S_\alpha)_\alpha^{<\kappa} \), \(x \) pairwise disjoint stationary subsets of \(\text{lim}(S_\mu^x) = \{ \alpha \in S^x_\mu \mid \alpha \text{ is a limit ordinal in } S^x_\mu \} \), and defining \(K(A) = \bigcup_{\alpha \in A} S_\alpha \). \(Q \) is an iterated forcing that satisfies: For every name \(\sigma \) of a function \(f : 2^x \rightarrow 2^x \), exists \(\beta < \kappa \) such that, \(P_\beta \models \sigma \) is not a reduction.

With a small modification on the iteration, it is possible to construct \(Q \) a \(\kappa \)-closed forcing with the \(\kappa^+ \)-c.c. that forces
(*) For \(\mu \in \{ \omega, \lambda \} \) and \(A \subsetneq \kappa \), there are stationary sets \(K(\mu, A) \subsetneq S^s_\mu \) for which \(E_{K(\mu, A)} \not\subseteq B \) \(E_{K(\mu, B)} \) if and only if \(A \not\subseteq B \).

Assume without loss of generality that GCH holds in \(V \). Let \(G \) be a \(\mathbb{P}_* \mathbb{Q} \)-generic. It is enough to prove that for every \(A \subsetneq \kappa \) in \(V[G] \) the following holds:

(a) If \(T_2 \) is unstable, or superstable with OTOP or with DOP, then \(E_{K(\lambda, A)} \in B^*(T_1, T_2) \).

(b) If \(T_2 \) is stable unsuperstable, then \(E_{K(\omega, A)} \in B^*(T_1, T_2) \).

In both cases the proof is the same; we will only consider (a).

Working in \(V[G] \), let \(T_2 \) be as in (a). Since \(Q \) is \(\kappa \)-closed, we have \(V[G] \models \diamondsuit_\kappa(S) \) for every stationary \(S \subset \kappa, S \in V \). Since \(\mathbb{P} \) and \(Q \) are \(\kappa \)-closed and have the \(\kappa^+ \)-c.c., we have \(\kappa = \kappa^{< \kappa} = \lambda^+, 2^\lambda > 2^\omega \) and \(\lambda^{< \lambda} = \lambda \). By Lemma 2.3, Theorems 3.1 and 3.4, we have that \(\equiv_{T_1}^\kappa \equiv_{T_2}^\kappa \equiv_{K(\lambda, A)}^\kappa \) holds for every \(A \subsetneq \kappa \). The argument in the proof of Theorem 2.4 can be used to prove that \(E_{K(\lambda, A)} \not\subseteq B \) \(\equiv_{T_1}^\kappa \) holds for every \(A \subsetneq \kappa \).

To show that \(\equiv_{T_2}^\kappa \not\subseteq B \) \(E_{K(\lambda, A)} \) holds for every \(A \subsetneq \kappa \), assume towards a contradiction that there exists \(B \subsetneq \kappa \) such that \(\equiv_{T_2}^\kappa \subseteq E_{K(\lambda, B)} \). But then \(E_{K(\lambda, A)} \subseteq B \) \(E_{K(\lambda, B)} \) holds for every \(A \subsetneq \kappa \) and by (a), \(A \subseteq B \) for every \(A \subsetneq \kappa \). So \(B = \kappa \) which is a contradiction.

2. In [HK12, Thm 3.1] it is proved (under the assumptions \(2^\kappa = \kappa^+ \) and \(\kappa = \kappa^{< \kappa} > \omega \)) that there is a generic extension in which \(\equiv_{DLO}^\kappa \) is not a Borel\(^* \)-set. The forcing is constructed using the following claim [HK12, Claim 3.1.5]:

For each \((t, h) \) there exists a \(\kappa^+ \)-c.c. \(\kappa \)-closed forcing \(\mathbb{R}(t, h) \) such that in any \(\mathbb{R}(t, h) \)-generic extension \(\equiv_{DLO}^\kappa \) is not a Borel\(^* \)-set.

The forcing in [HK12, Thm 3.1] works for every theory \(T \) that is unstable, or \(T \) non-classifiable and superstable (not only DLO, see [HK12] and [HT91]). Therefore, this claim can be generalized to:

For each \((t, h) \) there exists a \(\kappa^+ \)-c.c. \(\kappa \)-closed forcing \(\mathbb{R}(t, h) \) such that in any \(\mathbb{R}(t, h) \)-generic extension, \(\equiv_T^\kappa \) is not a Borel\(^* \)-set, for all \(T \) unstable, or \(T \) non-classifiable and superstable.

By iterating this forcing (as in [HK12, Thm 3.1]), we construct a forcing \(Q \) \(\kappa \)-closed, \(\kappa^+ \)-c.c. that forces \(\equiv_T^\kappa \) is not a Borel\(^* \)-set, for all \(T \) unstable, or \(T \) non-classifiable and superstable.

Assume without loss of generality that \(2^\kappa = \kappa^+ \) holds in \(V \). Let \(G \) be a \(\mathbb{P}_* \mathbb{Q} \)-generic. Since \(Q \) is \(\kappa \)-closed, \(V[G] \models \diamondsuit_\kappa(S) \) for every stationary \(S \subset \kappa, S \in V \). Since \(\mathbb{P} \) and \(Q \) are \(\kappa \)-closed and have the \(\kappa^+ \)-c.c., we have \(\kappa = \kappa^{< \kappa} = \lambda^+, 2^\lambda > 2^\omega \) and \(\lambda^{< \lambda} = \lambda \). Working in \(V[G] \), let \(T_2 \) be unstable, or non-classifiable and superstable. By Lemma 2.3, Theorems 3.3 and 3.4 we finally have that \(\equiv_{T_1}^\kappa \leq_E E_{\lambda^+\text{-club}}^2 \leq E_{\lambda^+\text{-club}}^2 \not\subseteq B \) \(\equiv_{T_2}^\kappa \) holds.

Since \(2^\kappa \times 2^\kappa \) is homeomorphic to \(2^\kappa \), in order to finish the proof, it is enough to show that if \(f : 2^\kappa \to 2^\kappa \) is Borel, then for all Borel\(^* \)-sets \(A \), the set \(f^{-1}[A] \) is Borel\(^* \). This is because if \(f \) were the reduction \(\equiv_{T_2}^\kappa \subseteq E_{\lambda^+\text{-club}}^2 \) we would have \((f \times f)^{-1}[E_{\lambda^+\text{-club}}^2] = \equiv_{T_2}^\kappa \) and since \(E_{\lambda^+\text{-club}}^2 \) is Borel\(^* \), this would yield the latter Borel\(^* \) as well.

Claim 3.11. Assume \(f : 2^\kappa \to 2^\kappa \) is a Borel function and \(B \subset 2^\kappa \) is Borel\(^* \). Then \(f^{-1}[B] \) is Borel\(^* \).

Proof. Let \((T_B, H_B) \) be a Borel\(^* \)-code for \(B \). Define the Borel\(^* \)-code \((T_A, H_A) \) by letting \(T_B = T_A \) and \(H_A(b) = f^{-1}[H_B(b)] \) for every branch \(b \) of \(T_B \). Let \(A \) be the Borel\(^* \)-set coded by \((T_A, H_A) \). Clearly, \(\Pi \uparrow B^*(T_B, H_B, \eta) \) if and only if \(\Pi \uparrow B^*(T_A, H_A, f^{-1}(\eta)) \), so \(f^{-1}[B] = A \).
We end this paper with an open question:

Question 3.12. Is it provable in ZFC that $\sim_T \leq_B \sim_{T'}$ (note the strict inequality) for all complete first-order theories T and T', T classifiable and T' not? How much can the cardinality assumptions on κ be relaxed?

References

