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Abstract. We prove under V = L that the inclusion modulo the non-stationary ideal

is a Σ1
1-complete quasi-order in the generalised Borel-reducibility hierarchy (κ > ω).

This improvement to known results in L has many new consequences concerning the

Σ1
1-completeness of quasi-orders and equivalence relations such as the embeddability of

dense linear orders and equivalence modulo various versions of the non-stationary ideal.

This serves as a partial or complete answer to several open problems stated in literature.

Additionally the theorem is applied to prove a dichotomy in L: If the isomorphism of a

countable first-order theory (not necessarily complete) is not ∆1
1, then it is Σ1

1-complete.

We also study the case V 6= L and prove Σ1
1-completeness results for weakly ineffable

and weakly compact κ

§1. Introduction. We work in the setting of generalised descriptive set the-
ory [4], GDST for short. The spaces κκ = {f : κ → κ} and 2κ = {f : κ → 2}
are equipped with the bounded topology where the basic open sets are of the
form {η ∈ κκ | η ⊃ p}, p ∈ κ<κ. Borel sets are generated by κ-long unions
and intersection of basic open sets. Notions of Borel-reducibility between equiv-
alence relations and quasi-orders as well as Wadge-reducibility between sets are
generalised accordingly.

In [4] a Lemma was introduced (a version of the Lemma and a detailed proof
can be found in [9, Lemma 1.9 & Remark 1.10]) saying that if V = L, then any
Σ1

1 subset of κκ can be Wadge-reduced to

CLUB = {η ∈ 2κ | η−1{1} contains a µ-club}, µ < κ regular,

where “µ-club” is short for unbounded set closed under increasing sequences of
length µ. In [4] this was used to show that if V = L, then Σ1

1 = Borel∗. In [9]
the Wadge-reducibility result was strengthened by the first two authors of the
present paper. It was shown (still in L) that every Σ1

1-equivalence relation is
Borel-reducible to the following equivalence relation on κκ:

Eκµ = {(η, ξ) ∈ (κκ)2 | {α < κ | η(α) = ξ(α)} contains a µ-club}.(1)

We say that Eκµ is Σ1
1-complete.
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However, we would have wanted to show that the same equivalence relation
on 2κ:

E2
µ = {(η, ξ) ∈ (2κ)2 | {α < κ | η(α) = ξ(α)} contains a µ-club}.(2)

has the same completeness property. The reason for this was that we knew many
more equivalence relations to which E2

µ can be Borel reduced than equivalence
relations to which Eκµ can be Borel reduced. The corollaries of (1) and (2) were

explored in [4, 9, 16]. In particular, the question “Is Eκµ 6B E2
µ?” that was

stated in [5, Q. 15] and re-stated in [15, Q. 3.46] was open (and it is still open
in the general case). Of course if E2

µ is Σ1
1-complete the answer to this question

is positive and in this paper we show that this is the case in L (Theorem 4.2) by
first proving the same result for quasi-orders (Theorem 3.1). Borel-reducibility
between quasi-orders is a natural generalisation of reducibility between equiva-
lence relations (see Section 2 for precise definitions).

We then prove a range of new results which are all consequences of Theo-
rem 3.1. One of these is our main result: If V = L then the isomorphism
relation of any countable first-order theory (not necessarily complete) is either
∆1

1 or Σ1
1-complete. This classification problem in Baire space was also studied

in [11], the “Borel-reducibility counterpart of Shelah’s main gap theorem”. The
other results are partial answers to [17, Q.’s 11.3 and 11.4] (which are re-stated
as [15, Q’s 3.49 and 3.50]), [5, Q. 15] and a complete answer to [15, Q. 3.47].

These questions ask about the (consistency of) reducibility between relations of
the form Eλµ , quasi-orders of the form vµ, quasi-orders of embeddability between
linear orders as well as various isomorphism relations, where λ ∈ {2, κ} and
µ ∈ reg(κ). In particular, [17, Q. 11.4] asks whether the embeddability of dense
linear orders vDLO is a Σ1

1-complete quasi-order for weakly compact κ. From
those results that are described above it follows that vDLO is Σ1

1-complete in
L for all κ that are not successors of an ω-cofinal cardinal. In Section 5.1 we
extend this to weakly ineffable cardinals (without the assumption V = L). Thus
the only case in which [17, Q. 11.4] is still open is the case when V 6= L and κ
is a weakly compact cardinal which is not weakly ineffable. In Section 5.2 we
prove that the isomorphism of DLO, ∼=DLO, on κ weakly compact is Σ1

1-complete
(here again, we do not assume V = L). The existence of Σ1

1-complete equivalence
relations has been previously known to hold in L [10]. It is still unknown whether
there exists a model of ZFC and κ > ω on which no isomorphism relation is Σ1

1-
complete. Given the present situation such a counterexample will have to satisfy
both V 6= L and κ is not weakly compact. This is a strong contrast to the
classical case κ = ω in which the isomorphism of graphs is strictly below the
universal equivalence relation induced by a Borel action of a Polish group, and
does not reduce even some simple1 Borel equivalence relations such as E1 [14].

§2. Preliminaries and Definitions. In this section we define the notions
and concepts we work with. Throughout this article we assume that κ is an
uncountable cardinal that satisfies κ<κ = κ which is a standard assumption in
GDST. In this paper, however, this assumption is mostly redundant, because we

1Simple in the sense that it is low in the Borel-hierarchy, namely Σ0
2.
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work either with strongly inaccessible κ or under the assumption V = L. For
sets X and Y denote by XY the set of all functions from Y to X. For ordinal
α denote by X<α the set of all functions from any β < α to X. We work with
the generalised Baire and Cantor spaces associated with κ these being κκ and
2κ respectively, where 2 = {0, 1}. The generalised Baire space κκ is equipped
with the bounded topology. For every ζ ∈ κ<κ, the set

{η ∈ κκ | ζ ⊂ η}
is a basic open set. The open sets are of the form

⋃
X where X is a collection of

basic open sets. The collection of κ-Borel subsets of κκ is the smallest set which
contains the basic open sets and is closed under unions and intersections, both
of length κ. A κ-Borel set is any element of this collection. In this paper we do
not consider any other kind of Borel sets, so we always omit the prefix “κ-”. The
subspace 2κ ⊂ κκ (the generalised Cantor space) is equipped with the subspace
topology. We will also work in the subspaces of the form ModκT which are sets
of codes for models with domain κ of a first-order countable theory T . Special
cases include ModκG and ModκDLO for graphs and dense linear orders respectively.
These are Borel subspaces of 2κ. This enables us to view the quasi-order of
embeddability of models, say vDLO, as a quasi-order on 2κ. In order to precisely
define this, we have to introduce some notions.

The following is a standard way to code structures with domain κ by ele-
ments of κκ (see e.g. [4]). Suppose L = {Pn | n < ω} is a countable relational
vocabulary.

Definition 2.1. Fix a bijection π : κ<ω → κ. For every η ∈ 2κ define the
L-structure Aη with domain κ as follows: For every relation Pm with arity n,
every tuple (a1, a2, . . . , an) in κn satisfies

(a1, . . . , an) ∈ PAηm ⇐⇒ η(π(m, a1, . . . , an)) = 1.

Note that for every L-structure A with dom(A) = κ there exists η ∈ 2κ with
A = Aη. It is clear how this coding can be modified for a finite vocabulary. For
club many α < κ we can also code the L-structures with domain α:

Definition 2.2. Denote by Cπ the club {α < κ | π[α<ω] ⊆ α}. For every
η ∈ 2κ and every α ∈ Cπ define the structure Aη�α with domain α as follows:
For every relation Pm with arity n, every tuple (a1, a2, . . . , an) in αn satisfies

(a1, a2, . . . , an) ∈ PAη�αm ⇐⇒ (η � α)(π(m, a1, a2, . . . , an)) = 1.

Note that for every α ∈ Cπ and every η ∈ 2κ the structures Aη�α and Aη � α
are the same.

Let us denote by ModκT the subset of 2κ consisting of those elements that code
the models of a first-order countable theory (not necessarily complete). Abbre-
viate first-order countable theory as FOCT from now on. We will be interested
in particular in T = G, the theory of graphs (symmetric and irreflexive) and
T = DLO, the theory of dense linear orders without end-points. We consider
ModκT as a topological space endowed with the subspace topology. For more
background on GDST see e.g. [4].

We can now define some central relations for this paper. A quasi-order is a
transitive and reflexive relation.



4 TAPANI HYTTINEN, VADIM KULIKOV, AND MIGUEL MORENO

Definition 2.3 (Relations). We will use the following relations.

Isomorphism: For a FOCT T , define

∼=κ
T = ∼=T = {(η, ξ) ∈ 2κ × 2κ | η, ξ ∈ ModκT ,Aη ∼= Aξ or η, ξ /∈ ModκT }.

Embeddability: For a FOCT T , define the quasi-order

vκT = vT = {(η, ξ) ∈ (ModκT )2 | Aη is embeddable into Aξ}
Bi-embeddability: For a FOCT T and η, ξ ∈ ModκT , let

η ≈T ξ ⇐⇒ η vT ξ ∧ ξ vT η.
Inclusion mod NS: For η, ξ ∈ 2κ and a stationary S ⊂ κ, we write η vS ξ

if (η−1{1}\ξ−1{1}) ∩ S is non-stationary.
Equivalence mod NS: For every stationary S ⊂ κ and λ ∈ {2, κ}, we define
EλS as the relation

EλS = {(η, ξ) ∈ λκ × λκ | {α < κ | η(α) 6= ξ(α)} ∩ S is not stationary}.
Note that ηE2

Sξ if and only if η vS ξ ∧ ξ vS η.
If S is the set of all µ-cofinal ordinals, denote EλS = Eλµ and vS=vµ. If S is

the set of all regular cardinals below κ, denote S = reg(κ) = reg in which case
EλS = Eλreg and vS=vreg. If S = κ, write EλS = EλNS and vS=vNS

Note that if we define F : 2κ → 2κ by

F (η)(α) =

{
η(α) if α ∈ S
1 otherwise

for a fixed S ⊂ κ, we obtain:

Fact 2.4. For all stationary S ⊂ S′ we have vS 6B vS′ .

A quasi-order Q on (a Borel set) X ⊂ κκ is Σ1
1, if Q ⊂ X2 is the projection of

a closed set in X2×κκ (X is equipped with subspace topology and X2×κκ with
the product topology). All quasi-orders of Definition 2.3 (note that equivalence
relations are quasi-orders) are Σ1

1.
Suppose X,Y ⊂ κκ are Borel. A function f : X → Y is Borel, if for every

open set A ⊆ Y the inverse image f−1[A] is a Borel subset of X with respect to
the induced Borel structure on X and Y .

If Q1 and Q2 are quasi-orders respectively on X and Y , then we say that Q1

is Borel-reducible to Q2 if there exists a Borel map f : X → Y such that for all
x1, x2 ∈ X we have x1Q1x2 ⇐⇒ f(x1)Q2f(x2) and this is also denoted by
Q1 6B Q2. If f is continuous (inverse image of an open set is open), then we
say that Q1 is continuously reducible to Q2. Note that equivalence relations are
quasi-orders, so this gives naturally a notion of reducibility for them as well.

A quasi-order is Σ1
1-complete, if every Σ1

1 quasi-order is Borel-reducible to it.
An equivalence relation is Σ1

1-complete if every Σ1
1 equivalence relation is Borel-

reducible to it.
A Borel equivalence relation E on a Borel subspace X ⊂ 2κ can be extended

to 2κ by declaring all other elements equivalent to each other, but not equivalent
to any of the elements in X. Similarly a quasi-order v on X ⊂ 2κ can be
trivially extended to the whole space 2κ. If the original equivalence relation or
quasi-order was Σ1

1-complete, then so are the extensions.
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§3. Σ1
1–completeness of vS in L. This section is devoted to proving The-

orem 3.1. In Section 4 a range of corollaries will be proved.

Theorem 3.1. (V = L, κ > ω) The quasi-order vµ is Σ1
1–complete, for every

regular µ < κ.

As mentioned in Introduction, this is an improvement to a theorem in [9] which
says that Eκµ is Σ1

1-complete.

Definition 3.2. We will need a version of the diamond principle.

• Let us define a class function F3 : On → L. For all α, F3(α) is a pair
(Xα, Cα) where Xα, Cα ⊆ α, if α is a limit ordinal, then Cα is either a club
or the empty set, and Cα = ∅ when α is not a limit ordinal. We let F3(α) =
(Xα, Cα) be the <L-least pair such that for all β ∈ Cα, Xβ 6= Xα ∩ β if α
is a limit ordinal and such pair exists and otherwise we let F3(α) = (∅, ∅).

• We let C3 ⊆ On be the class of all limit ordinals α such that for all β < α,
F3 � β ∈ Lα. Notice that for every regular cardinal α, C3 ∩ α is a club.

Definition 3.3. For a given regular cardinal α and a subset A ⊂ α, we define
the sequence (Xγ , Cγ)γ∈A to be (F3(γ))γ∈A, and the sequence (Xγ)γ∈A to be
the sequence of sets Xγ such that F3(γ) = (Xγ , Cγ) for some Cγ .

Remark 3.4. It is known that if α and µ are regular cardinals such that
µ < α, then the sequence (Xγ)γ∈Sαµ is a diamond sequence (i.e. for all Y ⊆ α,

the set {γ ∈ Sαµ | Y ∩ γ = Xγ} is stationary). Notice that if β ∈ C3, then for all
γ < β, Xγ ∈ Lβ .

By ZF− we mean ZFC+(V = L) without the power set axiom. By ZF� we
mean ZF− with the following axiom:

“For all regular cardinals µ < α if (Sγ , Dγ)γ∈α is such that for all
γ < α, F3(γ) = (Sγ , Dγ), then (Sγ)γ∈Sαµ is a diamond sequence.”

Whether or not ZF− proves ZF� is irrelevant for the present argument. We
denote by Sk(Y )Lθ the Skolem closure of Y in Lθ under the definable Skolem
functions.

Lemma 3.5. (V = L) For any Σ1-formula ϕ(η, x) with parameter x ∈ 2κ, a
regular cardinal µ < κ, the following are equivalent for all η ∈ 2κ:

• ϕ(η, x)
• S\A is non-stationary, where S = {α ∈ Sκµ | Xα = η−1{1} ∩ α} and

A = {α ∈ C3 ∩ κ | ∃β > α(Lβ |= ZF� ∧ϕ(η � α, x � α) ∧ r(α))}
where r(α) is the formula “α is a regular cardinal”.

Remark 3.6. This Lemma is reminiscent of [9, Remark 1.10], but there is a
big difference, because now S depends on η through the diamond-sequence. The
proof in [9] is not applicable here.

Proof. Let µ < κ be a regular cardinal. Suppose that η ∈ 2κ is such that
ϕ(η, x) holds. Let θ be a cardinal large enough such that

Lθ |= ZF� ∧ϕ(η, x) ∧ r(κ).
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For each α < κ, let
H(α) = Sk(α ∪ {κ, η, x})Lθ

and H̄(α) the Mostowski collapse of H(α). Let

D = {α < κ | H(α) ∩ κ = α}.
Then D is a club set and D∩C3 is a club. Since H(α) is an elementary submodel
of Lθ and the Mostowski collapse H̄(α) is equal to Lβ for some β > α, we have
D ∩ C3 ⊆ A.

Suppose η ∈ 2κ is such that ϕ(η, x) does not hold. Let µ < κ be a regular
cardinal. Let θ be a large enough cardinal such that

Lθ |= ZF� ∧¬ϕ(η, x) ∧ r(κ).

Let C be an unbounded set which is closed under µ-limits (a µ-club). Let

H(α) = Sk(α ∪ {κ,C, η, x, (Xγ , Cγ)γ∈Sκµ})
Lθ .

Let
D = {α ∈ Sκµ | H(α) ∩ κ = α}

Notice that since H(α) is an elementary substructure of Lθ, then H(α) calculates
all cofinalities correctly below α. Then D is an unbounded set, closed under µ-
limits. Let S = {α ∈ Sκµ | Xα = η−1{1} ∩ α} and α0 be the least ordinal in
(limµD)∩ S (where limµD is the set of ordinals of D that are µ-cofinal limits of
elements of D). Since α0 ∈ limµD, α0 > µ. By the elementarity of each H(α)
we conclude that α0 ∈ C.

Let β̄ be such that Lβ̄ is equal to the Mostowski collapse of H(α0). We
will show that α0 /∈ A. Suppose, towards a contradiction, that α0 ∈ A, thus
α0 ∈ C3 ∩ κ. There exists β > α0 such that

Lβ |= ZF� ∧ϕ(η � α0, x � α0) ∧ r(α0).

Since ϕ(η, x) is a Σ1-formula, β is a limit ordinal greater than β̄.

Claim 3.6.1. Lβ satisfies the following:

1. For all γ ∈ S ∩ α0, γ has cofinality µ.
2. S ∩ α0 is a stationary subset of α0.
3. D ∩ α0 is a µ-club subset of a0.

Proof. 1. H(α0) calculates all cofinalities correctly below α0. Thus Lβ̄
calculates all cofinalities correctly below α0. Since β is greater than β̄, Lβ
calculates all cofinalities correctly below α0. Since S ∩ α0 ⊆ Sκµ in L, then
S ∩ α0 ⊆ Sκµ holds in Lβ .

2. Since α0 ∈ C3 ∩ κ and Lβ satisfies ZF� and r(α0), Lβ satisfies that S ∩ α0

is a stationary subset of α0.
3. Let α < α0 be such that Lβ |= cf(α) = µ ∧

⋃
(D ∩ α) = α, we will show

that Lβ |= α ∈ D ∩ α0. Since Lβ calculates all cofinalities correctly below
α0, L |= cf(α) = µ ∧

⋃
(D ∩ α) = α. D is a µ-club in L, thus L |= α ∈ D.

Since α < α0, L |= α ∈ D ∩ α0. We will finish the proof by showing that
L |= α ∈ D ∩ α0 implies Lβ |= α ∈ D ∩ α0.

Notice that H(α0) is a definable subset of Lθ and D is a definable subset
of Lθ. By elementarity, D ∩α0 is a definable subset of H(α0), we conclude
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that D ∩ α0 is a definable subset of Lβ̄ and D ∩ α0 ∈ Lβ . Therefore
Lβ |= α ∈ D ∩ α0.

a
Since Lβ |= r(α0), by the previous claim we concluded that Lβ satisfies

“limµD ∩ α0 is a µ-club”. Since S ∩ α0 is a stationary subset of α0 in Lβ ,
we conclude that

Lβ |= (limµD ∩ α0) ∩ S ∩ α0 6= ∅,
so

L |= (limµD ∩ α0) ∩ S ∩ α0 6= ∅.
This contradicts the minimality of α0. a

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose Q is a Σ1
1 quasi-order on κκ. Let a : κκ →

2κ×κ be the map defined by

a(η)(α, β) = 1⇔ η(α) = β.

Let b be a continuous bijection from 2κ×κ to 2κ, and c = b ◦ a. Define Q′ by

(η, ξ) ∈ Q′ ⇔ (η = ξ) ∨ (η, ξ ∈ ran(c) ∧ (c−1(η), c−1(ξ)) ∈ Q)

So c is a continuous reduction of Q to Q′, and Q′ is a Σ1
1 quasi-order because it

is a continuous image of Q. We can assume, without loss of generality, that Q
is a quasi-order on 2κ.

There is a Σ1-formula of set theory ψ(η, ξ) = ψ(η, ξ, x) = ∃kϕ(k, η, ξ, x)∨η = ξ
with x ∈ 2κ, such that for all η, ξ ∈ 2κ,

(η, ξ) ∈ Q⇔ ψ(η, ξ),

we added η = ξ to ψ(η, ξ), to ensure that when we reflect ψ(η � α, ξ � α) we get
a reflexive relation. Let r(α) be the formula “α is a regular cardinal” and ψQ(κ)
be the sentence with parameter κ that asserts that ψ(η, ξ) defines a quasi-order
on 2κ. For all η ∈ 2κ and α < κ, let

Tη,α = {p ∈ 2α | ∃β > α(Lβ |= ZF� ∧ψ(p, η � α, x � α) ∧ r(α) ∧ ψQ(α))}.

Let (Xα)α∈Sκµ be the diamond sequence of Definition 3.3, and for all α ∈ Sκµ , let
Xα be the characteristic function of Xα. Define F : 2κ → 2κ by

F(η)(α) =

{
1 if Xα ∈ Tη,α and α ∈ Sκµ
0 otherwise

Claim 3.6.2. If η Q ξ, then Tη,α ⊆ Tξ,α for club-many α’s.

Proof. Suppose ψ(η, ξ, x) = ∃kϕ(k, η, ξ, x) holds and let k witnesses that.
Let θ be a cardinal large enough such that Lθ |= ZF� ∧ϕ(k, η, ξ, x) ∧ r(α). For
all α < κ let H(α) = Sk(α∪ {κ, k, η, ξ, x})Lθ . The set D = {α < κ | H(α)∩ κ =
α ∧H(α) |= ψQ(α)} is a club. Using the Mostowski collapse we have that

D′ = {α < κ | ∃β > α(Lβ |= ZF� ∧ϕ(k � α, η � α, ξ � α, x � α) ∧ r(α) ∧ ψQ(α))}

contains a club. For all α ∈ D′ and p ∈ Tη,α we have that

∃β1 > α(Lβ1
|= ZF� ∧ψ(p, η � α, x � α) ∧ r(α) ∧ ψQ(α))
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and

∃β2 > α(Lβ2
|= ZF� ∧ψ(η � α, ξ � α, x � α) ∧ r(α) ∧ ψQ(α)).

Therefore, for β = max{β1, β2} we have that

Lβ |= ZF� ∧ψ(p, η � α, x � α) ∧ ψ(η � α, ξ � α, x � α) ∧ r(α) ∧ ψQ(α).

Since ψQ(α) holds and so transitivity holds for ψ(η, ξ) in Lβ , we conclude that

Lβ |= ZF� ∧ψ(p, ξ � α, x � α) ∧ r(α) ∧ ψQ(α)

so p ∈ Tξ,α and Tη,α ⊆ Tξ,α. This holds for all α ∈ D′. a
By the previous claim, we conclude that if η Q ξ, then there is a µ-club C

such that for every α ∈ C it holds that Xα ∈ Tη,α ⇒ Xα ∈ Tξ,α. Therefore
(F(η)−1{1}\F(ξ)−1{1}) ∩ C = ∅, and F(η) vκµ F(ξ).

For the other direction, suppose ¬ψ(η, ξ, x) holds. Let S = {α ∈ Sκµ | Xα =

η−1{1} ∩ α}. Since (Xγ)γ∈Sκµ is a diamond sequence, S is a stationary set. By

Lemma 3.5 we know that S\A is stationary, where

A = {α ∈ C3 ∩ κ | ∃β > α(Lβ |= ZF� ∧ψ(η � α, ξ � α, x � α) ∧ r(α))}.
Since for all α ∈ S\A we have that Xα = η−1{1}∩α, so Xα ∈ Tη,α. We conclude
that for all α ∈ S\A, F(η)(α) = 1. On the other hand, for all α ∈ S\A it holds
that

∀β > α(Lβ 6|= ZF� ∧ψ(η � α, ξ � α, x � α) ∧ r(α))

so

∀β > α(Lβ 6|= ZF� ∧ψ(Xα, ξ � α, x � α) ∧ r(α)).

Therefore

∀β > α(Lβ 6|= ZF� ∧ψ(Xα, ξ � α, x � α) ∧ r(α) ∧ ψQ(α))

we conclude that Xα 6∈ Tξ,α, and F(ξ)(α) = 0. Hence, for all α ∈ S\A,
F(η)(α) = 1 and F(ξ)(α) = 0. Since S\A is stationary, we conclude that
F(η)−1{1}\F(ξ)−1{1} is stationary and F(η) 6vκµ F(ξ). a

§4. Corollaries of Theorem 3.1.

4.1. Σ1
1-completeness of E2

µ in L.

Theorem 4.1 (V = L, κ > ω). vNS is a Σ1
1-complete quasi-order.

Proof. Follows from Fact 2.4 and Theorem 3.1. a

Theorem 4.2 (V = L). Let µ be regular cardinal below κ, then E2
µ is a Σ1

1-
complete equivalence relation.

Proof. This follows from Theorem 3.1, because E2
µ is a symmetrisation of

the quasi-order vµ. a
The above result is not true in ZFC. It was shown in [4, Thm 56] that if κ

is not a successor of a singular cardinal, then in a cofinality preserving forcing
extension Eκµ1

and Eκµ2
are 6B-incomparable for regular cardinals µ1 < µ2 < κ.

Theorem 4.1 gives consistently a positive answer to “Given a weakly compact
cardinal κ, is vNS complete?” [17, Q. 11.4]. Theorem 4.2 answers the questions
“Is it consistently true that E2

µ 6B E2
λ for λ < µ?” [4],[15, Q. 3.47] (take
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λ = ω, µ = ω1 and κ = ω2), and gives consistently a positive answer to “Is Eκµ
Borel-reducible to E2

µ for a regular µ?” [5, Q. 15], [15, Q. 3.46].

4.2. Σ1
1-completeness of vDLO in L. [17, Q. 11.3] asks “Given a weakly

compact cardinal κ, is vDLO complete for Σ1
1 quasi-orders? What about arbi-

trary regular cardinals κ?” In this section we apply Theorem 3.1 to show that
the answer is positive if V = L. To do that we first have to establish a general
theorem about vDLO:

Theorem 4.3. Suppose that for all λ < κ we have λω < κ. Then there is a
continuous reduction of vω to vDLO.

Proof. We will first define a continuous function G : P(κ) → P(κ) with the
following properties for every A,B ⊂ P(κ):

(G1) if A vω B, then there exists a continuous f : κ → κ such that f [G(A)] ⊂
G(B)

(G2) if A 6vκω B, then G(A) 6vκω G(B).

Claim 4.3.1. A function G as above exists.

Proof. Fix an ω-club C ⊂ κ with the property that for all α < κ and all
β < κ there exists γ with β < γ < κ such that [γ, γ + α] ∩ C = ∅, where
[γ, γ + α] = {δ < κ | γ 6 δ 6 γ + α}, thus C is in a sense “sparse”. For A ⊂ κ,
let G(A) = (A ∩ C) ∪ (κ \ C).

Let us show that then G is as needed. It is easy to see that it is continuous,
because if A ∩ α = A′ ∩ α, then clearly G(A) ∩ α = G(A′) ∩ α and vice versa
for a club of α’s. Suppose A \ B is non-stationary. Let C ′ be a club such that
A ∩ C ′ ⊂ B and let D = C ∩ C ′. Then define f : κ → κ inductively as follows.
Let α0 be the smallest ordinal in D, find γ0 > α0 such that [γ0, γ0 +a0]∩C = ∅
and let f � α0 be defined by f(α) = γ0 + α for all α 6 α0. Suppose that a
sequence (απ)π6π′ has been defined as well as a sequence (γπ)π6π′ such that for
all π < π′ we have

γπ < απ+1 < γπ+1(3)

and f � (απ′ + 1) is defined. Then let απ′+1 > γπ′ to be an element of D,
pick γπ′+1 > απ′+1 to be such that [γπ′+1, γπ′+1 + απ′+1] ∩ C = ∅ and define
f(α) = γπ′+1 + α for all α ∈ [απ′ + 1, αpi′+1]. Suppose that π′ is a limit ordinal
and (απ)π<π′ , (γπ)π<π′ are defined and f(α) is defined for all α < supπ<π′ απ.
From (3) it follows that, απ′ = supπ<π′ απ = supπ<π′ γπ and for all α < απ′

we have α 6 f(α) < απ′ . We also have that απ′ ∈ D, because it is a limit of
elements of D, so we can now define f(απ′) = απ′ . In this way f is continuous
and for every α < κ we have either f(α) ∈ κ \ C or α ∈ D and f(α) = α.

In both cases, if α ∈ G(A), then f(α) ∈ G(B) For (G2), assume that A 6vω B
and let S ⊂ A \B be ω-stationary. But then S ∩C is ω-stationary and S ∩C ⊂
G(A) \G(B). a

For every p, q ∈ κ6ω define p ≺ q if either p ⊃ q or there is smallest such n < ω
that p(n) 6= q(n) and for this n we have p(n) < q(n). This defines a linear order
on the set C(κ6ω) of all strictly increasing functions p ∈ κ6ω. Let C∗(κ6ω) be
the set of all strictly increasing functions p ∈ κ6ω whose range contains at least
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one infinite ordinal. This ensures that none of our linear orders has an end-point.
Also let lim∗(κ) be the set of all limit ordinals below κ except ω.

Now for A ∈ P(lim∗(κ)) define the linear order L(A) to be the set

{p ∈ C∗(κ6ω) | dom p = ω and sup ran p ∈ A and p(0) = 0}
equipped with the order ≺. This is a modification of a construction given by
Baumgartner [2]. We will show that A 7→ L(G(A)) is the desired reduction,
where G is as was proved to exist in Claim 4.3.1.

If f : κ → κ is continuous and strictly increasing and A ⊂ lim∗(κ) any set, it
is clear from the definition of L(A) that

f [L(A)] = {f ◦ p | p ∈ L(A)} ⊂ L(f [A]).

Thus, if A vω B and f : κ → κ is continuous such that f [G(A)] ⊂ G(B) (as
guaranteed by (G1)), then p 7→ f ◦ p defines an embedding from L(G(A)) to
L(G(B)).

The other direction is essentially a simplification of the proof of Baumgartner
Theorem 5.3(ii) [2]. If A 6vω B, then by (G2) also G(A) 6vω G(B) and so G(A) \
G(B) is ω-stationary. So it is sufficient to show that that for any unbounded
A,B ⊂ lim∗(κ), if A \ B is ω-stationary, then L(A) cannot be embedded into
L(B). Notice that L(A) = L(A ∩ lim∗(κ)).

So suppose that A \B is stationary and assume towards a contradiction that
h : L(A) → L(B) preserves the ordering ≺. For any X ⊂ C∗(κ6ω), let T (X) =
{p ∈ C∗(κ6ω) | ∃q ∈ X(p ⊂ q)}. Note that for every strictly increasing p ∈ κ<ω
with p(0) = 0, we have p ∈ T (L(A)) and p ∈ T (L(B)). For g ∈ T (L(B)), let

Right(g) = {f ∈ L(A) | h(f) = g or g ≺ h(f)},

Left(g) = {f ∈ L(A) | h(f) ≺ g}.
Let

ρ(g) = {f ′ ∈ T (Right(g)) | for all g′ ∈ T (Right(g)), if g′ ≺ f ′, then f ′ ⊂ g′},

λ(g) = {f ′ ∈ T (Left(g)) | for all g′ ∈ T (Left(g)), if f ′ ≺ g′, then g′ ⊂ f ′}.
Note that ρ(g) and λ(g) are linearly ordered by ⊂. Now let C ⊂ lim∗(κ) be the
set of all α ∈ lim∗(κ) satisfying

1. for all f ∈ L(A), sup ran(f) < α ⇐⇒ sup ran(h(f)) < α,
2. A ∩ α is unbounded in α,
3. if g ∈ T (L(B)) and sup ran(g) < α, then sup{sup ran(f) | f ∈ ρ(g)} < α

and sup{sup ran(f) | f ∈ λ(g)} < α,
4. if g ∈ T (L(B)), f ∈ T (Left(g)), sup ran(g), sup ran(f) < α, and there exists
f ′ ∈ Left(g) such that f ≺ f ′ and f ′ 6⊂ f , then there exists such an f ′ with
sup ran(f ′) < α,

5. if g ∈ T (L(B)), f ∈ T (Right(g)), sup ran(g), sup ran(f) < α, and there
exists f ′ ∈ Right(g) such that f ≺ f ′ and f ′ 6⊂ f , then there exists such an
f ′ with sup ran(f ′) < α,

Also assume w.l.o.g. that C ⊆ lim∗(κ). Our cardinality assumption on κ
guarantees that C is a club. We will show that C ∩ A ⊂ B which is a contra-
diction. Let α ∈ C ∩ A and let f ∈ L(A) be such that sup ran(f) = α. We will
show that sup ran(h(f)) = α and so h(f) ∈ L(B) and α ∈ B. Suppose not. If
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sup ran(h(f)) < α, then by (i), sup ran(f) < α which is a contradiction. So we
can assume that sup ran(h(f)) > α. Because we assumed that p(0) = 0 for all
functions in question, there is n0 < ω such that h(f)(n0) < α 6 h(f)(n0 + 1).
Let

g = h(f)�(n0 + 1). (∗)

In particular sup ran(g) < α (∗∗). For every m < ω, pick αm ∈ A such that
f(m) < αm < α. Such αm exists by (ii). Now for each m fix fm with
sup ran(fm) = αm and fm ⊃ f � (m + 1). We have two cases: either (A)
sup{m < ω | fm ∈ Left(g)} = ω or (B) sup{m < ω | fm ∈ Right(g)} = ω. We
will show that both (A) and (B) lead to a contradiction.

Let us start with (A) and suppose that there are infinitely many m < ω with
fm ∈ Left(g).

Claim 4.3.2. For all m < ω we have f �(m+ 1) ∈ λ(g).

Proof. For every m, there is m′ > m such that fm′ ∈ Left(g) and since
f � (m + 1) ⊂ f � (m′ + 1) ⊂ fm′ , we have that f � (m + 1) ∈ T (Left(g)).
Suppose that f � (m + 1) /∈ λ(g) for some m. Then by the definition of λ(g),
there exists g′′ ∈ T (Left(g)) such that f � (m + 1) ≺ g′′, but g′′ 6⊂ f � (m + 1),
so there exists n < m + 1 with g′′(n) > f(n) and n is the smallest such that
g′′(n) 6= f(n). This g′′ can be extended to g′ in Left(g) and by (iv) we can
assume that sup ran(g′) < α. The number n witnesses that f ≺ g′ and so
we must have h(f) ≺ h(g′). The latter implies that for the first n′ < ω with
h(f)(n′) 6= h(g′)(n′) we have h(g′)(n′) > h(f)(n′). If n′ > n0 (n0 is defined at
(∗) above) then sup ran(h(g′)) ≥ h(g′)(n′) > h(f)(n′) ≥ α, a contradiction. So
n′ 6 n0 and h(g)(n′) > h(f)(n′) = g(n′), so we have g ≺ h(g′). But this implies
that g′ ∈ Right(g) which is a contradiction again. This proves the claim. a
Now {f � (m + 1) | m < ω} ⊂ λ(g) and since sup ran(f) = α we have
sup{sup ran(k) | k ∈ λ(g)} = α contradicting (iii) above. This shows that
(A) leads to a contradiction.

Assume (B) i.e. suppose that there are infinitely many m < ω with fm ∈
Right(g).

Claim 4.3.3. For all m < ω we have f �(m+ 1) ∈ ρ(g).

Proof. For every m, there is m′ > m such that fm′ ∈ Right(g) and since
f � (m + 1) ⊂ f � (m′ + 1) ⊂ fm′ , we have that f � (m + 1) ∈ T (Right(g)).
Suppose that f � (m + 1) /∈ ρ(g) for some m. Then by the definition of ρ(g),
there exists g′′ ∈ T (Right(g)) such that g′′ ≺ f � (m + 1), but f � (m + 1) 6⊂ g′′,
so there exists n < m + 1 with g′′(n) < f(n) and n is the smallest such that
g′′(n) 6= f(n). This g′′ can be extended to g′ in Right(g) and by (v) we can
assume that sup ran(g′) < α. The number n witnesses that g′ ≺ f and so
we must have h(g′) ≺ h(f). The latter implies that for the first n′ < ω with
h(f)(n′) 6= h(g′)(n′) we have h(g′)(n′) < h(f)(n′). If n′ > n0 (n0 is defined at (∗)
above), then g ⊂ h(g′) and h(g′) ≺ g which is a contradiction with g′ ∈ Right(g).

So n′ 6 n0 and so h(g)(n′) < h(f)(n′) = g(n′), so we have g ≺ h(g′) and again
this implies that g′ ∈ Left(g), contradiction. This proves the claim. a
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Now {f �(m+1) | m < ω} ⊂ ρ(g) and since sup ran(f) = α we have sup{sup ran(k) |
k ∈ ρ(g)} ≥ α contradicting (iii) above. This shows that (B) leads to a contra-
diction too. a

Theorem 4.4 (V = L). If κ > ω is a regular cardinal which is not the suc-
cessor of an ω-cofinal cardinal, then vDLO is Σ1

1-complete.

Proof. By Theorem 3.1 it is sufficient to reduce vω to vDLO. But since
V = L every cardinal κ > ω which is not the successor of an ω-cofinal cardinal
satisfies the assumption of Theorem 4.3. a

4.3. Dichotomy for countable first-order theories in L. In [11] it was
proved that if V = L, κ is a successor of a uncountable regular cardinal λ,
then ∼=T1 6c ∼=T2 and ∼=T2 66B ∼=T1 holds for all T1 classifiable and T2 non-
classifiable. This result can be improved using Theorem 4.2 together with some
results from [4]:

Theorem 4.5. ([4, Thm 86]) Suppose that for all γ < κ, γω < κ and T is a
stable unsuperstable complete countable theory. Then E2

ω 6c ∼=T . a

Corollary 4.6 (V = L). Suppose that κ is regular and not the successor of
an ω-cofinal cardinal and T is a stable unsuperstable complete countable theory.
Then ∼=T is a Σ1

1-complete relation.

Proof. Follows from Theorems 4.5 and 4.2 and GCH in L. a

Theorem 4.7. ([4, Thm 79]) Suppose that κ = λ+ = 2λ and λ<λ = λ.

1. If T is complete unstable or superstable with OTOP, then E2
λ 6c

∼=T .
2. If λ ≥ 2ω and T is complete superstable with DOP, then E2

λ 6c
∼=T . a

Corollary 4.8 (V = L). Suppose that κ is the successor of a regular un-
countable cardinal λ. If T is a non-classifiable complete countable theory, then
∼=T is a Σ1

1-complete relation.

Proof. Follows from Theorems 4.2, 4.5, and 4.7. a
By using yet another Theorem from [4] we obtain the following dichotomy in L.

The class of ∆1
1 sets consists of sets A such that both A and the complement of

A are Σ1
1 [4].

Theorem 4.9 (V = L). Suppose that κ is the successor of a regular uncount-
able cardinal λ. If T is a countable first-order theory in a countable vocabulary,
not necessarily complete, then one of the following holds:

• ∼=T is ∆1
1.

• ∼=T is Σ1
1-complete.

Proof. For this proof it is useful to bare in mind how the isomorphism rela-
tion of a theory is defined, Definition 2.3. Sometimes in literature it is defined
differently, but these are mutually Borel bi-reducible.

It has been shown [4, Thm 70] that if a complete theory T is classifiable,
then ∼=T is ∆1

1. So for a complete countable theory T the result follows from
Corollary 4.8. Suppose T is not a complete theory. Let L be the vocabulary
of T and {Tα}α<2ω be the set of all the complete theories in L that extend T .
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Notice that ∼=T=
⋂
α<2ω

∼=Tα , therefore if ∼=Tα is a ∆1
1 equivalence relation for

all α < κ, then so is ∼=T since 2ω < κ.
Suppose T ′ is a complete countable theory in L that extends T such that ∼=T ′

is not a ∆1
1 equivalence relation. Then T ′ is a non-classifiable countable theory.

By Corollary 4.8 ∼=T ′ is a Σ1
1-complete equivalence relation. We will show that

∼=T ′ 6B ∼=T which finishes the proof. Define F : κκ → κκ by

F(η) =

{
η if Aη |= T ′

ξ otherwise.

where ξ is a fixed element of κκ such that Aξ 6|= T ′. Since T ′ extends T ,
η ∼=T ′ ζ ⇔ F(η) ∼=T F(ζ). To show that F is Borel, note that

F−1([η � α]) =

{
[η � α]\{ζ | Aζ 6|= T ′} if ξ 6∈ [η � α]

{ζ | Aζ 6|= T ′} ∪ [η � α] if ξ ∈ [η � α].

Since [η � α] is a basic open set and {ζ | Aζ 6|= T ′} is a Borel set, [η � α]\{ζ |
Aζ 6|= T ′} and [η � α] ∪ {ζ | Aζ 6|= T ′} are Borel sets. a

The dichotomy of Theorem 4.9 is not provable in ZFC. In [12, 13] it was
shown, assuming κ is a successor and κ ∈ I[κ], that there is a stable unsuper-
stable countable theory T in a countable vocabulary such that ∼=T is Borel∗ (a
generalisation of Borel sets to non-well-founded trees [4, 7]). Because of this, ∼=T

cannot be a Σ1
1-complete equivalence relation, unless Borel∗ = Σ1

1 and the fairly
mild combinatorial assumptions mentioned above still hold. In L it holds that
Borel∗ = Σ1

1 [9], but there is a model of ZFC in which ∆1
1 ( Borel∗ ( Σ1

1 [10].
In this model E2

ω is not ∆1
1 and we still have κ ∈ I[κ], so by Theorem 4.5 ∼=T is

neither ∆1
1 nor Σ1

1-complete.

§5. The case V 6= L.

5.1. Σ1
1-completeness of vNS for weakly ineffable κ. In Section 4 we

answered in L the questions [15, Q. 3.47], [17, Q.’s 11.3 and 11.4] and [5, Q. 15].
We used Theorem 4.2 as the starting point. But what if V 6= L? In this section
we provide further partial answers to [17, Q.’s 11.3 and 11.4] outside of L. Recall
that these questions ask “Given a weakly compact cardinal κ, are vNS and vDLO

complete for Σ1
1 quasi-orders?” We will use the following theorem:

Theorem 5.1. ([17, Cor 10.24]) If κ is weakly compact, then both the quasi-
order of embeddability and the equivalence relation of bi-embeddability of graphs,
vG and ≈G respectively, are Σ1

1-complete.

Definition 5.2 (Weakly compact diamond). Let κ > ω be a cardinal. The
weakly compact ideal is generated by the sets of the form {α < κ | 〈Vα,∈, U ∩
Vα〉 |= ¬ϕ} where U ⊂ Vκ and ϕ is a Π1

1-sentence such that 〈Vκ,∈, U〉 |= ϕ.
A set A ⊂ κ is said to be weakly compact, if it does not belong to the weakly
compact ideal. Note that κ is weakly compact if and only if there exists A ⊂ κ
which is weakly compact, i.e. the weakly compact ideal is proper. For weakly
compact S ⊂ κ, the S-weakly compact diamond, WCκ(S), is the statement that
there exists a sequence (Aα)α<κ such that for every A ⊂ S the set

{α < κ | A ∩ α = Aα}
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is weakly compact. We denote WCκ = WCκ(κ).

Weakly compact diamond was originally introduced in [18] and thoroughly
analysed in [8]. In [1] it was used to study the reducibility properties of Eκreg. It
has been sometimes called the dual diamond.

Fact 5.3. If κ is weakly ineffable (same as almost ineffable), then WCκ holds.
See [8] for proofs and references.

The proof of Lemma 5.4 can be found in [1] in complete detail.

Lemma 5.4. Let κ be a weakly compact cardinal. The weakly compact di-
amond WCκ implies the following principle WC∗κ. There exists a sequence
〈fα〉α∈reg(κ) such that

• fα : α→ α,
• for all g ∈ κκ and stationary Z ⊂ κ the set

{α ∈ reg(κ) | g �α = fα ∧ α ∩ Z is stationary}
is stationary. a

Following this result, we will introduce the following principle WC∗G. Let us
denote by G<κ the set of all graphs with domain α < κ. There exists a sequence
〈fα〉α<κ such that

• fα ∈ (G<κ)α,
• if (S, g) is a pair such that S ⊆ κ is stationary and g ∈ (G<κ)κ, the set

{α ∈ reg(κ) | g � α = fα ∧ S ∩ α is stationary}
is stationary.

Fact 5.5. If WC∗κ holds, then WC∗G holds.

Proof. Let 〈f̄α〉α<κ be a sequence that witnesses WC∗κ. Let {Aβ}β<κ be an
enumeration of the elements of G<κ, and for every α < κ, let G<α = {Aβ}β<α.
Construct the sequence 〈fα〉α<κ by fα(β) = Af̄α(β).

To show that 〈fα〉α<κ witnesses WC∗G, let g ∈ (G<κ)κ be any function and
S ⊆ κ be a stationary. There is a function ḡ : κ → κ such that g(α) = Aḡ(α).
Because of WC∗κ we know that the set

{α ∈ reg(κ) | ḡ � α = f̄α ∧ Z ∩ α is stationary}
is stationary. By the way 〈fα〉α<κ and ḡ were defined, we conclude that the set

{α ∈ reg(κ) | g � α = fα ∧ Z ∩ α is stationary}
is stationary. a

Theorem 5.6. If κ is weakly compact and WC∗G holds, then vreg as well as
vNS are Σ1

1-complete.

Proof. The claim for vNS follows from Fact 2.4 once we prove the claim for
vreg. By Theorem 5.1 it is enough to show that vG 6B vreg. For all K,H ∈ G<κ
we write K v H if K is embeddable to H. Let us denote by Q the quasi-order
((G<κ)κ,6Q), where f 6Q g holds if there is a club C such that for all α ∈ C,
f(α) v g(α) holds.



ON Σ1
1-COMPLETENESS OF QUASI-ORDERS ON κκ 15

Let H be the graph with domain 2 and no edges. Define F : ModκG → (G<κ)κ

by

F (η)(α) =

{
Aη�α if α ∈ Cπ
H otherwise.

where Cπ is as in Definition 2.2.

Claim 5.6.1. η vG ξ if and only if F (η) 6Q F (ξ).

Proof. Let us show that if η vG ξ, then F (η) 6Q F (ξ). Suppose η vG ξ,
then there is f : κ → κ an embedding of Aη to Aξ. Let D be the set of closed
points of f , D is a club. Therefore f � α is an embedding of Aη�α to Aξ�α, for all
α ∈ D ∩ Cπ. We conclude that F (η) 6Q F (ξ). Let us show that if (η, ξ) /∈ vG,
then F (η) 66Q F (ξ). Suppose (η, ξ) /∈ vG. The property
There is no embedding of Aη to Aξ ∧ κ is regular ∧ Cπ is unbounded
is a Π1

1-property of the structure (Vκ,∈, A), where A = (η×{0})∪ (ξ×{1})∪
(Cπ × {2}). Since κ is weakly compact, then there is stationary many γ′s such
that Cπ ∩ γ is unbounded, γ ∈ Cπ, γ is regular, and there is no embedding
of Aη�γ to Aξ�γ . We conclude that there are stationary many γ′s such that
F (η)(γ) 6v F (ξ)(γ), hence F (η) 66Q F (ξ). a

Let 〈fα〉α<κ be a sequence that witnesses WC∗G. For all α ∈ reg(κ) define the
relation 6αQ on (G<κ)α by: f 6αQ g if there is a club C ⊆ α such that for all

β ∈ C, f(β) v g(β) holds. Notice that since the intersection of two clubs is a
club, then 6αQ is a quasi-order. Define the map F : (G<κ)κ → 2κ by

F(f)(α) =

{
0 if f � α 6αQ fα

1 otherwise

Claim 5.6.2. f 6Q g if and only if F(f) vreg F(g).

Proof. Let us show that if f 6Q g, then F(f) vreg F(g). Suppose f 6Q g,
then there is a club C ⊂ κ such that for all α ∈ C, f(α) v g(α). Therefore, for
all α ∈ C∩reg(κ) it holds that f � α 6αQ g � α. Now if α ∈ C∩reg(κ) is such that

F(g)(α) = 0, then g � α 6αQ fα, so f � α 6αQ fα and F(f)(α) = 0. We conclude

that (F(f)−1[1]\F(g)−1[1]) ∩ reg(κ) is non-stationary. Hence F(f) vreg F(g).
Let us show that if f 66Q g, then F(f) 6vreg F(g). Suppose that f 66Q g, then
there is a stationary set S ⊆ κ such that for all α ∈ S, f(α) 6v g(α). Because of
WC∗G we know that the set

A = {α ∈ reg(κ) | g � α = fα ∧ S ∩ α is stationary}
is a stationary set. Therefore, for all α ∈ A, F(g)(α) = 0, and for all β ∈ S ∩ α,
f(β) 6v g(β). Since for all α ∈ A, g � α = fα, and S∩α is stationary, we conclude
that f � α 66αQ fα holds for all α ∈ A. Hence, for all α ∈ A, F(g)(α) = 0 and

F(f)(α) = 1. We conclude that A ⊆ (F(f)−1[1]\F(g)−1[1]) ∩ reg(κ), and since
A is stationary, F(f) 6vreg F(g). a
Clearly F ◦ F : ModκG → 2κ is a Borel reduction of vG to vreg. a

Theorem 5.7. If κ is weakly ineffable, then vNS is Σ1
1-complete.

Proof. Follows from Fact 5.3, Lemma 5.4, Fact 5.5, and Theorem 5.6. a
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Thus, the only case concerning [17, Q. 11.4] that is still open is the case where
V 6= L and κ is a weakly compact, but not weakly ineffable cardinal. For example
the first weakly compact is such [3, Lemma 1.12]. For successor cardinals, we
know from [6] that it can be forced the relation E2

NS to be a ∆1
1 equivalence

relation. So it is consistently true that vNS is not Σ1
1-complete.

5.2. Σ1
1-completeness of ∼=DLO for weakly compact κ. In this section we

prove:

Theorem 5.8. Suppose that κ is weakly compact. Then the isomorphism
relation on dense linear orders is Σ1

1-complete.

Note that the isomorphism of linear orders is reducible to graph isomorphism,
so ∼=G is also Σ1

1-complete for weakly compact κ. Before proving this, we first
prove the following:

Lemma 5.9. If κ is weakly compact, then the bi-embeddability of graphs ≈G
is reducible to Eκreg (Definition 2.3).

Proof. Let Cπ be the club as in Definition 2.2 and for all α ∈ Cπ define the
relation ≈αG as follows. For all η, ξ ∈ModκG, let η ≈αG ξ, if Aη�α is embeddable
in Aξ�α and Aη�α is embeddable in Aξ�α.

There are at most κ many equivalence classes of ≈αG, so let gα : ModκG → κ be
a function with the property that for all η, ξ ∈ ModκG we have gα(η) = gα(ξ) if
and only if η ≈αG ξ.

Define the reduction F : ModκG → κκ by

F(η)(α) =

{
gα(η) if α ∈ Cπ
0 otherwise

Let us show that if η ≈G ξ, then (η, ξ) ∈ Eκreg. Suppose that η ≈G ξ. Then there
are embeddings F1 : κ → κ and F2 : κ → κ from Aη to Aξ, and from Aξ to Aη
respectively. Let D1 and D2 be the sets of closed points of F1 and F2 respectively.
These are closed unbounded sets in κ. Then for all α ∈ D1 ∩D2 ∩Cπ, Aη�α and
Aξ�α are bi-embeddable. Hence for all α ∈ D1 ∩D2 ∩ Cπ, F(η)(α) = F(ξ)(α).
We conclude that (η, ξ) ∈ Eκreg.

Let us show that if (η, ξ) /∈≈G, then η and ξ are not Eκreg-equivalent. Suppose
that (η, ξ) /∈≈G, without loss of generality, suppose that there is no embedding
of Aη into Aξ. The property
There is no embedding of Aη to Aξ ∧ κ is regular ∧ Cπ is unbounded
is a Π1

1-property of the structure (Vκ,∈, A), where A = (η×{0})∪ (ξ×{1})∪
(Cπ×{2}). Since κ is weakly compact, there are stationary many ordinals γ < κ
such that Cπ ∩ γ is unbounded, γ ∈ Cπ, γ is regular, and there is no embedding
of Aη�γ to Aξ�γ . We conclude that there are stationary many points γ with
F(η)(γ) 6= F(ξ)(γ), hence η and ξ are not Eκreg-equivalent. a

Corollary 5.10. If κ is weakly compact, then Eκreg is Σ1
1-complete.

Proof. Follows from Theorem 5.1 and Lemma 5.9. a
Now we can prove Theorem 5.8:

Proof of Theorem 5.8. By [1, Thm 3.9] we have Eκreg 6c ∼=DLO, so the
result follows from Corollary 5.10 a
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