and if feature through V_i. If $\lambda \neq 0$, then we get a map

$$\phi _{i} \to W$$

For an generic l, the source of this map is an irreducible principal series, hence $\phi _{i}$ is injective.

Def let $X_1(\sigma _i)$ be the "minimal" quotient of $\sigma _i$.

Let

$$\tau _i = \phi _i(X_1(\sigma _i)) \in V_i$$

Then $\tau _i$ quotient an irreducible K^2-module in V_i, isomorphic to $\sigma _i$.

Def A map $V_0 \to V_{i-1} \to W$ is annulled if $\tau (\tau _i) = 0$ for all i.

Then if W has good rank and $\tau : V_i \to W$ is annulled and surjective, then W is irreducible.

Proof let $U \subseteq W$ be an irreducible G-module. Since X_0 quotient V_0, it suffices to show $\tau (X_0) \notin U$.

Consider rank of U, some $\tau (X_1) \notin U$, hence $\tau (\tau _i) \notin U$ as X_1 quotient image of $\phi _i$.

By multiplication one in rank if W, $\tau (Z_1) = c_i \tau (X_1)$ for some scalar $c_i \neq 0$, hence $\tau (X_1) \notin U$. Hence...

End The family of B-P representations is parametral...
by parameter in \(F_p \). We expect that amenability
comparative to simultaneous non-vanishing of
a finite set of polynomials in these parameters,
then build-Pathmanup an quasi-nilpotent

and Amenable condition is sufficient but
not necessary. Work of A. Mera on real
filtration of \(\text{ind}^{\text{ker} \Gamma} \) get fractal behavior.

Question: let \(c_0, \ldots, c_{e-1} \in \overline{F}_p \) and consider

\[
B(\varepsilon) = \sqrt{\langle z_1 - c_1 x_0, \ldots, z_{e-1} - c_{e-1} x_{e-2} \rangle}
\]

Is this admissible?

Any quotient with good scale in inseparable?
What are they?
Lecture 2

Weights in class conjecture for totally real fields

1. Conj (Shen, 1970's). Let \(\phi: \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{Cl}_e(\overline{F}_p) \) be a continuous, sinistrally, and cdlt \(\phi|_{\text{cdlt}} = -1 \)

Galois representation. Then \(\phi = \phi_\mu \) for \(\phi_\mu \) modular from and \(\phi_\mu \) the Galois up arising from it by the Eichler-Shimura-DeRigne construction.

Theorem also specified the weights of \(\phi_\mu \).

The full conjecture is a then of Khare-Wintenberger-Kisin. The implication of modular \(\Rightarrow \)

\(\phi_\mu \) modular of weight \(\mu \) were known earlier. Deligne, Fontaine, etc. Will see examples of such theorem later.

Let \(p \) be prime, \(F \) totally real field,

\[p \mathcal{O}_F = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}. \]

Def. A finite weight \(\tilde{\mathfrak{w}} \) in an sinistrally \(\overline{F}_p \)-up of \(\text{Cl}_e(\mathcal{O}_F/p) \). Thence factors through \(\prod_{i=1}^{r} \text{Cl}_e(\mathcal{O}_F/\mathfrak{p}_i) \)

A finite weight \(\tilde{\mathfrak{w}} \) up \(\overline{F}_p \)-up of \(\text{Cl}_e(\mathcal{O}_F/p) \).

We will define what it means for \(\phi \) to be modular of a finite weight \(\tilde{\mathfrak{w}} \). For each \(\mathfrak{p} \mid p \)

will define a set \(W_{\phi}(p) \) of finite weights \(\tilde{\omega} \),

determined by \(\phi|_{\tilde{\mathfrak{w}}|_{\mathfrak{p}}} \), such that...
The nodal weights of \(\mathfrak{p} \)

Let \(\mathfrak{p} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{Gal}(\overline{\mathbb{F}_p}) \) be continuous, and totally odd, then it must be nodal of weight

\[
W(\mathfrak{p}) = \{ \sigma = \bigotimes g_p : g_p \in W_p(\mathfrak{p}) \}.
\]

If \(\mathfrak{p} \) is not tame, expect the same structure but with \(W_p(\mathfrak{p}) \neq W_p(\mathfrak{p}^{\text{ss}}) \).

Conjecture

\(F = \mathbb{Q} \) line

- \(F \) totally real, \(p \) minus BOS
- \(F \) totally real, \(p \) tame MMS

\(\text{Gal}_n, \ n \geq 3, \ F = \mathbb{Q}, \ p \) tame And et al.

All, but few explicit Greg.

Fix \(q \mid p \), let \(h_q = F_q = \mathbb{F}_q \). The line weights at \(q, q \)-adic:

\[
\bigotimes_{\tau : h_q \to \mathbb{F}_p} \text{det} W_2(\text{sym}^2 h_q \otimes \tau^* F_q)\]

\(0 \leq \tau_2 \leq p-1 \)

\(0 \leq w_2 \leq p-1 \).

Let \(\tau : F_q^\times \to \mathbb{F}_p \). Let \(F_q^{\text{wild}} \) be the wild inert. Let \(\omega_q \) be the fundamental character of \(\text{min} \) \(n_i \).

\[
\omega_{n_2} : F_q \to F_q / \mathfrak{p}_q \xleftarrow{\text{lin}} F_q^{\text{wild}} \xrightarrow{\tau} \mathbb{F}_p.
\]
If \(\mathfrak{p} \) is totally ramified, then \(\mathfrak{p} | \mathfrak{p}_q \) factors through \(\mathbb{F}_q / \mathbb{F}_p \).

Let \(\mathfrak{p} \) act by conjugation. Then in addition, \(\mathfrak{p} | \mathfrak{p}_q = \mathfrak{q} \otimes \mathfrak{q}' \).

Case 2: \(\mathfrak{p} \) is reducible, \(\mathfrak{q} = \mathfrak{q}' \) of union \(\mathfrak{p} \).

Case 1: \(\mathfrak{p} \) is irreducible, \(\mathfrak{q} = \mathfrak{q}' \), \(\mathfrak{q}' \) of union \(\mathfrak{p} \).

Let \(e \) be the ramification index of \(\mathbb{F}_q / \mathbb{F}_p \). Then:

1) In reducible case:

\[
\sigma = \otimes_{\mathfrak{p} \to \mathfrak{q}} \omega_{\mathfrak{p}} \otimes_{\mathfrak{q} \to \mathfrak{q}'} \omega_{\mathfrak{q}'}
\]

\(\sigma \in W_\sigma(p) \) if and only if for each \(\mathfrak{q} \in \mathcal{I} = \mathcal{I}_\mathfrak{p} : \mathfrak{q} \to \mathfrak{q}' \) there exists \(\mathcal{T} : \mathbb{F}_q^2 \to \mathbb{F}_p \) left-

shift \(\tau \) and an integer \(0 \leq s_2 \leq e-1 \) such that

\[
\begin{pmatrix}
\mathbb{F}_q^2 & 0 \\
0 & \mathbb{F}_p
\end{pmatrix}
\]

2) If \(\mathfrak{p} | \mathfrak{p}_q \) is reducible, then \(\sigma \in W_\sigma(p) \) if and only if in some subset \(S \in \mathcal{I} \) and \(0 \leq s_2 \leq e-1 \) for all \(\mathfrak{q} \in \mathcal{I} \) such that

\[
\mathfrak{p} | \mathfrak{p}_q \sim \prod_{\mathfrak{q} \in S} \omega_{\mathfrak{q}} \prod_{\mathfrak{q} \not \in S} \omega_{\mathfrak{q}'}
\]

Rule: 1) \(W_\sigma(p) \) should be viewed as a multiset, where the multiplicity of \(\sigma \) is the number of
different collection of \mathbb{Z}_p that gives rise to it.

Note the possible $\pi_{F,p}$ depend only on the
morphism field h_θ, so they are the same for
$Q < F_0 < F$ when θ remains non-nilpotent. The
weights coming from $\pi_{F,p}$ give \mathbb{Z}_p a
complete set of modular weights for a lift of
$G_{\mathbb{Q}}$.

Yet another way to look at this: for
simplicity assume there is only one prime p of F
laying above p.

$$T = \{ \sigma : \mathbb{Q}_p \to \mathbb{Q}_p \}$$

$$I = \{ \tau : \mathbb{Q}_p \to \mathbb{Q}_p \}$$

$151 = e|I|.$

Then the cohomology H is modular of weight
$s = \bigotimes \operatorname{det}^* w_c \otimes \operatorname{sign} \mathbb{Q}_p @ \mathbb{Q}_p \otimes \mathbb{Q}_p \otimes \mathbb{Q}_p$ has a crystalline
lift $\tilde{\rho} : \operatorname{Gal}(\mathbb{Q} / \mathbb{Q}_p) \to \mathbb{G}_a(\mathbb{Q}_p)$ with labelled Hodge-
Tate weights $E_{\rho_r, n_0, 0}$, where for each $r \in T$,

$$E_{w_2, n_0, 0} = \begin{cases} E_{w_2, w_2 + r + 1} & \text{for one } r \text{ alone} \\ E_0, 13 & \text{for the other.} \end{cases}$$

As mentioned yesterday, this conjecture (with
multiplicity) specifies the K_2-cohomology of $\pi(F)$,
the π_0 of $\mathbb{G}_a(\mathbb{Q}_p)$ associated to $\pi_{F,p}$ by the
local p-adic Hasse-Weil correspondence.

Results towards the conjecture:

They (Fontaine) suppose that $F = \mathbb{Q}$ and $p \nmid p$ is

invariant. If $p \nmid \pi_{F, \theta}$ for a modular form

f of weight $2 \leq r \leq p+1$, then