Thus (MMS) suppose \(f \) is irreducible and

\[
\sigma_p = \bigotimes_{r \in \mathcal{L}_p} \text{det} \sigma_r \bigotimes \alpha_{r, c} \beta_{r, c} \gamma_{r, c} \delta_{r, c} \epsilon_{r, c}
\]

is the \(\sigma \)-component of a modular weight \(\sigma \). Suppose \(r + c < p \) for all \(r \in \mathcal{L} \). Then \(\sigma \in W_p(f) \).

Proof. Generalization of Fontaine's method. See below.

Under slightly stronger hypotheses on \(\sigma \) and technical hypotheses on \(f \), one can use modularity lifting to prove \(\sigma \) modular \(\Leftrightarrow \sigma_p \in W_p(f) \) in some cases.

\(p \) uniform.
\(p \) tet. ramified Galois.

Finally we define modularity. Let \(D/F \) be a quaternion algebra split at all places above \(p \) and exactly one infinite place. \(G = \text{PGL}_2(D) \) algebraic group.

Consider compact open \(U \subseteq \mathcal{G}(\mathbb{A}^\infty) \) and \(U = \prod U_r \).

Get Shimura curve \(X_{u/F} \),

\[
X_u(C) = \mathcal{G}(\mathbb{A}^\infty) / U.
\]

We work with \(U \) of the form
If U^0 is sufficiently small, then $X_{1,u} \rightarrow X_{0,u}$ in a Cohen ring with jump ν, and ν.

Def A Cohen ring $R = \text{Gal}(\overline{\mathbb{F}}/\mathbb{F})$ is minimal if there exist ν and $U \in S(A_{\nu})$ such that

$$p \subseteq \mathfrak{F}(\nu, \mathbb{F}, X_{1,u}, \mathbb{F})$$

There is a Hecke algebra T (away from local primes) acting on all these forms by correspondences.

If \mathfrak{f} is a minimal ideal of \mathbb{F}, then there exists a maximal ideal $\mathfrak{m} \subseteq T$ with $\mathfrak{f} = \overline{\mathfrak{f}}$ and a "new p Hilbert modular form" $\psi \in H^1(X_{0,u} \times \overline{\mathbb{F}}, \mathbb{F})_{\nu}$ such that $\mathfrak{f} = \overline{\mathfrak{f}}$. (Note: $\overline{\mathfrak{f}}$ as in Camell.)

Let $B(\mathfrak{f}) \leq \text{Cl}_1(\mathfrak{f})$ upper triangular matrices. Let $\Theta : B(\mathfrak{f}) \rightarrow \overline{\mathbb{F}}$ be a character such that \mathfrak{f} is a Jordan–Hölder constituent of $\text{Cl}_1(\mathfrak{f})$. Then ψ is modular if $\nu = \psi \Theta$.

These p modulars $\Rightarrow \nu = \psi \Theta$.

Thus if ψ is modular.
find a lift $\tilde{f} \in H^1_\text{et}(X_{0,\tilde{F}}, \hat{\mathcal{O}}, F_{\tilde{\pi}}) = H^1_\text{et}(X_{0,\tilde{F}}, \hat{\mathcal{O}}, \tilde{F}_{\pi})$

with some Hecke eigenvalue.

Moreover, $X_{0,\tilde{F}}$ has an integral model over $\mathcal{O}_k \cap \tilde{F}$.

$\mathcal{O}_k \cap \tilde{F} = \mathcal{W}(\mathfrak{p}_F)$

$D = \mathcal{W}(\mathfrak{p}_F)$

$D' = \mathcal{O}_k$

$K = \text{Frac} \, D = \tilde{F}^{-\infty}$

$K' = K(\tilde{\pi}^{1/2})$

Over D', $X_{0,\tilde{F}}$ has pointless reduction, with special fiber consisting of two generic irreducible components intersecting transversally at finitely many points.

(Katz–Masuoka, Cornut,サーマル, Cici)

Let $\mathfrak{p} \in \mathcal{O}_k$.

LCFT: $\text{Gal}(K'/K) = \mathcal{O}_k^{\times}/1 + \mathfrak{p} \mathcal{O}_k = \mathcal{O}_k^{\times}$.

$\sigma \mapsto \tilde{f}(\sigma)$

$\text{Gal}(K'/K)$ acts on the special fiber $X_{0,\tilde{F}}$ by $D' \to \tilde{D}'$.

Cassels' congruence relation $\Rightarrow \sigma \in \text{Gal}(K'/K)$ acts on E by

$\begin{pmatrix} 1 & \tilde{f}(\sigma) \\ 0 & 1 \end{pmatrix}$

$\begin{pmatrix} (1, 0) \\ (0, 1) \end{pmatrix}$

By way of this, Cassel's congruence relation and

Bartenwerfer--Kunita--Ribet $\Rightarrow \mathcal{O}_k^{\times} = \mathcal{O}(\mathfrak{p}_F^{1/2})$.
Let F be a finite field such that $i, j \in F$ and $F_q = F$.

Def. A vector space V over a commutative group scheme G with action of a finite field F. Let $d \in G$ be the augmentation ideal. Any V satisfies (**) if d_x is invertible for all $X: F \rightarrow D$.

$$d_x = \{ f \in I : \alpha^d f = X(\alpha)f \quad \forall \alpha \in F^2 \}.$$

$G[\ell]$ has a point h of rank q^2 such that $\text{Gal}(\overline{F}/F) = I_q$ acts on $H(G)$ by $g \cdot \phi = (\phi |_{G_p} \cdot (\overline{g}, \overline{0}))$.

Remark: have two Galois actions

1) $\text{Gal}(\overline{F}/F)$ acts on $H(G) = W(G)$ via a character χ.

$$\chi = \omega_2 \omega_3 \omega_4 \cdots \omega_{q^2 - 1}.$$

2) $\text{Gal}(\overline{F}/F)$ acts on the co-$\text{cot}(H_p, x_0, \overline{F}_p)$ for a given extension H_p of H to D (this isn't unique if $q > p$).

Define parameters $b_0, \ldots, b_{q^2 - 1}$ such that $\text{Gal}(\overline{F}/F)$ acts on this co-cot via $f(x) \cdot b_i$ (an appropriate generator of the cot when it is non-zero).

The parameters are related by

$$a'_i = b_{q^i} - pb_i + (q - 1)a_i \text{ for } 0 \leq a'_i \leq q(q - 1).$$

Define $\Theta : (a, b) \rightarrow d$. Thus, $\text{Gal}(\overline{F}/F)$ acts
\[a
\text{ with } b \text{ by } b_i, b_{i+q} = 0, c_i + p \sum_{j=0}^{q-1} c_{i+j} = 3. \]

Case 1: \(b_{i+1} = 0, b_i = 0 \)
\[a_i' = (q-1)a_i, \quad a_i = 0, 1, \ldots, \circ \]

Case 2: \(b_{i+1} = 0, b_i = c_i \)
\[a_i' = -pc_i + (q-1)a_i, \quad a_i = c_i + 1, \ldots, c_i + t \]

Case 3: \(b_{i+1} = c_{i+1} \), \(b_i = 0 \)
\[a_i' = c_{i+1} + (q-1)a_i, \quad a_i = 0, \ldots, \circ \]

Case 4: \(b_{i+1} = c_{i+1}, b_i = c_i \)
\[a_i' = (q-1)a_i - (q-1)c_{i+1}, \quad a_i = c_i + 1, \ldots, c_i + t. \]

We get some extraneous solutions. To get rid of these, consider all \(O: B^{(0)} \rightarrow \mathbb{F}^p \) and that \(S \in \text{SH}(\text{add} c_{i+1}, \text{add} c_i, \Theta) \), without possible \(\circ \).

Reason for the hypothesis \(c_i + t \), in that otherwise, the interaction is too big. At the level of \(O \), the above result is optimal.