Thanks to S. Dahari, M. Schein, and Liu Wanmin.

1. Extra result needed on p. 243

Lemma: If an affine integral domain R is an integral extension of C, then every saturated chain $P \supset \cdots \supset P'$ of prime ideals of R intersects down to a saturated chain of prime ideals $P \cap C \supset \cdots \supset P' \cap C$ of C.

Proof: Passing to R/P' and $C/(P' \cap C)$, one may assume that $P' = 0$, and it suffices to prove that if P has height 1, then so does $P \cap C$. But C is integral over some polynomial ring C', so R is integral over C'. By Going Down (Theorem 6.47), $P \cap C'$ has height 1. But this implies $P \cap C$ has height 1. □

Also, Exercise 6.8 on page 265 is harder than desirable.

2. Misprints

Chapter 2
- Page 66 line -9: A has the form $\begin{pmatrix} r & 0 \\ 0 & A' \end{pmatrix}$, where $\rho(r) = d$ and
- Page 72 line -3: $\bar{\lambda} = \lambda + F[\lambda]d_i$

Chapter 6
- Page 182 line -8: If A_1,
- Page 188 line -84: Lemma 6.29. But if

Chapter 8
- Page 211 line 8: By Example 3.3,
- Page 235 line -9: $S = R \setminus (P_1 \cup \cdots \cup P_t)$.

Exercises
- Page 252, #44: The equation $\lambda^3 + b^2 \lambda - 2b^2 c = 0$
- Page 280, line 10: is called faithful if
- Page 281, line 11: $\cap_{n \in \mathbb{N}} A^n = 0$.

Chapter 10
- Page 302, line 2.3: $\phi^* f(w_1, \ldots, w_n) = f(\phi(w_1), \ldots, \phi(w_n))$

Chapter 11
- Page 314, line 23: Definition 10.43
- Page 317, line 6: Exercise 10.23

List of major results
- Page 413, line -7: $(C + I)/I$
- Page 418, line -11: $K[\sqrt{-1}]$

Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
E-mail address: rowen@macs.biu.ac.il