Self-dual Yang-Mills and the Hamiltonian Structures of Integrable Systems

Jeremy Schiff


In recent years it has been shown that many, and possibly all, integrable systems can be obtained by dimensional reduction of self-dual Yang-Mills. I show how the integrable systems obtained this way naturally inherit bihamiltonian structure. I also present a simple, gauge-invariant formulation of the self-dual Yang-Mills hierarchy proposed by several authors, and I discuss the notion of gauge equivalence of integrable systems that arises from the gauge invariance of the self-duality equations (and their hierarchy); this notion of gauge equivalence may well be large enough to unify the many diverse existing notions.