APERIODIC ORDER – LECTURE 2 SUMMARY

1. Sturmian sequences (see Chapter 6 in [2])

We will consider sequences in a finite alphabet \(\mathcal{A} \). Denote by \(\mathcal{A}^n \) the set of “words” of length \(n \) in the alphabet \(\mathcal{A} \). Given an infinite sequence \(u \in \mathcal{A}^\mathbb{N} \), let \(\mathcal{L}_n(u) \) be the set of words of length \(n \) which occur in \(u \). The cardinality
\[
p_u(n) = \#\mathcal{L}_n(u)
\]
is called the complexity of a sequence \(u \). Recall the following

Proposition 1.1. If there exists \(n \) such that \(p_u(n) \leq n \), then \(u \) is eventually periodic (in which case \(p_u(n) \leq C \)).

Thus, \(p_u(n) = n + 1 \) is the minimal possible complexity of a non-periodic sequence.

Definition 1.2. A sequence \(u \in \{0, 1\}^\mathbb{N} \) is called Sturmian if \(p_u(n) = n + 1 \) for all \(n \).

Lemma 1.3. Every Sturmian sequence \(u \) is recurrent, which means that every word that occurs in \(u \) appears infinitely often.

Example 1.4. (Exercise) The Fibonacci sequence obtained from the substitution \(\zeta : 0 \rightarrow 01, \ 1 \rightarrow 0 \) by
\[
u = \lim_{n \to \infty} \zeta^n(0) = 01001010\ldots
\]
is Sturmian.

1.1. Rotation sequences. Let \(\alpha, \beta \in (0, 1), \ \alpha \notin \mathbb{Q} \). Consider the sequence
\[
u_n = \lfloor (n+1)\alpha + \beta \rfloor - \lfloor n\alpha + \beta \rfloor
\]
or
\[
u_n = \lceil (n+1)\alpha + \beta \rceil - \lceil n\alpha + \beta \rceil
\]
It is called the rotation sequence with rotation angle \(\alpha \) and initial point \(\beta \). Why?

In fact, consider the rotation \(R_\alpha : x \mapsto x + \alpha \pmod{1} \) on \(T = \mathbb{R}/\mathbb{Z} \sim [0, 1) \). Let \(I_0 = [0, 1 - \alpha) \) and \(I_1 = [1 - \alpha, 1) \), and consider the function \(\nu(x) = 0 \), if \(x \in I_0 \) and \(\nu(x) = 1 \) if \(x \in I_1 \).
Lemma 1.5. The sequence u_n in (1.1) can be obtained as

$$ u_n = \nu(R^*_\alpha(\beta)), $$

where R^*_α denotes the n-th iterate of R_α. The sequence u_n in (1.2) can be obtained in a similar way, if we take $I_0 = (0, 1 - \alpha]$ and $I_1 = (1 - \alpha, 1]$.

Proposition 1.6. Every rotation sequence is Sturmian (the converse is also true, but we will not prove it).

Proof idea. Consider the partition of $[0, 1)$ by the points of the “reverse orbit” of 0 of length $n + 1$, namely, $0, -\alpha, -2\alpha, \ldots, -n\alpha$ (mod 1). We claim that the coding sequence of length n is exactly determined by where we are with respect to this partition. Therefore, the number of “words” of length n is $n + 1$. □

Remark 1.7. The Fibonacci sequence is the rotation sequence with $\alpha = \tau^{-2} = 1 - \tau^{-1} = 0.381\ldots$, where $\tau = \frac{1 + \sqrt{5}}{2}$ is the golden ratio, and $\beta = \tau^{-2}$ (alternatively, we start at $\beta = 0$, but drop the first symbol 0).

1.2. Digression: sequence of intermediate growth. Let c be a sequence of maximal complexity, i.e. $p_c(n) = 2^n$ for all n, say, the so-called “Champernowne word”:

$$ c = 1.10.11.100.101.110.111\ldots $$

Then let

$$ q_k = c_{k-1} c_{k-2} 00 c_{k-3} 0000 \ldots c_0 0^{2k-2} $$

Note that $|q_k| = k^2$. Then let $u = q_1 q_2 q_3 \ldots$ be the concatenation of all words q_k. Observe that $p_u(k^2) \geq 2^k$. Cassaigne [1] proved that

$$ 2^{\lceil \sqrt{n} \rceil} \leq p_u(n) \leq n^{2\lceil \sqrt{n} \rceil} $$

for all n, hence $\log p_u(n) \sim \sqrt{n}$. The sequence u is not recurrent, but it is possible to modify this construction to get u recurrent and even uniformly recurrent, see [1].

2. Substitutions

Let A be a finite alphabet of cardinality $m \geq 2$, usually $A = \{0, \ldots, m-1\}$ or $A = \{1, \ldots, m\}$. Denote by A^+ the set of all nonempty “words” using the “letters” from A, and let $A^* = A^+ \cup \{\varepsilon\}$, where ε is the empty word. We will also write $A^\mathbb{N}$ to denote the set of (one-sided) sequences: $u = u_0 u_1 u_2 \ldots \in A^\mathbb{N}$ whenever $u_j \in A$. (Our convention is that $0 \in \mathbb{N}$.)
Definition 2.1. A substitution on \(A \) is a map \(\zeta: A \to A^+ \). It extends to a map on \(A^\mathbb{N} \) by concatenation:

\[
\zeta(WW') = \zeta(W)\zeta(W'), \quad \zeta(u_0u_1u_2\ldots) = \zeta(u_0)\zeta(u_1)\zeta(u_2)\ldots
\]

More formally, we can define a substitution \(\zeta \) as a morphism of a free semigroup with the set of generators \(A \).

A fixed point for \(\zeta \) is a sequence \(u \in A^\mathbb{N} \) such that \(\zeta(u) = u \). A periodic point is \(u \) such that \(\zeta^k(u) = u \) for some \(k \). (Note that this is periodicity with respect to the substitution, and not the usual periodicity of a sequence!)

Suppose that \(\zeta(a) \) starts with \(a \) and \(|\zeta(a)| \geq 2 \). Then we have a well-defined limit

\[
u = \lim_{n \to \infty} \zeta^n(a) \in A^\mathbb{N},
\]

which is a fixed point for \(\zeta \).

Exercise. Suppose that \(\lim_{n \to \infty} |\zeta^n(a)| = \infty \). Show that there is a periodic point for \(\zeta \).

Example 2.2.

(i) Fibonacci substitution: \(\zeta_1(0) = 01, \, \zeta_1(1) = 0 \). The fixed point is \(u = 01001010 \ldots \)

(ii) Morse (or Thue-Morse) substitution: \(\zeta_2(0) = 01, \, \zeta_2(1) = 10 \). The fixed point is \(u = 01101001 \ldots \) It is easy to see by induction that if we denote \(U_n = \zeta^n_2(0) \), then \(U_{n+1} = U_n\overline{U}_n \), where the “overline bar” is the operation of exchanging \(0 \leftrightarrow 1 \), e.g. \(\overline{01} = 10 \).

(iii) Cantor substitution: \(\zeta_3(0) = 000, \, \zeta_3(1) = 101 \). Here we have two fixed points for \(\zeta \): a boring one \(000 \ldots = 0^\infty \) and a more interesting one

\[
u = 101000101000000000101000101 \ldots
\]

It is called a “Cantor substitution” (although G. Cantor had nothing to do with it), because if we view 1’s as little line segments, its construction resembles the construction of the middle-third Cantor set (to be rigorous, one should “renormalize” appropriately).

Definition 2.3. For a substitution \(\zeta \) on an alphabet of \(m \) symbols the substitution matrix is defined by

\[
S_{\zeta}(i,j) = \text{number of } i \text{'s in } \zeta(j).
\]

In our examples above we have

\[
S_{\zeta_1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad S_{\zeta_2} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad S_{\zeta_3} = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}.
\]
Definition 2.4. The canonical homomorphism is the map $\ell : A^* \to \mathbb{N}^m$ defined by $\ell(W) = (\ell_i(W))_{i=1}^m$, where $\ell_i(W)$ is the number of symbols i is the word W.

We consider $\ell(W)$ as a column vector; it is sometimes called the “population vector” of W. Note that it is indeed a homomorphism from the free semigroup A^* to the free Abelian semigroup \mathbb{N}^m, since we have $\ell(WW') = \ell(W) + \ell(W')$. Basically, we replace the non-commuting generators — elements of A, by commuting generators. Note that we can express the substitution matrix in terms of its columns as follows:

$S_\zeta = [\ell(\zeta(1)), \ldots, \ell(\zeta(m))]$.

We obtain the following important identities:

$\ell(S_\zeta W) = S_\zeta(\ell(W))$, \hspace{1cm} $S_\zeta^k = (S_\zeta)^k$.

The transformation $W \mapsto S_\zeta W$ is often called the Abelianization of the substitution.

Definition 2.5. A substitution ζ is called primitive if there exists $k \in \mathbb{N}$ such that for all $a \in A$, the word $\zeta^k(a)$ contains all symbols $b \in A$. In view of the above, this is equivalent to the condition that S_ζ^k has all entries strictly positive. (Such matrices are also called primitive.)

Note that in the example above, the substitutions ζ_1 and ζ_2 are primitive, whereas ζ_3 is not primitive.

References
