Infinitesimal analysis 88-503 homework set 1

Due Date: 21 march '22

- 1. Consider a nonempty subset $A \subseteq \mathbb{N}$. Prove that there exists an ultrafilter F on \mathbb{N} with $A \in F$.
- 2. Prove that an ultrafilter on a finite set is necessarily principal.
- 3. Let F be a nonprincipal ultrafilter on \mathbb{N} . Define an equivalence relation \equiv on $\mathbb{R}^{\mathbb{N}}$ by $\langle r_n \rangle \equiv \langle s_n \rangle$ if and only if $\{n \in \mathbb{N} : r_n = s_n\} \in F$. Prove that

$$(1, \frac{1}{2}, \frac{1}{3}, \ldots) \not\equiv (0, 0, 0, \ldots).$$

4. Consider sequences $r = \langle r_n \rangle$ and $s = \langle s_n \rangle$. We will denote the set $\{n \in \mathbb{N} : r_n = s_n\}$ by [[r = s]]. Let $t = \langle t_n \rangle$ be a sequence. Prove that

$$[[r=s]]\cap [[s=t]]\subseteq [[r=t]].$$

5. Let ε be a sequence so that $[\varepsilon] \in {}^*\mathbb{R}$ is a positive infinitesimal. Prove that $\frac{1}{[\varepsilon]}$ is infinite.