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Part 1

Basic Infinitesimal Analysis





CHAPTER 1

Infinitesimal calculus

1. Course site https://u.math.biu.ac.il/~katzmik/88-503.html
2. Final exam 90%, homework 10%.
3. Textbook: Goldblatt, Lectures on the Hyperreals [6].

1.1. From natural numbers to real numbers

Leibniz was the co-inventor of the calculus; see https://u.math.

biu.ac.il/~katzmik/leibniz.html

Leibniz used infinitesimals dx, dy, etc., to develop notions such as
the differential quotient

dy

dx
and integral

∫

f(x) dx.

In non-infinitesimal approaches to the calculus, one starts with the
natural numbers N and develops the sequence of successive extensions

N →֒ Z →֒ Q →֒ R. (1.1.1)

All of these number systems are equipped with an order relation <,
satisfying the following trichotomy:

For any a, b, either a < b or a = b or a > b.

Each successive extension as in (1.1.1) enables us to express addi-
tional mathematical facts and phenomena:

(1) Z enables us to subtract any pair of numbers, something that
was not possible in N.

(2) Q enables us to speak of ratios of arbitrary numbers (so long as
the denominator is nonzero), something that was not possible
in Z.

(3) R enables us to speak of the length of the diagonal of the unit
square and the length of the unit circle, something that was
not possible in Q.

Here R is the unique complete Archimedean ordered field. In Sec-
tion 1.2, we will explain why one needs to go beyond R.

11
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12 1. INFINITESIMAL CALCULUS

1.2. A new ordered extension, microscopes, and telescopes

In infinitesimal calculus, one exploits a further extension to an or-
dered field denoted ∗R called the hyperreal numbers :

N →֒ Z →֒ Q →֒ R →֒ ∗R.

These enable more convenient definitions of the key notions of the
calculus, such as derivative, integral, continuity, limit, etc.

Definition 1.2.1. A hyperreal number ǫ is called infinitesimal if

−a < ǫ < a

for every positive real number a.

Definition 1.2.2 (Finite and infinite numbers). We define finite
and infinite numbers.

(1) If ǫ > 0 is infinitesimal, then H = 1
ǫ

is positive infinite.1

(2) If ǫ < 0 is infinitesimal, then H = 1
ǫ

is negative infinite.
(3) Hyperreal numbers which are not infinite numbers are called

finite.

We view infinitesimals with a Keisler microscope (see Figure 1.2).
We view infinite numbers with a Keisler telescope (see Figure 1.2).

Definition 1.2.3 (Relation of infinite proximity). Numbers r and s
are called infinitely close if the difference r − s is infinitesimal.

1.3. Extension Principle

Let us now formulate the extension principle.

Theorem 1.3.1 (Extension Principle). This is in three parts.

(1) The real numbes are properly contained in the hyperreal num-
bers, and the order relation < for the real numbers extends to
the order relation for the hyperreal numbers.

(2) There is a hyperreal number that is greater than zero but less
than any positive real number.

(3) For every real function f of one variable or more variables,
we are given a corresponding hyperreal function ∗f of the same
number of variables. Such an ∗f is called the natural extension
of f .

Let us give a more detailed analysis of infinitesimals.

1In the long run, it turns out to be counterproductive to use the term “infinite.”
It is often replaced by unlimited, especially in the context of axiomatic approaches
to infinitesimal analysis; see Part 2.
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Definition 1.3.2. A hyperreal number b is said to be

• a positive infinitesimal if b is positive but less than every pos-
itive real number.
• a negative infinitesimal if b is negative but greater than every

negative real number.
• infinitesimal if b is either positive infinitesimal, negative infin-

itesimal, or 0.

Example 1.3.3 (Example of application of Extension Principle).
Since + is a real function of two variables, its natural extension ∗+
is a hyperreal function of two variables. Similar remarks apply to the
product operation.

We will usually drop the asterisks on functions when this does not
lead to confusion.

1.4. Introduction to the Transfer Principle

This section contains a preliminary discussion of the Transfer Prin-
ciple. More detailed presentations appear in Sections 3.6 and 4.11.

Theorem 1.4.1 (Transfer Principle). Every real statement that
holds for one or more particular real functions, hold for the hyperreal
extensions of these functions.

Example 1.4.2. [Examples of real statements] Here are seven ex-
amples.

(1) closure law for addition: for any x and y, x+ y is defined.
(2) commutative law for addition: x+ y = y + x.
(3) a rule for order: if 0 < x < y then 0 < 1

y
< 1

x
.

(4) division by zero is not allowed: x
0

is undefined.
(5) an algebraic identity: (x− y)2 = x2 − 2xy + y2.
(6) a trigonometric identity: sin2 x+ cos2 x = 1.
(7) a rule for logarithms: if x > 0 and y > 0 then log10(xy) =

log10 x+ log10 y.

Remark 1.4.3. The kind of statements the transfer principle ap-
plies to will be treated in more detail in Chapter 5.2.

One can use the transfer principle to define hyperreal functions as
follows.

Example 1.4.4 (Using transfer to define functions). Here are three
examples.



14 1. INFINITESIMAL CALCULUS

(1) The square root function is defined by the real statement

y =
√
x if and only if y2 = x and y ≥ 0.

By transfer, the square root is defined for all nonnegative hy-
perreal x.

(2) the absolute value function is defined by the real statement

y = |x| if and only if y =
√
x2.

(3) the common log is defined by the real statement

y = log10 x if and only if 10y = x.

Definition 1.4.5. A hyperreal number b is said to be

(a) finite if b is between two real numbers.
(b) positive infinite if b is greater than every real number.
(c) negative infinite if b is less than every real number.

We will use the transfer principle to prove the following proposition.

Proposition 1.4.6. If ǫ is a positive infinitesimal, then 1
ǫ
is posi-

tive infinite.

Proof. Let r be any positive real. Since ǫ is infinitesimal, we
have 0 < ǫ < 1

r
. Applying the transfer principle as in Example 1.4.2

item (3), we obtain 0 < r < 1
ǫ
. This is true for each positive real

number r. It follows that 1
ǫ

is positive infinite. �

1.5. Three orders of magnitude for hyperreal numbers

Definition 1.5.1. A hyperreal number is appreciable2 if it is finite
but not infinitesimal.

Remark 1.5.2. We have defined three orders of magnitude for hy-
perreal numbers: infinitesimal, appreciable, infinite.

Theorem 1.5.3. This is in four parts.

(1) Every hyperreal number which is between two infinitesimals, is
infinitesimal.

(2) Every hyperreal number which is between two finite hyperreal
numbers, is finite.

(3) Every hyperreal number which is greater than some positive
infinite number, is positive infinite.

(4) Every hyperreal number which is less than some negative infi-
nite number, is negative infinite.

2Mashma’uti
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Definition 1.5.4. Two hyperreal numbers b and c are said to be
infinite close to each other: written

b ≈ c

if their difference b − c is infinitesimal. The relation ≈ is called the
relation of infinite proximity.

If b and c are real and b ≈ c then b = c.
Theorem 1.5.5. (i) a ≈ a;
(ii) if a ≈ b then b ≈ a;

(iii) if a ≈ b and b ≈ c then a ≈ c.

Theorem 1.5.6. Assume a ≈ b. Then

(1) If a is infinitesimal then so is b.
(2) If a is appreciable then so is b.
(3) If a is infinite then so is b.

1.6. Standard part principle, shadow

Theorem 1.6.1 (Standard Part Principle). Every finite hyperreal
number is infinitely close to exactly one real number.

Proof. (Optional for those familiar with Dedekind cuts) Let b be
a finite hyperreal. Using the order relation of ∗R, the number b defines
a Dedekind cut on the rationals Q ⊆ ∗R. Let r be the real number
coresponding to such a Dedekind cut. Then r is the standard part
of b. �

Definition 1.6.2 (Shadow). Let b be a finite hyperreal number.
The standard part, or shadow,

sh(b)

of b is the real number which is infinitely close to b.

Theorem 1.6.3. Eight rules for working with standard part:

(1) sh(−a) = − sh(a).
(2) sh(a+ b) = sh(a) + sh(b).
(3) sh(a− b) = sh(a)− sh(b).
(4) sh(ab) = sh(a) sh(b).
(5) If sh(b) 6= 0 then sh a

b
= sh a

sh b
.

(6) sh(an) = (sh(a))n.

(7) If a ≥ 0 then sh( n
√
a) = n

√

sh(a).
(8) If a ≤ b then sh(a) ≤ sh(b).

Proof of item (4). We write a = r + ǫ and b = s + δ. Then
ab = rs+ rǫ+ sǫ+ ǫδ ≈ rs. Hence sh(ab) = rs = sh(a) sh(b). �
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1.7. Infinitesimal increments, slope

Definition 1.7.1. We will use ∆x, ∆y for infinitesimal increments.3

Definition 1.7.2. Let f be a function and a a real number. A real

number s is said to be the slope of f at a if s = sh
(

f(a+∆x)−f(a)
∆x

)

for

every nonzero infinitesimal ∆x.

Definition 1.7.3. Let f be a real function of one real variable.
The derivative of f is the new function f ′ whose value at x is the slope
of f at x. In symbols,

f ′(x) = sh

(

f(x+ ∆x)− f(x)

∆x

)

.

1.8. Dependent and independent variables

Definition 1.8.1. In equation y = f(x), we say that y is the
dependent variable and x is the independent variable.

When y = f(x), we introduce a new independent variable ∆x and
a new dependent variable ∆y, by equation ∆y = f(x + ∆x) − f(x).
Then ∆y is called the y-increment. The derivative can be expressed
as sh

(

∆y
∆x

)

.

Example 1.8.2. When calculating the slope of y = x2 at a point c,
after a series of algebraic manipulations we obtain that ∆y

∆x
= 2c+ ∆x.

The slope is then obtained by discarding the remaining term ∆x. Then
whenever ∆x is infinitesimal, we obtain sh(2x+ ∆x) = 2x.

Example 1.8.3. Find f ′(x) given f(x) =
√
x in domain x ≥ 0.

Case 1: x < 0 since
√
x is undefined, f ′(x) does not exist.

Case 2: x = 0. When ∆x < 0, ∆y is undefined. Hence f ′(0) does
not exist.

Case 3. x > 0. If y =
√
x then we obtain a ratio

∆y

∆x
=

√
x+ ∆x−√x

∆x
=

(
√
x+ ∆x−√x)(

√
x+ ∆x+

√
x)

∆x(
√
x+ ∆x+

√
x)

=
1√

x+ ∆x+
√
x
.

3Hefresh
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Applying the standard part, we obtain, using the rules of Theorem 1.6.3:

sh

(

∆y

∆x

)

= sh

(

1√
x+ ∆x+

√
x

)

=
1

sh(
√
x+ ∆x+

√
x)

=
1

sh
√
x+ ∆x+ sh

√
x

=
1

2
√
x
.

Thus when x > 0, f ′(x) = 1
2
√
x
. The domain of f ′ is the set {x > 0}.

Theorem 1.8.4 (Increment Theorem). Let y = f(x). Suppose f ′(x)
exists at a certain point x, and ∆x is infinitesimal. Then ∆y is infini-
tesimal, and there exists an infinitesimal ǫ which depends on x and ∆x
such that

∆y = f ′(x)∆x+ ǫ∆x.

Proof. If ∆x = 0 then ∆y = 0 and we set ǫ = 0. If ∆x 6= 0, then
we obtain a relation of infinite proximity

∆y

∆x
≈ f ′(x).

Hence for some infinitesimal ǫ we obtain ∆y
∆x

= f ′(x) + ǫ, or equiva-
lently ∆y = f ′(x)∆x+ ǫ∆x. �

1.9. Differentials dx, dy

Independent and dependent variables were introduced in Section 1.8.
We now introduce a new dependent variable dy.

Definition 1.9.1. The differential of y, denoted dy, is the depen-
dent variable defined by

dy = f ′(x)∆x.

To keep the notation uniform, we denote ∆x by dx. We summarize
the notation introduced so far.

Definition 1.9.2. Let y = f(x). The differential of x is the in-
dependent variable dx = ∆x. The differential of y is the dependent
variable dy = f ′(x)dx.

When dx 6= 0, one can write f ′(x) = dy
dx

. The increment theorem
can then be reformulated as follows.

Corollary 1.9.3 (Reformulation of the Increment Theorem). Here
is a short form of the theorem:

∆y = dy + ǫ dx.
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The “d” notation can also be applied to terms as follows. Consider
the term τ(x) given by a specific function τ(x) = f(x). Then we will
write

d(τ(x)) = f ′(x)dx.

Example 1.9.4. Some examples of d applied to terms:
(1) d(x3) = 3x2dx.
(2) d(ln x) = dx

x
.

Theorem 1.9.5 (Sum Rule). Suppose u and v depend on an inde-
pendent variable x. Then for any value of x where du and dv exist,

d(u+ v)

dx
=
du

dx
+
dv

dx
,

or equivalently d(u+ v) = du+ dv.

Proof. Let y = u + v, let ∆x 6= 0 be infinitesimal, and compute
the corresponding ∆y:

∆y = (u+ ∆u) + (v + ∆v)− y = ∆u+ ∆v.

Dividing by ∆x, we obtain ∆y
∆x

= ∆u+∆v
∆x

= ∆u
∆x

+ ∆v
∆x

. Applying standard

part to the equality ∆y
∆x

= ∆u
∆x

+ ∆v
∆x

we obtain

sh

(

∆y

∆x

)

= sh

(

∆u

∆x
+

∆v

∆x

)

= sh

(

∆u

∆x

)

+ sh

(

∆v

∆x

)

.

It follows that dy
dx

= du
dx

+ dv
dx

, as required. �

1.10. Leibniz rule

Theorem 1.10.1 (Leibniz Rule). Suppose u and v depend on x.
Then for any value of x where du and dv exist,

d(uv)

dx
= u

du

dx
+ v

du

dx
,

or equivalently d(uv) = u dv + v du.

Proof. Let y = uv. Then

sh

(

∆y

∆x

)

= sh
(

u
∆v

∆x
+ v

∆u

∆x
+ ∆u

∆v

∆x

)

= u sh
(∆v

∆x

)

+ v sh
(∆u

∆x

)

+ 0 · sh
(∆v

∆x

)

as required. �

A similar argument with standard part proves the quotient rule.
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1.11. Inverse function rule

Definition 1.11.1. Two functions f and g are called inverse func-
tions if the two equations

y = f(x), x = g(y) (1.11.1)

have the same graphs in the (x, y)-plane.

Theorem 1.11.2 (Inverse Function Rule). Suppose f and g are
inverse functions in the sense of (1.11.1). If both derivatives f ′(x)
and g′(y) are nonzero then

f ′(x) =
1

g′(y)
;

equivalently, dy
dx

= 1
dx/dy

.

Proof. Let ∆x be a nonzero infinitesimal. Let ∆y be the corre-
sponding change in y. Then ∆y is also infinitesimal because f ′(x) exists
and ∆y = ∆x(f ′(x) + ǫ). Since f ′(x) is nonzero, f ′(x) is appreciable
and therefore so is f ′(x) + ǫ. Hence ∆y is nonzero.

By the rule of standard parts,

f ′(x)g′(y) = sh
(∆y

∆x

)

· sh
(∆x

∆y

)

= sh
(∆y

∆x
· ∆x

∆y

)

= sh(1) = 1,

as required. �

See further on infinitesimal analysis in Chapter 6. In the next
Chapter, we will present a construction of hyperreal fields.





CHAPTER 2

The ultrapower construction of the hyperreals

Before discussing the construction of the hyperreals, we will present
a motivational discussion of comparing sequences in Section 2.2. First
we review a construction of the real numbers via Cauchy sequences of
rational numbers.

2.1. Equivalence classes of Cauchy sequences

A sequence r = 〈r1, r2, r3, . . .〉 is called Cauchy if for every ǫ > 0
there exists an index n such that if m > n then |xm− xn| < ǫ. Cauchy
sequences r = 〈r1, r2, r3, . . .〉 and s = 〈s1, s2, s3, . . . 〉 are said to be
Cantor-equivalent if rn − sn tends to 0 as n tends to infinity, and then
one writes r ∼ s. Now let CS(Q) be the space of all Cauchy sequences
of rational numbers. Since the relation ∼ is an equivalence relation,
we can form the quotient space CS(Q)/∼. A standard result in real
analysis is that this quotient space is isomorphic to the field of real
numbers R.

2.2. What is a large set?

Let r = 〈r1, r2, r3, . . .〉 and s = 〈s1, s2, s3, . . . 〉 be real-valued se-
quences. We are going to say that r and s are equivalent if they agree
at a “large” number of ranks of the index, i.e., if their agreement set

Ers = {n : rn = sn}
is large in some sense that is to be determined. Whatever “large”
means, there are some properties we will want such a notion to have:

(1) N = {1, 2, 3, . . .} must be large, in order to ensure that any
sequence will be equivalent to itself.

(2) Equivalence is to be a transitive relation, so if Ers and Est are
large, then Ert must be large. Since

Ers ∩ Est ⊆ Ert,

this suggests the following requirement:
If A and B are large sets, and A∩B ⊆ C, then C is
large.

21
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In particular, this entails that if A and B are large, then so is
their intersection A ∩ B, while if A is large, then so is any of
its supersets C ⊇ A.

(3) The empty set ∅ is not large; otherwise by the previous re-
quirement all subsets of N would be large, and so all sequences
would be equivalent.

There are natural situations in which all three requirements are
fulfilled.

Example 2.2.1. One such situation is when a set A ⊆ N is declared
to be large if it is cofinite, i.e., its complement N − A is finite. This
means that A contains “almost all” members of N. Although this is a
plausible notion of largeness, it is not adequate to our goals.

The number system we are constructing is to be linearly ordered,
and a natural way to achieve this, in terms of our general approach, is
to take the equivalence class of a sequence r to be less than that of s
if the set

Lrs = {n : rn < sn}
is large. But consider the sequences

r = 〈1, 0, 1, 0, 1, 0, . . .〉

and

s = 〈0, 1, 0, 1, 0, 1, . . .〉.
Their agreement set Ers is empty, so they determine distinct equiva-
lence classes, one of which should be less than the other. But Lrs (the
even numbers) is the complement of Lsr (the odds), so both are infinite
and neither is cofinite.

It emerges that our definition of largeness should require the fol-
lowing condition:

For any subset A of N, one of A and N− A is large.

The other requirements imply that A and N−A cannot both be large,
or else A∩ (N−A) = ∅ would be. Thus the large sets are precisely the
complements of the ones that are not large. Either the even numbers
form a large set or the odd ones do, but they cannot both do so, so
which is it to be?

Can there in fact be such a notion of largeness, and if so, how do
we show it? The answer is provided in terms of the notion of a filter
studied in Section 2.3.
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2.3. Filters and ultrafilters

The properties discussed in Section 2.2 motivate the following def-
inition. Let I be a nonempty set. The power set of I is the set

P(I) = {A : A ⊆ I}
of all subsets of I.

Definition 2.3.1. A filter on I is a nonempty collection F ⊆ P(I)
of subsets of I satisfying the following two axioms:

(1) Intersections: if A,B ∈ F , then A ∩ B ∈ F .
(2) Supersets: if A ∈ F and A ⊆ B ⊆ I, then B ∈ F .

Thus to show B ∈ F , it suffices to show

A1 ∩ . . . ∩ An ⊆ B,

for some n and some A1, . . . , An ∈ F .

Proposition 2.3.2. A filter F contains the empty set ∅ if and only
if F = P(I).

Proof. If F contains the empty set, by the superset property F
must contain every subset of I.

If F is the power set P(I), then it contains all subsets of I and in
particular the empty set. �

Definition 2.3.3. A filter F is proper if ∅ 6∈ F .

Every filter contains I, and in fact the collection {I} is the smallest
filter on I. Recall that if A ⊆ I then Ac = I − A.

Definition 2.3.4. An ultrafilter is a proper filter that satisfies

for any A ⊆ I, either A ∈ F or Ac ∈ F .
Ultrafilters will play a key role in the construction of fields of hy-

perreals; see Section 2.9.

2.4. Examples of filters

Definition 2.4.1 (Principal ultrafilter). Let i ∈ I. Then

F i = {A ⊆ I : i ∈ A}
is an ultrafilter, called the principal ultrafilter generated by i.

Proposition 2.4.2. If the set I is finite, then every ultrafilter on I
is of the form F i for some i ∈ I, and so is principal.
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Proof. If I is finite then its power set is finite. By the intersection
property, the intersection of all members of F is a member A ∈ F . If A
has more than one element, then A is not maximal. Thus A must
contain a single element a ∈ I. It follows that F = F i. �

Definition 2.4.3 (Fréchet filter). The filter

F co = {A ⊆ I : I − A is finite}
is the cofinite, or Fréchet, filter on I.

The filter F co is proper iff I is infinite.

Proposition 2.4.4. If I is infinite, then F co is not an ultrafilter.

Proof. To fix ideas, we assume that I includes N. Let A ⊆ N ⊆ I
be the set of all even natural numbers. Then neither A nor Ac is a
member of F co. �

Definition 2.4.5 (Union of filters). Suppose {Fx : x ∈ X} is a
collection of filters on I that is linearly ordered by set inclusion, in the
sense that either Fx ⊆ Fy or Fy ⊆ Fx for any x, y ∈ X. Then the union

⋃

x∈X
Fx = {A ⊆ I : (∃x ∈ X)A ∈ Fx}

is a filter on I.

2.5. Facts about filters

We list some useful facts about filters.

Proposition 2.5.1. If a collection F ⊆ P (I) satisfies the superset
axiom, then F 6= ∅ iff I ∈ F . Hence I ⊆ F for any filter F .

Proof. By definition, a filter is a nonempty collection. �

Proposition 2.5.2. An ultrafilter F satisfies

A ∩ B ∈ F iff A ∈ F and B ∈ F
and

A ∪ B ∈ F iff A ∈ F or B ∈ F
and

Ac ∈ F iff A 6∈ F.
Proposition 2.5.3. Let F be an ultrafilter and {A1, . . . , An} a fi-

nite collection of pairwise disjoint (Ai ∩ Aj = ∅ if i 6= j) sets such
that

A1 ∪ · · · ∪ An ∈ F.
Then Ai ∈ F for exactly one i such that 1 ≤ i ≤ n.
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Proof. Let’s give the proof in the case n = 2; the general case is
similar. Suppose A1 ∪ A2 ∈ F . Then one of them must be in F for
otherwise the union will also not be in F . To fix ideas, suppose A1 ∈ F .
Then its complement Ac

1 is not in F . But A2 ⊆ Ac
1 by hypothesis.

Therefore A2 6∈ F as required. �

Corollary 2.5.4. If an ultrafilter contains a finite set, then it
contains a one-element set and is principal. Hence a nonprincipal ul-
trafilter must contain all cofinite sets.

This is a crucial property used in the construction of infinitesimals
and infinitely large numbers.

Corollary 2.5.5 (Maximality). F is an ultrafilter on I iff it is a
maximal proper filter on I, i.e., a proper filter that cannot be extended
to a larger proper filter on I.

2.6. The ring of real-valued sequences

Let N = {1, 2, . . .}.
Definition 2.6.1. RN is the set of all sequences of real numbers.

A typical member of RN has the form r = 〈r1, r2, r3, . . .〉, which may
be denoted more briefly as

〈rn : n ∈ N〉
or just

〈rn〉.
Definition 2.6.2 (Arithmetic operations). For r = 〈rn〉 and s =

〈sn〉, we set

r ⊕ s = 〈rn + sn : n ∈ N〉,
and

r ⊙ s = 〈rn · sn : n ∈ N〉.
Proposition 2.6.3. (RN,⊕,⊙) is a commutative ring with zero 0 =

〈0, 0, 0, . . .〉 and unity

1 = 〈1, 1, . . .〉,
and additive inverse (reciprocal) given by

−r = 〈−rn : n ∈ N〉.
Proposition 2.6.4. The ring RN is not a field.
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Proof. Consider the product of the sequences

〈1, 0, 1, 0, 1, . . .〉 ⊙ 〈0, 1, 0, 1, 0, . . .〉 = 0.

Then one of the two sequences on the left of this equation are nonzero
elements of RN with a zero product; hence neither can have a multi-
plicative inverse. Indeed, no sequence that has at least one zero term
can have such an inverse in RN. �

2.7. Equivalence modulo an ultrafilter

Let F be a fixed nonprincipal ultrafilter on the set I = N. Such
an F will be used to construct a quotient ring of RN.1

Definition 2.7.1. We define a relation ≡ on RN by setting

〈rn〉 ≡ 〈sn〉 iff {n ∈ N : rn = sn} ∈ F.
When this relation holds it may be said that the two sequences agree
on a large set, or agree almost everywhere modulo F , or agree at almost
all n.

Proposition 2.7.2. The relation ≡ has the following properties.

(1) ≡ is an equivalence relation on RN.
(2) if r ≡ r′ and s ≡ s′, then

r ⊕ s ≡ r′ ⊕ s′ and r ⊙ s ≡ r′ ⊙ s′.
(3) We have a pair of inequivalent sequences:

〈

1, 1
2
, 1
3
, . . .

〉

6≡ 〈0, 0, 0, . . .〉.

2.8. A suggestive logical notation

It is suggestive to denote the agreement set {n ∈ N : rn = sn} by

[[r = s]],

rather than Ers as in Section 2.2. Thus

r ≡ s iff [[r = s]] ∈ F.
This idea can be applied to other logical assertions, such as inequal-

ities, by defining

[[r < s]] = {n ∈ N : rn < sn},
[[r > s]] = {n ∈ N : rn > sn},
[[r ≤ s]] = {n ∈ N : rn ≤ sn}.

1The use of F in the construction of such a quotient would seem to suggest
that infinitesimal analysis depends on ultrafilters in an essential way. It turns out
that this is not the case; see Chapter 10.
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2.9. The ultrapower construction; definition of ∗R

Definition 2.9.1. The equivalence class of a sequence r ∈ RN

under the relation ≡ will be denoted by [r].

Thus

[r] = {s ∈ RN : r ≡ s}.
Definition 2.9.2 (Defining ∗R). The quotient set (set of equiva-

lence classes) of RN by ≡ is

∗R =
{

[r] : r ∈ RN
}

.

Definition 2.9.3 (Operations). We define operations on ∗R as fol-
lows:

[r] + [s] = [r ⊕ s] = [〈rn + sn〉]
and

[r] · [s] = [r ⊙ s] = [〈rn · sn〉]
and

[r] < [s] iff [[r < s]] ∈ F iff {n ∈ N : rn < sn} ∈ F.
By properties given in Section 2.7, these notions are well-defined,

which means that they are independent of the equivalence class repre-
sentatives chosen to define them.

Definition 2.9.4 (Simplified notation). A simpler notation is to
write [rn] for the equivalence class

[〈rn : n ∈ N〉]
of the sequence whose nth term is rn.

The definitions of addition and multiplication then take the simple
form

[rn] + [sn] = [rn + sn]

and

[rn] · [sn] = [rn · sn].

2.10. ∗R as an ordered field

Theorem 2.10.1. The ring ∗R equipped with relations +, ·, < is an
ordered field with zero [0] and unity [1].

Proof. As a quotient ring of RN, the ring ∗R is a commutative
ring with zero [0] and unity [1], and additive inverses given by

−[〈rn : n ∈ N〉] = [〈−rn : n ∈ N〉].
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Let us show that it has multiplicative inverses. Suppose [r] 6= [0] so
that r 6≡ 0, i.e., {n ∈ N : rn = 0} 6∈ F .

Since F is an ultrafilter, the complementary set

J = {n ∈ N : rn 6= 0} ∈ F
(J is a member of F ). Define a sequence s by setting

sn =

{

1
rn

if n ∈ J
0 otherwise

Then the set [[r ⊙ s = 1]] is equal to J , so [[r ⊙ s = 1]] ∈ F ,
giving r ⊙ s ≡ 1 and hence

[r] · [s] = [r ⊙ s] = [1]

in ∗R. This means that the element [s] is the multiplicative inverse [r]−1

of [r].
Let us show that the ordering < on ∗R is linear. Observe that N is

the disjoint union of the three sets

[[r < s]], [[r = s]], [[s < r]].

By Proposition 2.5.3, exactly one of the three belongs to F . Therefore
exactly one of the three relations

[r] < [s], [r] = [s], [s] < [r]

is true.
Similarly, one shows that the set {[r] : [0] < [r]} of positive elements

in ∗R is closed under addition and multiplication. �

2.11. Including the reals in the hyperreals

We can identify a real number r ∈ R with the constant sequence
r = 〈r, r, r, . . .〉 and hence assign to it the element

[r] = [〈r, r, r, . . .〉].
Theorem 2.11.1. The map r 7→ [r] is an order-preserving field

isomorphism from R to ∗R.

Corollary 2.11.2. ∗R is an ordered field extension of R.

2.12. Infinitesimals and infinite numbers

Definition 2.12.1. A number α ∈ ∗R is infinitesimal if it is smaller
than every positive real number and bigger than its negative:

∀r ∈ R (r > 0 =⇒ −r < α < r).
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Example 2.12.2. Let ε = 〈1, 1
2
, 1
3
, . . .〉 = 〈 1

n
: n ∈ N〉. Then

[[0 < c]] = {n ∈ N : 0 < 1
n
} = N ∈ F.

Thus [0] < [ε] in ∗R. But if r is any positive real number, then the set

[[c < r]] = {n ∈ N :
1

n
< r}

is cofinite because the sequence ε converges to 0 in R. Now, since F is
nonprincipal, it contains all cofinite sets by Proposition 2.5.4. There-
fore [[ε < r]] ∈ F and thus [ε] < [r] in ∗R. It follows that [ε] is a
positive infinitesimal.

Definition 2.12.3. A positive number H ∈ ∗R is infinite if it is
bigger than every real number:

∀r ∈ R H > r.

Example 2.12.4. Let ω = 〈1, 2, 3, . . .〉. Then for any r ∈ R, the
set

[[r < ω]] = {n ∈ N : r < n} (2.12.1)

is cofinite as there are only finitely many integers less than r. Therefore
the set (2.12.1) belongs to F , showing that [r] < [ω] in ∗R.

Thus [ω] is “infinitely large” compared to all real numbers. In
fact ε · ω = 1, so [ω] = [ε]−1 and [ε] = [ω]−1.





CHAPTER 3

Enlarging sets and functions; Transfer Principle

3.1. Enlargements of Sets

In Chapter 2, we enlarged the real line R to a hyperreal line ∗R by
means of the ultrapower construction. Recall that

(1) RN is the space of real-valued sequences;
(2) the field ∗R is a the set of equivalence classes in RN of the

equivalence relation ≡;
(3) sequences r = 〈rn〉 and s = 〈sn〉 are equivalent, r ≡ s, if and

only if they coincide of a “large” set of indices, meaning that

{n ∈ N : rn = sn} ∈ F, (3.1.1)

where
(4) F is a fixed nonprincipal ultrafilter on N;
(5) we will use the [[. . .]] notation:

[[r ∈ A]] = {n ∈ N : rn ∈ A}.
Remark 3.1.1. Sometimes we use the term “equal for almost all n

(modulo F )” to refer to the situation as in (3.1.1).

Recall that the equivalence class of a sequence r is denoted [r] ∈ ∗R.
A subset A ⊆ R can also be “enlarged” to a subset

∗A ⊆ ∗R.

What are the elements of ∗A?

Definition 3.1.2. For each r ∈ RN, put

[r] ∈ ∗A iff {n ∈ N : rn ∈ A} ∈ F.
Thus we are declaring, by the almost-all criterion, that the hyper-

real [〈rn〉] is in ∗A if and only if rn is in A for almost all n.

Proposition 3.1.3. The enlargement of A is well-defined.

Proof. Let r′ be another sequence from the same class. Then

[[r = r′]] ∩ [[r ∈ A]] ⊆ [[r′ ∈ A]].

31
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It follows by a defining property of the ultrafilter (intersections) that

r ≡ r′ and [[r ∈ A]] ∈ F implies [[r′ ∈ A]] ∈ F.
According to Definition 3.1.2, we have

[r] ∈ ∗A iff [[r ∈ A]] ∈ F,
as required. �

Remark 3.1.4. If s ∈ A, then [[s ∈ A]] = N ∈ F (where s =
〈s, s, . . .〉 as usual), so [s] ∈ ∗A.

Identifying s with [s], we may regard ∗A as a superset of A:

A ⊆ ∗A.

Elements of the complement ∗A − A may be thought of as new “non-
standard”, or “ideal”, members of A that live in ∗R.

Example 3.1.5. Let A = N, and ω = 〈1, 2, 3, . . .〉 as in Section 2.12.
Then [[ω ∈ N]] = N ∈ F , so [ω] ∈ ∗N. The hyperreal [ω] is a “nonstan-
dard natural number”.

Theorem 3.1.6. For any infinite subset A of R, the set ∗A has
nonstandard members.

Proof. If A ⊆ R is infinite, then there is a sequence r of elements
of A whose terms are all distinct. Then [[r ∈ A]] = N ∈ F , so [r] ∈ ∗A.
But for each element s ∈ A, the set

{n : rn = s}
is either ∅ or a singleton, neither of which can belong to F (finite sets
are always negligible). Therefore [r] 6= [s]. Hence [r] ∈ ∗A− A. �

The converse of this theorem is also true (see Section 3.9) so the
property of having nonstandard members exactly characterizes the in-
finite sets.

3.2. Extending functions

A function f : R → R extends to ∗f : ∗R → ∗R as follows. First,
for each sequence r ∈ RN, let f ◦ r be the sequence 〈f(r1), f(r2), . . .〉.

Definition 3.2.1. We set

∗f([r]) = [f ◦ r].



3.3. PARTIAL FUNCTIONS AND HYPERSEQUENCES 33

In other words,

∗f([〈r1, r2, . . .〉]) = [〈f(r1), f(r2), . . .〉], (3.2.1)

or in the simplified notation,

∗f([rn]) = [f(rn)].

Proposition 3.2.2. The function ∗f of (3.2.1) is well-defined.

Proof. In general, we have

[[r = r′]] ⊆ [[f ◦ r = f ◦ r′]].
In particular, we obtain

r ≡ r′ implies f ◦ r ≡ f ◦ r′,
proving the proposition. �

Observe that ∗f obeys the almost-all criterion:

∗f([r]) = [s] iff [[f ◦ r = s]] ∈ F,
which occurs if and only if

{n ∈ N : f(rn) = sn} ∈ F
which occurs if and only if

f(rn) = sn for almost all n.

Example 3.2.3. The sine function is extended to all of ∗R by

∗sin([r]) = [〈sin(r1), sin(r2), . . .〉] = [sin(rn)].

3.3. Partial Functions and Hypersequences

Let f : A → R be a function whose domain A is a subset of R
(e.g., f(x) = tan x). Then f extends to a function ∗f : ∗A→ ∗R whose
domain is the enlargement of A, i.e., dom(∗f) = ∗(domf).

To define this extension, take r ∈ RN with [r] ∈ ∗A, so that

[[r ∈ A]] = {n ∈ N : rn ∈ A} ∈ F.
Let

sn =

{

f(rn) if n ∈ [[r ∈ A]]

0 if n 6∈ [[r ∈ A]]

(it is enough to define sn for almost all n). Then put

∗f([r]) = [s].
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Remark 3.3.1. Essentially, we have defined
∗f([rn]) = [f(rn)]

as in Section 3.2, but with a modification to account for the complica-
tion that f(rn) may be undefined for some n. The construction works
because f(rn) exists for almost all n modulo F .

It is readily shown that if r ∈ A, then ∗f([r]) = ∗(f(r)), or identify-
ing [r] with r as before, we have ∗f(r) = f(r), so ∗f extends f .

Remark 3.3.2 (Dropping the star). We will often drop the * sym-
bol and just use f for the extended function, as well. It is a particularly
natural practice for the more common mathematical functions.

For instance, the function sin x is now defined for all hyperreals
x ∈ ∗R.

An important case of this construction concerns sequences. A real-
valued sequence is just a function s : N → R, and so the construction
extends this to a hypersequence s : ∗N→ ∗R.

Corollary 3.3.3. The n-th term sn of the sequence is defined even
when n ∈ ∗N− N.

3.4. Enlarging Relations

Let P be a k-ary relation on R. Thus P is a set of k-tuples, namely
a subset of Rk.

Example 3.4.1. An example of a binary relation (k = 2) is the
order relation < on R. We have [[r < s]] = {n ∈ N : rn < sn}.

More generally, for given sequences r1, . . . , rk ∈ RN, define

[[P (r1, . . . , rk)]] = {n ∈ N : P (r1n, . . . , r
k
n)}.

Just as< extends to a relation on ∗R, any relation P can be enlarged
to a k-ary relation ∗P on ∗R, i.e., a subset of (∗R)k.

For this we use the notation ∗P ([r1], . . . , [rk]) to mean that the k-
tuple ([r1], . . . , [rk]) belongs to ∗P . The definition is:

∗P ([r1], . . . , [rk]) iff [[P (r1 . . . , rk)]] ∈ F
which occurs if and only if

P (r1n, . . . , r
k
n) for almost all n (modulo F )

As always with a definition involving equivalence classes named by
particular elements, it must be shown that the notion is well-defined.
In this case we can prove

[[r1 = s1]] ∩ · · · ∩ [[rk = sk]] ∩ [[P (r1 . . . , rk)]] ⊆ [[P (s1, . . . , sk)]],
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so that if
(

r1 ≡ s1 and . . . and rk ≡ sk and [[P (r1, . . . , rk)]] ∈ F
)

,

then [[P (s1, . . . , sk)]] ∈ F .

Definition 3.4.2. Let rj be a real number. We will use the nota-
tion ∗rj for the equivalence class [rj ] = [〈rj, rj , . . .〉].

When r1, . . . , rk are real numbers,

P (r1, . . . , rk) iff ∗P ( ∗r1, . . . , ∗rk),

showing that ∗P is an extension of P .

3.5. Relations encompass sets and functions

Our definition of the k-ary relation ∗P encompasses the work on
extensions of sets and functions.

Example 3.5.1. A subset A of R is just a unary relation (k = 1),
so the definition of ∗A is a special case of that of ∗P .

Example 3.5.2. If P is any of the relations =, <, >, ≤ on ∗R,
then ∗P is the corresponding relation that we defined on ∗R. Indeed,
given sequences r and s, we have

[r] = [s] iff [[r = s]] ∈ F,

[r] < [s] iff [[r < s]] ∈ F,
and so on.

Example 3.5.3. An m-ary function f : Rm → R can be identified
with its (m+ 1)-ary graph

Graph f = {〈r1 . . . , rm, s〉 : f(r1, . . . , rm) = s}.
Then the extension of Graph f to ∗R is just the graph of the ex-

tension
∗f : ∗Rm → ∗R

of f i.e.,
∗(Graph f) = Graph(∗f).

Moreover, Graph f is defined even when f is a partial function (see
Section 3.3), and so the case of partial functions is covered as well.
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3.6. Introduction to the transfer principle

Question 3.6.1. What properties are preserved in passing from R
to ∗R?

We have already seen a number of examples: e.g., properties of an
ordered field; see Theorem 2.10.1.

We will now consider some more examples in order to illustrate the
powerful logical transfer principle that underlies them.

To formulate this principle we will need to develop a precise lan-
guage in which to describe transferable properties. Ultimately this will
allow us to abandon the ultrapower description of ∗R and ultrafilter
calculations.

Remark 3.6.2. Similarly, the Dedekind completeness principle al-
lows us to abandon the view of real numbers as cuts or equivalence
classes of Cauchy sequence of rationals.

Later we will see that the strength of nonstandard analysis lies in
the ability to transfer properties back from ∗R to R, providing a new
technique for exploring real analysis. We will provide several examples
of transforming statements in Sections 3.7 through 3.12.

3.7. Transforming Statements: the Archimedean Principle

The statement

∀x ∃m (x < m and m ∈ N)

is true when the variable x ranges over R.
However, the statement is no longer true when x ranges over ∗R.

For example, the formula fails for the hyperreal x = [〈1, 2, 3, . . .〉].
But if N is replaced by its “*-transform” ∗N, the result is the state-

ment

∀x ∃m (x < m and m ∈ ∗N),

which is true when x ranges over all of ∗R.
This example shows that in order to determine the truth value of

a sentence,1 we need to specify what values a quantified variable is
allowed to take. We can achieve this by using bounded quantifiers,2

a notational device that displays the range of quantification explicitly.
Thus the first sentence can be conveniently written as

∀x ∈ R ∃m ∈ N (x < m),

1Pasuk
2kamatim chasumim
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which is a true statement. Its *-transform

∀x ∈ ∗R ∃m ∈ ∗N (x < m)

is also true. On the other hand, the statement

∀x ∈ ∗R ∃m ∈ N (x < m)

is false.

3.8. Density of the Rationals

The density of the rationals is expressed by the true statement

∀x, y ∈ R (x < y implies ∃q ∈ Q (x < q < y)).

The *-transform

∀x, y ∈ ∗R (x < y implies ∃q ∈ ∗Q (x < q < y))

is also true. In particular, it is true when x and y are infinitely close.
Then the statement asserts the existence of a hyperrational between x
and y and therefore necessarily also infinitely close to both x and y.

3.9. Finite sets

Let A = {r1, . . . , rk} be a finite subset of R. Then the statement

∀x ∈ A (x = r1 or x = r2 or · · · or x = rk)

is true, and so is its *-transform

∀x ∈ ∗A (x = ∗r1 or x = ∗r2 or · · · or x = ∗rk).

Since we identify ri with ∗ri in viewing R as a subset of ∗R, this
implies that ∗A = A. We therefore obtain the following proposition.

Proposition 3.9.1. Finite sets of standard numbers admit no non-
standard elements.

Question 3.9.2. Why does this argument not work for infinite sets
(see Theorem 3.1.6) ?

The answer is that there is no corresponding formula that one could
apply transfer to.
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3.10. Finitary set operations

We continue our analysis of the *-transform. If A,B ⊆ R, then the
statement

∀x ∈ R (x ∈ A ∪ B iff x ∈ A or x ∈ B)

transforms to the true statement

∀x ∈ ∗R (x ∈ ∗(A ∪ B) iff x ∈ ∗A or x ∈ ∗B),

which shows that ∗(A ∪ B) = ∗A ∪ ∗B.

Question 3.10.1. Question: why does the argument not work for
unions of infinitely many sets?

3.11. Discreteness of natural numbers

If n ∈ N, then the statement

∀x ∈ N (n ≤ x ≤ n+ 1 implies x = n or x = n+ 1)

transforms to

∀x ∈ ∗N ( ∗n ≤ x ≤ ∗(n+ 1) implies x = ∗n or x = ∗(n+ 1)),

which again is true. Since n = ∗n and likewise ∗(n + 1) = n + 1,
this shows that there are no nonstandard members of ∗N occurring
between any standard natural numbers. Also, there are no members
of ∗N smaller than 1, i.e.,

∀x ∈ ∗N (x ≥ 1);

hence any member of ∗N − N must be greater than all members of N,
and so is infinite (see Section 2.12).

3.12. Unbounded sets of real numbers

Consider an infinite H ∈ ∗N. Then we can deduce the Archimedean
principle in the following way. If r is any real number, then r < H,
since H is infinite. It follows that the statement

∃n ∈ ∗N(r < n)

is true. This is the *-transform of the statement

∃n ∈ N(r < n),

and as we shall see, a statement must be true if its *-transform is. This
shows that there is a positive integer greater than r.

More generally, this argument can be used to show the following.
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Proposition 3.12.1. If the enlargement ∗A of a set A of reals con-
tains an infinite member, then A itself must be unbounded in R, in the
sense that for any real r there is a member of A that is greater than r.

In brief: if ∗A has an infinite nonstandard member, then A has
arbitrarily large standard members.

Remark 3.12.2. The *-transform of a statement arises by attach-
ing the “*” prefix to symbols that name particular entities, but not
attaching it to variable symbols. The precise definition of *-transform
will be presented later.





CHAPTER 4

Relational structures, *-transform, transfer

4.1. Relational Structures

The examples given in Chapter 3 used a semiformal logical symbol-
ism to express statements that were asserted to be true or false of the
structures R and ∗R. This symbolism will now be explicitly described.

Remark 4.1.1. Our first task is to distinguish clearly between a
relational structure and the language it uses.

Definition 4.1.2. A relational structure1 is a system of the form

S = 〈K,RelS , FunS〉,
where K is a nonempty set, RelS is a collection of finitary relations
on K, and FunS is a collection of finitary functions2 on K (possibly
including partial functions).

For instance, associated with any set K is the full structure

〈K,RelK , FunK〉,
based on K, where RelK consists of all the finitary relations on K,
and FunK consists of all the finitary functions on K. Since sets are
unary relations, a full structure includes all subsets of K in RelK .

Definition 4.1.3. The full structure based on R will be denoted
by R.

Associated with the full structure is the structure

∗R =
〈

∗R, {∗P : P ∈ RelR}, {∗f : f ∈ FunR}
〉

.

Thus ∗R consists of the extensions ∗P and ∗f of all relations and func-
tions on R, as defined in Chapter 3.

Remark 4.1.4. The structure ∗R is not a full structure, since there
are relations on ∗R that are not of the form ∗P for any P ∈ RelR.

1mivne yachasim
2I.e., functions of finitely many variables
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4.2. The Language of a Relational Structure

Associated with each relational structure S is a language LS based
on the following alphabet:

• Logical Connectives:3

∧ and
∨ or
¬ not (negation)
→ implies
↔ if and only if

• Quantifier Symbols:
∀ for all
∃ there exists

• Parentheses: (, ), [, ]
• Variables: A countable collection of symbols, for which we use

letters like x, y, z, x1, x
′, etc.

A richer language associated with a universe is developed in [6, p. 166,
Section 13.7].

4.3. Terms of the language

A term4 of LS is a string of symbols defined inductively by the
following rules:

• Each variable is an LS-term.
• Each element s of K is an LS term, called a constant.
• If f ∈ FunS is an m-ary function, and τ1, . . . , τm are LS-terms,

then f(τ1, . . . , τm) is an LS-term.

4.4. What Does a Term Name?

Definition 4.4.1. A closed term is one that has no variables and
therefore is made up of constants and function symbols.

Such a term is intended to name a particular element of the struc-
ture S. But there are many opportunities in mathematics to write
down symbolic expressions that have no meaning because the element
they purport to name does not exist, as in tan(π

2
).

A closed term is undefined if it does not name anything. Here are
the rules that determine when, and what, a closed term names:

• The constant s names itself.

3chiburim logi’im
4shem etzem
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• If τ1, . . . , τm name the elements s1, . . . , sm, respectively, and
the m-tuple (s1, . . . , sm) is in the domain of a function f ,
then f(τ1, . . . , τm) names the element f(s1, . . . , sm).
• f(τ1, . . . , τm) is undefined if one of τ1, . . . , τm is undefined, or

if they are all defined but name an m-tuple that is not in the
domain of f .

4.5. Atomic formulae of the language

The atomic formulae of the language LS are obtained by introduc-
ing the relations available in the relational structure. They are strings
of the form

P (τ1, . . . , τk)

where P ∈ RelS is k-ary, and the τi are LS-terms. Such strings assert
basic relationships between elements of K and serve as the building
blocks for more complex expressions.

We also use conventional notation for atomic formulae where ap-
propriate. For binary relations (k = 2) there is the usual infix nota-
tion: P (τ1, τ2) is written

τ1 = τ2

when P is the identity relation {(a, b) ∈ K ×K : a = b}, and as

τ1 < τ2

when P = {(a, b) : a < b}. Similarly for the relations τ1 > τ2, τ1 ≤
τ2, τ1 ≥ τ2.

When k = 1 we have unary atomic formulae of the form P (τ),
with P being a subset of K. Such a formula expresses membership
of P and so will usually be written in the form τ ∈ P .

4.6. Formulae

Formulas are built out of atomic formulas by introducing logical
connectives and quantifiers as follows.

• Each atomic LS-formula is an LS-formula.
• If φ and ψ are LS -formulae, then so are φ∧ψ, φ∨ψ, ¬φ, φ→
ψ, φ↔ ψ.
• If φ is an LS-formula, x is any variable symbol, and P ∈ RelS

is unary, i.e., P is a subset of K, then

(∀x ∈ P )φ, (∃x ∈ P )φ

are LS-formulae. Here P is the bound of the quantifier in
question.



44 4. RELATIONAL STRUCTURES, *-TRANSFORM, TRANSFER

A formula is said to be defined if and only if all of its closed terms
are defined.

Parentheses will be inserted or deleted in formulae where convenient
to aid legibility. Various abbreviations and informalities will be used,
such as writing

x ≤ y ≤ z

for the formula (x ≤ y) ∧ (y ≤ z), or collapsing a string of similar
quantifiers with the same bound like

(∀x ∈ P )(∀y ∈ P )(∀z ∈ P )

to the form (∀x, y, z ∈ P ).

4.7. Sentences

A sentence5 is a particular type of formula.
An occurrence of the variable x within a formula ψ is called bound6

if it is located within a formula of the form (∀x ∈ P )φ or (∃x ∈ P )φ
that is part of ψ. An occurrence that is not bound is free. Thus in

(x < 1) ∧ (∀x ∈ N)(x > y),

the first occurrence of x is free, while the others are bound, and the
only occurrence of y is free.

If a formula contains free variables, then it has no particular mean-
ing until we assign some values to those free variables. Thus the above
formula makes a true assertion if x = y = 0, but if x = 2, then it
cannot be true whatever the value of y is.

Definition 4.7.1. A sentence is a formula in which all variables
are bound.

The role of each symbol in a sentence is determined. There are no
free variables that need to be assigned a value, and if the closed terms
of the sentence are all defined then it has a fixed meaning and makes
a definite assertion. A defined sentence is either true or false.

Definition 4.7.2. An atomic sentence in the language LS is an
atomic formula P (τ1, . . . , τk) that is a sentence.

This means that the terms τ1, . . . , τk are all closed, i.e., the formula
has no free variables.

5pasuk
6kashur or mekumat
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4.8. Truth and Quantification

Suppose that there is only one variable, say x, that has any free
occurrence in a certain formula φ. Then we write φ(s) for the sentence
that is obtained by substituting the constant s in place of all free
occurrences of x in φ. For example, if φ is the formula

tan(−x) = − tan(x),

then φ(π/2) is the (undefined) atomic sentence

tan(−π/2) = − tan(π/2).

Now consider the truth of a defined sentence of the form (∀x ∈ P )φ.
Here only the variable x can have any free occurrence in φ, so we can
form sentences of the type φ(s). Intuitively, (∀x ∈ P )φ asserts that
whatever φ “says about x” is true of each member of P , provided that
this is defined, and so it asserts that the sentence φ(s) is true for every
element s of P for which it is defined. Thus

(∀x ∈ P )φ is true if and only if for all s in P , if the
sentence φ(s) is defined, then it is true.

For example, the following sentence is true:

(∀x ∈ R)[tan(−x) = − tan(x)].

The corresponding analysis of the existential quantifier is (∃x ∈ P )φ
is true if and only if there is some s ∈ P for which φ(s) is (defined and)
true.

The standard meanings of the symbolic connectives ∧, ∨, ¬,→,↔
are given by the rules:

• φ ∧ ψ is true if and only if φ is true and ψ is true.
• φ ∨ ψ is true if and only if φ is true or ψ is true.
• ¬φ is true if and only if φ is not true (i.e., is false).
• φ → ψ is true if and only if the truth of φ implies that of ψ

(i.e., either φ is false or else ψ is true).
• φ↔ ψ is true if and only if φ→ ψ and ψ → φ are true (i.e., φ

and ψ are either both true or both false).

Remark 4.8.1. These rules reduce the calculation of the truth value
of a sentence to the determination of the truth value of atomic sen-
tences.

For atomic sentences we have the following proposition.

Proposition 4.8.2. P (τ1, . . . , τk) is true if and only if the closed
terms τ1, . . . , τk are all defined and the k-tuple of elements they name
belongs to P .
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This exact formulation of the syntax of mathematical statements,
with an associated account of their truth conditions, makes the theory
of infinitesimals possible. We are able to distinguish exactly which
properties are transferable between R and ∗R because we can give an
explicit description of the sentences that express such properties.

4.9. *-Transforms

A formula in the language LR of the real-number structure R has
symbols P, f for relations and functions of R. It can be turned into a
formula of the language L∗R of the hyperreal structure ∗R by replac-
ing P by ∗P , and f by ∗f . Any constant r naming a real number is left
as is, since we identify r in R with ∗r in ∗R.

Definition 4.9.1. The *-transform ∗τ of an LR-term τ is obtained
by replacing each function symbol f occurring in τ by ∗f , leaving the
variables and constants of τ alone.

More formally, we can give the definition by induction on the for-
mation of τ , using the following rules:

• If τ is a variable or an LR-constant , then ∗τ is just τ .
• If τ is f(τ1, . . . , τm), then ∗τ is ∗f(∗τ1, . . . ,

∗τm).

The *-transform ∗φ of an LR-formula φ is obtained as follows:

• replace each term τ occurring in φ by ∗τ ;
• replace the relation symbol P of any atomic formula occurring

in φ by ∗P ; and
• replace the “bound” P of any quantifier (∀x ∈ P ) or (∃x ∈ P )

occurring in φ by ∗P .

We tend to drop the * symbol when referring to the transforms of
some of the more well-known relations like =, 6=, <,≥, etc., and well-
known mathematical functions like sin, cos, log, ex, etc. For instance,

∗(π < f(x+ 1)) = (π < ∗f(x+ 1)),

∗(sin ex ∈ Q) = (sin ex ∈ ∗Q),

and so on. Even further, it would do no harm to drop the * symbol
in referring to the extension ∗f of any function f . If this practice is
adopted systematically, then the transform *τ of each term τ will just
be τ itself. Then atomic formulae like

τ1 = τ2,

etc. that express basic equalities and inequalities will be left alone
under *-transformation, while a membership formula τ ∈ P becomes
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τ ∈ ∗P . With all these conventions in place, the general procedure for
“adding the stars” reduces simply to replacing

P (τ1, . . . τk) by ∗P (τ1, . . . , τk),

∀x ∈ P by ∀x ∈ ∗P ,

∃x ∈ P by ∃x ∈ ∗P .

To summarise all of this in words; the essence of *-transformation
is to

(1) replace the bound P of any quantifier by its enlargement ∗P ;
and

(2) replace relations appearing in atomic formulae by their en-
largements, but only in the (unary) case of a membership for-
mula (τ ∈ P ), or for relations of arity greater than one other
than the common relations =, 6=<,≥, etc.

4.10. Preliminaries to the Transfer Principle

The notion of an LR sentence and its *-transform enables a for-
malisation of the notion of an appropriately formulated statement as
discussed in Chapter 3.

Hence it provides a first answer to the question as to which proper-
ties are subject to transfer between R and ∗R: any property expressible
by an LR-sentence is transferable. Formally, the transfer principle is
stated as follows:

A defined7 LR-sentence φ is true if and only if ∗φ is
true.

As a first illustration of this, beyond the examples given earlier, con-
sider the following.

Theorem 4.10.1. ∗R is an ordered field.

Proof. The fact that R is an ordered field can be expressed in a
finite number of LR-sentences, like

(∀x, y ∈ R)(x+ y = y + x),

(∀x ∈ R)(x · 1 = x),

(∀x, y ∈ R)(x < y ∨ x = y ∨ y < x),

and so on. By transfer we conclude that the *-transforms of these
sentences are true, showing that ∗R is an ordered field.

7chuki
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In particular, to show that multiplicative inverses exist in ∗R, in-
stead of making an ultrapower construction of the inverses as in the
proof given earlier we simply observe that it is true that

(∀x ∈ R)[x 6= 0→ (∃y ∈ R)x · y = 1]

and conclude by transfer that

(∀x ∈ ∗R)[x 6= 0→ (∃y ∈ ∗R)x · y = 1],

completing the proof. �

For another example, consider the extension of closed intervals.

Example 4.10.2. Consider the closed interval

[a, b] = {x ∈ R : a ≤ x ≤ b}
in the real line defined by points a, b ∈ R. Then it is true that

(∀x ∈ R)(x ∈ [a, b]↔ a ≤ x ≤ b),

so by transfer we see that the enlargement of [a, b] is the hyperreal
interval defined by a and b:

∗[a, b] = {x ∈ ∗R : a ≤ x ≤ b}.
Similarly, we can transfer to ∗R many familiar facts about standard

mathematical functions. Thus the following are true:

(∀x ∈ ∗R) sin(π − x) = sin x,

(∀x ∈ ∗R) cosh x+ sinh x = ex,

(∀x, y ∈ ∗R+) log xy = log x+ log y.

4.11. Transfer principle

All of the examples of Section 4.10 involve taking a quantified LR-
sentence of the form (∀x, y, . . . ∈ R)φ and transforming it to an L ∗R-
sentence (∀x, y, . . . ∈ ∗R) ∗φ. They are instances of the following general
principle.

Upward (Universal) Transfer: if a property holds for
all real numbers, then it holds for all hyperreal num-
bers.

The meaning of the expression “property” is specified in terms of
the formal language LR. To use nonstandard analysis we need to de-
velop the ability to show that a given property can be expressed in a
transferable form.

Dual to upward transfer is
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Downward (Existential) Transfer: if there exists a
hyperreal number satisfying a certain property, then
there exists a real number with this property.

Example 4.11.1. Take a real-valued sequence s : N→ R for which
we can show (by some means) that the extended hypersequence ∗s :
∗N → ∗R never takes infinitely large values. Then downward transfer
can be used to conclude that the original sequence must be bounded
in R. To see this, let ω be a member of ∗N − N. By hypothesis it is
true that

(∀n ∈ ∗N)( | ∗s(n)| < ω). (4.11.1)

The sentence (4.11.1) is not the *-transform of an LR-sentence,
because it contains the constant ω. But the constant can be removed
by introducing an existentially quantified variable. Namely, we observe
that the sentence implies

(∃y ∈ ∗R)(∀n ∈ ∗N)(| ∗s(n)| < y). (4.11.2)

Downward transfer applied to (4.11.2) yields

(∃y ∈ R)(∀n ∈ N)(|s(n)| < y).

Put informally, from the existence of a hyperreal bound on ∗s we
infer the existence of a real bound on s. Typically, in order to show
that a real number of a certain type exists, it may be easier to show
that a hyperreal of this type exists and then apply downward transfer.

In the next chapter, we will provide some details on justifying trans-
fer.





CHAPTER 5

Transfer,  Loś, and arithmetic of hyperreals

5.1. Justfying transfer

In the context of the ultrapower construction of the ordered field ∗R,
we used the following notation:

• [r] is the equivalence class of a sequence r ∈ RN;
• [[r < s]] is {n ∈ N : rn < sn}, etc.
• LR is the language of the full relational system of the real

numbers.

We repeatedly used the criterion that a particular property was to
hold of hyperreals [r], [s], . . . if and only if

the corresponding property held of the real numbers rn, sn, . . .
for almost all n.

In fact, this almost-all criterion works for any property expressible by
an LR-formula. That is ultimately why the transfer principle holds.

To spell this out some further technical notation is needed.

Definition 5.1.1. For a formula φ we write

φ(x1, . . . , xp)

to indicate that the list x1, . . . , xp includes all the variables that occur
free in the formula φ.

Then

φ(s1, . . . , sp)

is the sentence obtained by replacing each free occurrence of xi in φ by
the constant si.

Example 5.1.2. If φ(x1, x2) is the formula

(∃y ∈ Q)(x21 + x22 < y),

then φ(π,
√

2) is the sentence

(∃y ∈ Q)(π2 + (
√

2)2 < y).
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Now let φ(x1, . . . , xp) be a formula of LR, and let r1, . . . , rp ∈ RN.
We set

[[φ(r1, . . . , rp)]] = {n ∈ N : φ(r1n, . . . , r
p
n) is true }.

This extends the definitions of [[r = s]], [[r < s]], etc. to LR-formulae
in general.

Example 5.1.3. Consider the following typical statements:

[r] = [s] iff [[r = s]] ∈ F ,
[r] < [s] iff [[r < s]] ∈ F ,
[r] ∈ ∗A iff [[r ∈ A]] ∈ F

∗P ([r1], . . . , [rk]) iff [[P (r1, . . . , rk)]] ∈ F .
Such statements are cases of the following fundamental result.

For any LR-formula φ(x1, . . . , xp) and any sequences
r1, . . . , rp ∈ RN, the sentence ∗φ([r1), . . . , [rp]) is true
if and only if φ(r1n, . . . , r

p
n) is true for almost all n ∈ N.

In other words,
∗φ([r1], . . . , [rp]) is true iff [[φ(r1, . . . , rp)]] ∈ F .

This result is known as  Loś’s theorem, after the Polish mathemati-
cian who first proved it in the early 1950s. It includes transfer as
a special case, because if φ is a sentence, then it has no free vari-
ables, so that φ(s1, . . . , sp) is just the sentence φ and likewise for ∗φ.
Hence [[φ(r1, . . . , rp)]] is N if φ is true and ∅ otherwise, independently
of the sequences rj. Since ∅ 6∈ F , Los’s theorem in this case simply
says

*φ is true iff φ is true,

which is the transfer principle.
A proof of  Loś’s theorem would proceed by induction on the for-

mation of the formula φ, considering first atomic formulae and then
dealing with inductive cases for the logical connectives and quantifiers.
We will not enter into those details here, but rely on the examples al-
ready discussed to lend plausibility to the assertion of  Loś’s theorem,
and hence to transfer.

5.2. Extending Transfer

We defined general relational structures S and their languages LS ,
but applied these ideas only to the language LR in describing the trans-
fer principle.

In fact, it is possible to use the ultrapower construction to build
an “enlargement” of any structure S and obtain a transfer principle
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for it. For instance, by replacing R by C this would give us a way of
embarking on the nonstandard study of complex analysis.

Remark 5.2.1. The language LR is limited by the fact that its
quantifiable variables can range only over elements of R or elements of
a given set A ⊆ R. They cannot range over more complicated entities.

Thus they cannot range over subsets of R (i.e., over elements of the
power set P(R)), sequences, real-valued functions, etc.

Example 5.2.2. Consider the Dedekind completeness principle,

Every subset of R that is nonempty and bounded
above has a least upper bound.

This principle cannot be formulated in LR because the language does
not allow quantifiers of the type

∀x ∈ P(R)

that apply to a variable (x) whose range of values is the set of all
subsets of R.

Remark 5.2.3. Later on, a language will be introduced that does
have such “higher-order” quantifiers and for which an appropriate trans-
fer principle exists.

We will soon see that LR is powerful enough to develop a great deal
of the standard theory of R, including the convergence of sequences and
series, differential and integral calculus, and the basic topology of the
real line. Indeed, for the next half-dozen chapters we will not relate to
the ultrapower construction and explore all these topics using only the
fact that ∗R is an ordered field with the following properties:

• it has R as a subfield;
• it includes infinite numbers H ∈ ∗N − N, hence infinitesimals

(such as 1
H

), and
• satisfies the transfer principle.

5.3. Hyperreals

Members of ∗R are called hyperreal numbers.
Members of R are real and sometimes called standard.
∗Q consists of hyperrationals.
∗Z consists of hyperintegers.
∗N consists of hypernaturals.

Proposition 5.3.1. ∗Q consists precisely of quotients m/n of hy-
perintegers m,n ∈ ∗Z.
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Proof. Apply transfer to the sentence

∀x ∈ R [x ∈ Q↔ ∃y, z ∈ Z(z 6= 0 ∧ x = y/z)]

to obtain the desired conclusion. �

5.4. Infinite, Infinitesimal, and Appreciable Numbers

We now examine the basic arithmetical and algebraic structure
of ∗R, particularly in its relation to the structure of R.

A hyperreal number b is:

• finite if r < b < s for some r, s ∈ R;
• positive infinite if r < b for all r ∈ R;
• negative infinite if b < r for all r ∈ R;
• infinite if it is positive or negative infinite;
• positive infinitesimal if 0 < b < r for all positive r ∈ R;
• negative infinitesimal if r < b < 0 for all negative r ∈ R.
• infinitesimal if it is positive infinitesimal, negative infinitesi-

mal, or 0.
• appreciable1 if it is finite but not infinitesimal, i.e., r < |b| < s

for some r, s ∈ R+.

Thus all real numbers, and all infinitesimals, are finite. The only
infinitesimal real is 0: all other reals are appreciable. An appreciable
number is one that is neither infinitely small nor infinitely big. Observe
that b is

• finite iff |b| < n for some n ∈ N;
• infinite iff |b| > n for all n ∈ N;
• infinitesimal iff |b| < 1

n
for all n ∈ N;

• appreciable iff 1
n
< |b| < n for some n ∈ N.

We introduce the following notation.

(1) The set ∗N− N of infinite hypernaturals is denoted ∗N∞;
(2) ∗R+

∞ denotes the set of positive infinite hyperreals;
(3) ∗R−

∞ the set of negative infinite numbers.

This notation may be adapted to an arbitary subset X ⊆ ∗R, set-
ting X∞ = {x ∈ X : X is infinite }, and similarly X+ = {x ∈ X : x >
0}, etc.

Definition 5.4.1. We use L for the set of all finite numbers, and I
for the set of infinitesimals.

1mashmauti
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5.5. Arithmetic of Hyperreals

Let ǫ, δ be infinitesimal, b, c appreciable, and H,K infinite. Then
sums have the following properties:

• ǫ+ δ is infinitesimal;
• b+ ǫ is appreciable;
• b+ c is finite (possibly infinitesimal);
• H + ǫ and H + b are infinite.

Opposites:

• −ǫ is infinitesimal;
• −b is appreciable;
• −H is infinite.

Products:

• ǫ · δ and ǫ · b are infinitesimal;
• b · c is appreciable;
• b ·H and H ·K are infinite.

Reciprocals:

• 1
ǫ

is infinite if ǫ 6= 0;

• 1
b

is appreciable;
• 1

H
is infinitesimal.

Quotients:

• ǫ
b
, ǫ

H
, b

H
are infinitesimal;

• b
c

is appreciable (if c 6= 0);

• b
ǫ
, H

ǫ
, and H

b
are infinite (ǫ, b 6= 0).

Roots:

• If ǫ > 0, n
√
ǫ is infinitesimal;

• If b > 0, n
√
b is appreciable;

• If H > 0, n
√
H is infinite.

Indeterminate Forms:2

ǫ

δ
,
H

K
, ǫ ·H,H +K.

The following corollary follows from these rules.

Corollary 5.5.1. The set L of finite numbers and the set I of
infinitesimals are each a subring of ∗R.

Also, the infinitesimals form an ideal in the ring of finite numbers.
What then is the associated quotient ring L/I? This will be explained
in Theorem 5.8.3.

2tzura bilti mugderet
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With regard to nth roots, for fixed n ∈ N the function x 7→ n
√
x

is defined for all positive reals, so extends to a function defined for all
positive hyperreals.

Proposition 5.5.2. Every positive hyperreal has a hyperreal nth
root for all n ∈ ∗N.

Proof. To find nth roots for infinite n, consider the statement

(∀n ∈ N)(∀x ∈ R+)(∃y ∈ R)(yn = x).

The statement asserts that any positive real has a real nth root for
all n ∈ N. Its transform asserts that every hyperreal has a hyper-
real nth root for all n ∈ ∗N. �

5.6. On the Use of “Finite” and “Infinite”

A set is regarded as being finite if it has n elements for some n ∈ N,
and therefore is in bijective correspondence with the set

{1, 2, . . . , n} = {k ∈ N : k ≤ n}.
If H is an infinite hypernatural, then the collection

{1, 2, . . . , H} = {k ∈ ∗N : k ≤ H}
is set-theoretically infinite but, by transfer, has many properties en-
joyed by finite sets.3 Collections of this type are called hyperfinite, and
will be examined fully later. They are fundamental to the methodology
of hyperreal analysis.

5.7. Halos, Galaxies, and Real Comparisons

A hyperreal number b is infinitely close to a hyperreal number c (in
symbols: b ≈ c), if b − c is infinitesimal. This defines an equivalence
relation on ∗R.

Definition 5.7.1. The halo of b is the ≈-equivalence class

hal(b) = {c ∈ ∗R : b ≈ c}.
Hyperreals b, c are of finite distance apart (in symbols: b ∼ c) if b−c

is finite.

Definition 5.7.2. The galaxy of b is the ∼-equivalence class

gal(b) = {c ∈ ∗R : b ∼ c}.
Thus, b is infinitesimal iff b ≈ 0, and finite iff b ∼ 0.

3In the context of axiomatic nonstandard analysis, it is more appropriate to
use terms limited and unlimited in place of finite and infinite; see Section 10.4.
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Corollary 5.7.3. We have hal(0) = I, the set of infinitesimals,
while gal(0) = L, the set of finite hyperreals.

Abraham Robinson called hal(b) the “monad” of b in [14].

Remark 5.7.4 (Real Comparisons). We discuss the comparison of
the sizes of two real numbers b, c. If b > c, then the halos of the two
numbers are disjoint, with everything in hal(b) greater than everything
in hal(c). Thus to show that b ≤ c it is enough to show that something
in hal(b) is less than or equal to something in hal(c). In particular,
this will hold if there is some x with either b ≈ x ≤ c or b ≤ x ≈ c.

5.8. Shadows

Theorem 5.8.1. Every finite hyperreal b is infinitely close to exactly
one real number, called the shadow of b, denoted by sh(b).

Proof. Let A = {r ∈ R : r < b}. Since b is finite, there exist real
r, s with r < b < s, so the set A is nonempty and bounded above in R
by s. By the completeness of R, it follows that A has a least upper
bound c ∈ R.

Let us show b ≈ c. We take any positive real ǫ ∈ R. Since c is an
upper bound of A, we cannot have c + ǫ ∈ A; hence b ≤ c + ǫ. Also,
if b ≤ c − ǫ, then c − ǫ would be an upper bound of A, contrary to
the fact that c is the smallest such upper bound. Hence b 6≤ c − ǫ.
Altogether then, c − ǫ < b ≤ c + ǫ, so |b − c| ≤ ǫ. Since this holds for
all positive real ǫ, we obtain that b is infinitely close to c.

Finally, for uniqueness, if b ≈ c′ ∈ R, then as b ≈ c, we obtain c ≈ c′,
and so c = c′, since both are real. �

Theorem 5.8.2. If b and c are finite and n ∈ N, then

(1) sh(b± c) = sh(b)± sh(c),
(2) sh(b · c) = sh(b) · sh(c),

(3) sh( b
c
) = sh(b)

sh(c)
if sh(c) 6= 0 (i. e., if c is appreciable),

(4) sh(bn) = sh(b)n ,
(5) sh(|b|) = |sh(b)|,
(6) sh( n

√
b) = n

√

sh(b) if b ≥ 0,
(7) if b ≤ c then sh(b) ≤ sh(c).

We see from these last facts that the shadow map sh : b 7→ sh(b) is
an order-preserving homomorphism from the ring L of finite numbers
onto R. The kernel of this homomorphism is the set {b ∈ L : sh(b) = 0}
of infinitesimals, and the cosets of the kernel are the halos hal(b) for
finite b. We therefore obtain the following theorem.
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Theorem 5.8.3. The quotient ring L/I is isomorphic to the real
number field R by the correspondence hal(b) 7→ sh(b). Hence I is a
maximal ideal of the ring L.

The shadow sh(b) is often called the standard part of b.

5.9. Shadows and Completeness

The existence of shadows of finite numbers follows from the Dedekind
completeness of R. In fact, their existence turns out to be an alterna-
tive formulation of completeness, as the next result shows.

Theorem 5.9.1. The assertion “every finite hyperreal number is
infinitely close to to a real number” implies the completeness of R.

Proof. Let s : N → R be a Cauchy sequence. Recall that this
means that its terms get arbitrarily close to each other as we move
along the sequence.

In particular, there exists a k ∈ N such that all terms of s beyond sk
are within a distance of 1 of each other, i.e., the sentence

∀m,n ∈ N (m,n ≥ k → |sm − sn| < 1)

is true. By transfer, the *-transform of this sentence is also true, and
applies to the extended hypersequence

〈sn : n ∈ ∗N〉
as defined above. In particular, if we take H to be an infinite member
of ∗N, then k,H ≥ k, so

|sk − sH | < 1.

It follows that sH is finite. By the assertion quoted in the statement
of the theorem, it follows that sH ≈ L for a suitable L ∈ R. We will
show that the original sequence s converges to the real number L.

If ǫ is any positive real number, then since s is Cauchy, there ex-
ists jǫ ∈ N such that beyond sjǫ all terms are within ǫ of each other:

∀m,n ∈ N (m,n ≥ jǫ → |sm − sn| < ǫ). (5.9.1)

But now we can show that beyond sjǫ all terms are within ǫ of L. The
essential reason is that all such terms are within ǫ of sH , which is itself
infinitely close to L. For if m ∈ N with m ≥ jǫ, we have m,H ≥ jǫ, so
by transfer of the sentence (5.9.1), we get that sm is within ǫ of sH :

|sm − sH | < ǫ.
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Since sH is infinitely close to L, this forces sm to be within ǫ of L.
Indeed,

|sm − L| ≤ |sm − sH |+ |sH − L| < ǫ+ infinitesimal.

Since sm − L and ǫ are real, it follows that |sm − L| ≤ c.
This establishes that all the terms sj, sj+1, sj+2, . . . are within ǫ

of L, which is enough to prove that the sequence s converges to the
real number L. Thus we have demonstrated that every real Cauchy
sequence is convergent in R, a property that is equivalent to Dedekind
completeness. �

5.10. The Hypernaturals

We now develop a more detailed description of ∗N. First, by trans-
fer, ∗N is seen to be closed under addition and multiplication. Next
observe that the only finite hypernaturals are the members of N. For
if k ∈ ∗N is finite, then k ≤ n for some n ∈ N. But then by transfer of
the sentence

∀x ∈ N (x ≤ n→ x = 1 ∨ x = 2 ∨ · · · ∨ x = n)

it follows that
k ∈ {1, 2, . . . , n}, so k ∈ N.

Thus all members of ∗N−N are infinite, and hence greater than all
members of N.

Definition 5.10.1. Fixing K ∈ ∗N− N, put

γ(K) = {K} ∪ {K ± n : n ∈ N}.
Then all members of γ(K) are infinite, and together form a “copy

of Z” under the ordering <. Moreover, it may be seen that

γ(K) = {H ∈ ∗N : K ∼ H} = gal(K) ∩ ∗N,

the restriction to ∗N of the galaxy of K. The set γ(K) will be called
a ∗N-galaxy. We can also view N itself as a ∗N-galaxy, since N =
gal(1) ∩ ∗N.

Definition 5.10.2. We define γ(K) = N when K ∈ N.

Then in general,

γ(K) = γ(H) iff K ∼ H,

and the ∗N-galaxies may be ordered by setting

γ(K) < γ(H) iff K < H

whenever K 6∼ H (i.e., whenever |K −H| is infinite) .



60 5. TRANSFER,  LOŚ, AND ARITHMETIC OF HYPERREALS

There is no greatest ∗N-galaxy, since γ(K) < γ(2K). Also, there
is no smallest infinite one: since one of K and K + 1 is even (by
transfer) and γ(K) = γ(K + 1), we can assume that K is even and
note that K/2 ∈ ∗N.

Then γ(K/2) < γ(K) and K/2 infinite when K is. Finally, between
any two ∗N-galaxies there is a third, for if γ(K) < γ(H), with K, H
both even, then

γ(K) < γ((H +K)/2) < γ(H).

Corollary 5.10.3. The ordering < of ∗N consists of N followed
by a densely ordered set of ∗N-galaxies (copies of Z) with no first or
last such galaxy.

5.11. Convergence of Sequences

A real-valued sequence 〈sn : n ∈ N〉 is a function s : N→ R, and so
extends to a hypersequence s : ∗N → ∗R. Hence the term sn becomes
defined for infinite hypernaturals n ∈ ∗N∞ (a fact that was already
used earlier), and in this case we say that sn is an extended term of
the sequence.

Definition 5.11.1. The collection

{sn : n ∈ ∗N∞}
of extended terms is the extended tail of s.

In real analysis, 〈sn : n ∈ N〉 converges to the limit L ∈ R when
each open interval (L− ǫ, L+ ǫ) around L in R contains some standard
tail of the sequence, i.e., contains all the terms from some point on
(with this point depending on ǫ) . Formally, this is expressed by the
statement

(∀ǫ ∈ R+)(∃mǫ ∈ N)(∀n ∈ N)(n > mǫ → |sn − L| < ǫ),

which is intended to capture the idea that we can approximate L as
closely as we like by moving far enough along the sequence. It turns
out that this is equivalent to the requirement that if we go “infinitely
far” along the sequence, then we become infinitely close to L:

Theorem 5.11.2. A real-valued sequence 〈sn : n ∈ N〉 converges to
a number L ∈ R if and only if sn ≈ L for all infinite n.

Proof. Suppose 〈sn : n ∈ N〉 converges to L. Fix an H ∈ ∗N∞.
In order to show that sH ≈ L we have to show that |sH − L| < c for
any positive real c. But given such an c, the standard convergence
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condition implies that there is an mc ∈ N such that the standard tail
beyond smc

is within c of L:

(∀n ∈ N)(n > mc → |sn − L| < c).

Then by (upward) transfer this holds for the extended tail as well:

(∀n ∈ ∗N)(n > mc → |sn − L| < c).

But in fact, H > mc because H is infinite and mc is finite, and so this
last sentence implies |sH − L| < c for each c > 0, as required.

For the converse, suppose sn ≈ L for all infinite n. We have to show
that any given interval (L−c, L+c) in R contains some standard tail of
the sequence. The essence of the argument is to invoke the fact that the
extended tail is infinitely close to L, hence contained in ∗(L− c, L+ c),
and then apply transfer.

To spell this out, fix an infinite H ∈ ∗N∞. Then for any n ∈ ∗N,
if n > H, it follows that n is also infinite, so sn ≈ L and therefore |sn−
L| < c. This shows that

(∀n ∈ ∗N)(n > H → |sn − L| < c).

Hence the sentence

(∃z ∈ ∗N)(∀n ∈ ∗N)(n > z → |sn − L| < c)

is true. By downward transfer, we obtain

(∃z ∈ N)(∀n ∈ N)(n > z → |sn − L| < c),

giving the desired conclusion. �

Thus convergence to L amounts to the requirement that the ex-
tended tail of the sequence is contained in the halo of L. In this char-
acterisation the role of the standard tails is taken over by the extended
tail, while the standard open neighbourhoods (L−c, L+c) are replaced
by the “infinitesimal neighbourhood” hal(L).





CHAPTER 6

Sequences, series, continuity

6.1. Limits

We saw in Theorem 5.11.2 that a sequence s ∈ RN converges to a
number L ∈ R if and only if sH ≈ L for all infinite H ∈ ∗N− N.

Corollary 6.1.1. A real-valued sequence has at most one limit.

Proof. If 〈sn〉 converges to both L and M in R then taking an
infinite n, we have sn ≈ L as well as sn ≈ M . Thus L ≈ M and since
both are real, we obtain L = M . �

6.2. Boundedness and Divergence

Recall that the extended terms of a sequence 〈sn〉 are the terms at
rank n ∈ ∗N− N.

Theorem 6.2.1. A real-valued sequence 〈sn〉 is bounded in R if and
only if its extended terms are all finite.

Proof. To say that 〈sn : n ∈ N〉 is bounded in R means that it
is contained within some real interval [−b, b], or equivalently that its
absolute values |sn| have some real upper bound b:

(∀n ∈ N) |sn| < b.

Then by upward transfer the extended sequence is contained in ∗[−b, b],
i.e., |sn| < b for all n ∈ ∗N; hence the term sn is finite in general.

For the converse, suppose sn is finite for all infinite n ∈ ∗N∞.
Then it is finite for all n ∈ ∗N.
Choose a positive infinite hyperreal r ∈ ∗R+

∞. Then the entire
extended sequence lies in the interval {x ∈ ∗R : − r < x < r} and we
can therefore apply transfer.

Namely, we have |sn| < r for all n ∈ ∗N, so the sentence

(∃y ∈ ∗R)(∀n ∈ ∗N) |sn| < y

is true. But then by downward transfer it follows that there is some
real number that is an upper bound to |sn| for all n ∈ N. �

63
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Definition 6.2.2. We say that 〈sn〉 diverges to infinity if for each
real r there is some n ∈ N such that all terms of the standard tail
sn, sn+1, sn+2, . . . are greater than r. Correspondingly, 〈sn〉 diverges to
minus infinity if 〈−sn〉 diverges to infinity.

Corollary 6.2.3. A real-valued sequence

(1) diverges to infinity if and only if all of its extended terms are
positive infinite; and

(2) diverges to minus infinity if and only if all of its extended terms
are negative infinite.

6.3. Cauchy sequences

The traditional definition of a Cauchy sequence 〈sn〉 is one that
satisfies

lim
m,n→∞

|sn − sm| = 0,

meaning that the terms get arbitrarily close to each other as we move
along the sequence. Formally this is rendered by the sentence

(∀ǫ ∈ R+)(∃j ∈ N)(∀m,n ∈ N) (m,n ≥ j → |sm − sn| < ǫ).

Corollary 6.3.1. A real-valued sequence 〈sn〉 is Cauchy in R if
and only if all its extended terms are infinitely close to each other, i.e.,
iff sm ≈ sn for all m,n ∈ ∗N∞.

We will give a proof via infinitesimals of the Cauchy convergence
criterion.

Theorem 6.3.2 (Cauchy’s Convergence Criterion). A real-valued
sequence converges in R if and only if it is Cauchy.

Proof. Suppose 〈sn : n ∈ N〉 is Cauchy. Then it is bounded.
Take an infinite number m ∈ ∗N∞. Then sm is finite and so it has a
shadow L ∈ R. But all extended terms of the sequence are infinitely
close to each other, hence are infinitely close to sm, and therefore are
infinitely close to L as sm ≈ L. This shows that the extended tail of
the sequence is contained in the halo of L, implying that 〈sn〉 converges
to L ∈ R.

Conversely, suppose the sequence converges to L. By the hyperreal
criterion for convergence, all of its extended terms are in hal(L). By
the triangle inequality, all the extended terms are infinitely close to
each other. By Corollary 6.3.1, the sequence is Cauchy. �

Remark 6.3.3. The assertion that Cauchy sequences converge is
often taken as an “axiom” for the real number system, and is equivalent
to the Dedekind completeness assertion that sets that are bounded
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above have least upper bounds in R. We used Dedekind completeness
to prove the existence of shadows. The existence of shadows in turn
implies convergence of Cauchy sequences.

6.4. Bolzano–Weierstrass theorem

We will give a direct proof of the Bolzano–Weierstrass theorem
using infinitesimals.

Theorem 6.4.1 (Bolzano–Weierstrass). Every bounded sequence of
real numbers has a cluster point1 in R.

Recall the following.

Definition 6.4.2. A real number L is a cluster point of the real-
valued sequence 〈sn : n ∈ N〉 if each open interval (L − e, L + e) in R
contains infinitely many terms of the sequence.

This is expressed by the sentence

(∀c ∈ R+)(∀m ∈ N)(∃n ∈ N) (n > m ∧ |sn − L| < e). (6.4.1)

From this it can be shown that the original sequence has a subsequence
converging to L. Cluster points are also known as limit points of the
sequence.

Theorem 6.4.3. A number L ∈ R is a cluster point of the real-
valued 〈sn : n ∈ N〉 if and only if the sequence has an extended term
infinitely close to L, i.e., iff sH ≈ L for some infinite H.

Proof. Assume that (6.4.1) holds. Let e be a positive infinitesimal
and m ∈ ∗N∞. Then by transfer of (6.4.1), there is some n ∈ ∗N
with n > m, and hence n is infinite, and

|sn − L| < e ≈ 0.

Thus sn is an extended term infinitely close to L. (Indeed, the argument
shows that any interval of infinitesimal width around L contains terms
arbitrarily far along the extended tail.)

Conversely, suppose there is an infinite H with sH ≈ L. To prove
the sentence (6.4.1), take any positive ǫ ∈ R and m ∈ N. Then H > m
and |sn − L| < ǫ. This shows that

(∃n ∈ ∗N)(n > m ∧ |sn − L| < ǫ).

By downward transfer, |sn − L| < ǫ for some standard integer n ∈ N,
with n > m. �

1nekudat hitztabrut
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This characterisation shows that a shadow of an extended term is a
cluster point of a real sequence, and indeed that the cluster points are
precisely the shadows of those extended terms that have them, i.e., are
finite. But if the sequence is bounded, then all of its extended terms
are finite and so have shadows that must be cluster points.

Proof of Bolzano–Weierstrass theorem. Consider an ex-
tended term sH of the sequence. Take its shadow L = sh(sH). Then L
is a cluster point of the sequence. �

6.5. Series

A real infinite series
∑∞

1 ai is convergent if and only if the se-
quence s = 〈sn : n ∈ N〉 of partial sums

sn = a1 + · · ·+ an

is convergent. We will write
∑n

1 ai for sn , and
∑n

m ai for sn − sm−1

when n ≥ m.
Extending s to a hypersequence 〈sn : n ∈ ∗N〉, we obtain that sn

and sm−1 are defined for all hyperintegers n,m, so the expressions
∑n

1 ai
and

∑n
m ai become meaningful for all n,m ∈ ∗N, and may be thought

of as hyperfinite sums when n is infinite. Applying our results on
convergence of sequences to the sequence of partial sums, we have:

• ∑∞
1 ai = L in R iff

∑n
1 ai ≈ L for all infinite n;

• the series
∑∞

1 ai converges in R iff
∑n

m ai ≈ 0 for all infi-
nite m,n with m ≤ n.

The second of these is given by the Cauchy convergence criterion
(Theorem 6.3.2), since

∑n
m ai ≈ 0 iff sn ≈ sm−1 for infinitem,n. Taking

the case m = n here, we get that if the series
∑∞

1 ai = L converges,
then an ≈ 0 whenever n is infinite.

Corollary 6.5.1. if
∑∞

1 ai converges, then limi→∞ ai = 0.

Corollary 6.5.2. For a convergent real series we have
∞
∑

1

ai = sh
n

∑

1

ai = L

for any infinite n.

6.6. Continuous functions

Let f be an R-valued function defined on an open interval (a, b) of R.
In passing to ∗R, we may regard f as being defined for all hyperreal x
between a and b, since ∗(a, b) = {x ∈ ∗R : a < x < b}.

Informally, we describe the assertion
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f is continuous at a point c in the interval (a, b)

as meaning that f(x) stays “close to” f(c) whenever x is “close to” c.
The way Cauchy put it in 1821 was that

the function f(x) is continuous with respect to x be-
tween the given bounds if between these bounds an
infinitely small increase in the variable always pro-
duces an infinitely small increase in the function.

From the enlarged perspective of ∗R, this account can be made precise
as follows.

Theorem 6.6.1. f is continuous at the real point c if and only
if f(x) ≈ f(c) for all x ∈ ∗R such that x ≈ c, i. e., iff

f(hal(c)) ⊆ hal(f(c)).

Proof. The standard definition is that f is continuous at c iff
for each open interval (f(c) − ǫ, f(c) + ǫ) around f(c) in R there is
a corresponding open interval (c − δ, c + δ) around c that is mapped
into (f(c) − c, f(c) + c) by f . Since a < c < b, the number δ can
be chosen small enough so that the interval (c − δ, c + δ) is contained
within (a, b), ensuring that f is indeed defined at all points that are
within δ of c.

Continuity at c is thus formally expressed by the sentence

(∀ǫ ∈ R+)(∃δ ∈ R+)(∀x ∈ R) (|x−c| < δ → |f(x)−f(c)| < ǫ). (6.6.1)

Now suppose x ≈ c implies f(x) ≈ f(c). To show that (6.6.1) holds,
let ǫ be a positive real number. Then we have to find a real δ small
enough to fulfill (6.6.1). First we show that this can be achieved if
“small enough” is replaced by “infinitely small”, and then apply trans-
fer.

Let d is any positive infinitesimal.
Then for any x ∈ ∗R, if |x−c| < d, we have x ≈ c, hence f(x) ≈ f(c)

by assumption, so |f(x) − f(c)| < ǫ, as ǫ is real. Replacing d by an
existentially quantified variable, this shows that the sentence

(∃δ ∈ ∗R+)(∀x ∈ ∗R) (|x− c| < δ → |f(x)− f(c)| < ǫ)

is true. By downward transfer we then infer

(∃δ ∈ R+)(∀x ∈ R) (|x− c| < δ → |f(x)− f(c)| < ǫ),

proving (6.6.1).
Conversely, assume that (6.6.1) holds. Let ǫ be any positive real.

Then by (6.6.1) there is a positive δ ∈ R such that the sentence

(∀x ∈ R) (|x− c| < δ → |f(x)− f(c)| < ǫ)
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is true, and hence by upward transfer we have

(∀x ∈ ∗R) (|x− c| < δ → |f(x)− f(c)| < ǫ).

But now if x ≈ c in ∗R, then |x− c| < δ, and so by this last sentence

|f(x)− f(c)| < ǫ.

Since this holds for arbitrary ǫ ∈ R+, it follows that f(x) ≈ f(c).
In other words, the halo hal(c) is mapped by f into the interval

(f(c) − ǫ, f(c) + ǫ) for any positive real ǫ, and hence is mapped into
the halo hal(f(c)). �

An inspection of the first part of this proof reveals that in order
to establish the standard criterion for continuity at a point c it suf-
fices to know that f(x) ≈ f(c) for all x that are within some positive
infinitesimal distance d of c. Thus we have this stronger conclusion.

Corollary 6.6.2. The following are equivalent.

(1) f is continuous at c ∈ R;
(2) f(x) ≈ f(c) whenever x ≈ c.
(3) There is some positive d ≈ 0 such that f(x) ≈ f(c) when-

ever |x− c| < d.

6.7. Continuity in A

If A is a subset of the domain of a function f , then f is continuous on
the set A if it is continuous at all points c that belong to A. Sometimes
we would like A to be something other than an open interval (a, b), such
as a halfopen or closed interval (a, b], [a, b), or [a, b], or a union of such
sets. In this case the definition of continuity is modified to specify that
for each positive ǫ there is a corresponding δ such that f(x) belongs
to (f(c)− ǫ, f(c) + ǫ) whenever x is a point of A that belongs to

(c− δ, c+ δ).

In other words, the bounded quantification of x in sentence (6.6.1) is
restricted to the set A, and we say that f is continuous at all points c ∈
A if

(∀ǫ ∈ R+)(∀c ∈ A)(∃δ ∈ R+)(∀x ∈ A) (|x−c| < δ → |f(x)−f(c)| < ǫ).

Definition 6.7.1. The formula Φ(ǫ, f, A) with free variables ǫ, f, A
is the formula

(∀c ∈ A)(∃δ ∈ R+)(∀x ∈ A) (|x− c| < δ → |f(x)− f(c)| < ǫ). (6.7.1)
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Then continuity of f on A is expressed by the formula

(∀ǫ ∈ R+) Φ(ǫ, f, A).

Such a reformulation will be useful in analyzing uniform continuity in
Section 7.1.

Reworking the proofs of the above theorem and corollary, we obtain
the following hyperreal characterisation of continuity on A.

Theorem 6.7.2. The following are equivalent.

(1) f is continuous at c in A.
(2) f(x) ≈ f(c) for all x ∈ ∗A with x ≈ c.
(3) There is some positive d ≈ 0 such that f(x) ≈ f(c) for all x ∈

∗A with |x− c| < d.

It would be natural at this point to ask whether continuity of f
on A entails that the condition f(hal(c)) ⊆ hal(f(c)) must hold for
all points c ∈ ∗A and not just the real ones. It turns out that this
need not be so: it is a stronger requirement, which, remarkably, is
equivalent to the standard notion of uniform continuity. We take this
up in Section 7.1.

6.8. Continuity of the sine function

To illustrate the use of Theorem 6.6.1, let c be real and x ≈ c.
Then x = c+ ǫ for an infinitesimal ǫ, and

sin x− sin c = sin(c+ ǫ)− sin c

= sin c cos ǫ+ cos c sin ǫ− sin c

= sin c(cos ǫ− 1) + cos c sin ǫ

= an infinitesimal,

since cos c ≈ 1 and sin ǫ ≈ 0 while sin c and cos c are real. Hence sin x ≈
sin c. This proves that the sine function is continuous at all c ∈ R.

Note that in this proof we used the addition formula

sin(c+ ǫ) = sin c cos ǫ+ cos c sin ǫ.

This holds for all real numbers, and hence by transfer it holds for all
hyperreals.

6.9. The Intermediate Value Theorem

This fundamental result of standard real analysis states the follow-
ing.
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Theorem 6.9.1. If the real function f is continuous on the closed
interval [a, b] in R, then for every real number d strictly between f(a)
and f(b) there exists a real c ∈ (a, b) such that f(c) = d.

There is an intuitively appealing proof of this using infinitesimals.
The basic idea is to partition the interval [a, b] into subintervals of equal
infinitesimal width, and locate a subinterval whose end points have f -
values on either side of d. Then c will be the common shadow of these
end points. In this way we “pin down” the point at which the f -values
pass through d.

Proof. We deal with the case f(a) < f(b), so that f(a) < d <
f(b). First, for each finite n ∈ N, partition [a, b] into n equal subinter-
vals of width (b− a)/n. Thus these intervals have end points

pk = a+
k(b− a)

n
for 0 ≤ k ≤ n. Then let sn be the greatest partition point whose f -
value is less than d. Indeed, the set

{pk : f(pk) < d}
is finite and nonempty (it contains p0 = a but not pn = b). Hence sn
exists as the maximum of this set, and is given by some pk with k < n.

Now, for all n ∈ N we have

a ≤ sn < b and f(sn) < d ≤ f(sn + (b− a)/n),

and so by transfer, these conditions hold for all n ∈ ∗N. To obtain
an infinitesimal-width partition, choose an infinite hypernatural H.
Then sH is finite, as a ≤ sH < b, so has a shadow c = sh(sH) ∈ R.

Here by transfer, sH is a number of the form a + K(b − a)/H for
some K ∈ ∗N). But (b−a)/H is infinitesimal, so sH and sH +(b−a)/H
are both infinitely close to c. Since f is continuous at c and c is real, it
follows by Theorem 6.6.1 that f(sH) and f(sH + (b− a)/H) are both
infinitely close to f(c). But

f(sH) < d ≤ f(sH + (b− a)/H),

so d is also infinitely close to f(c). Since f(c) and d are both real, they
must then be equal. �

6.10. The Extreme Value Theorem

Theorem 6.10.1. If the real function f is continuous on the closed
interval [a, b] in R, then f attains an absolute maximum and an absolute
minimum on [a, b], i.e., there exist real c, d ∈ [a, b] such that

f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].
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Proof. To obtain the asserted maximum we construct an infini-
tesimal width partition of [a, b] , and show that there is a particular
partition point whose f -value is as big as any of the others. Then d
will be the shadow of this particular partition point. As with the inter-
mediate value theorem, the construction is first approximated by finite
partitions with subintervals of standard width 1

n
. In these cases there

is always a partition point with maximum f -value. Then transfer is
applied.

For each finite n ∈ N, we partition [a, b] into n equal subintervals,
with end points a+ k(b− a)/n for 0 ≤ k ≤ n. Then let sn ∈ [a, b] be a
partition point at which f takes its largest value. In other words, for
all integers k such that 0 ≤ k ≤ n,

a ≤ sn ≤ b and f(a+ k(b− a)/n) ≤ f(sn) (6.10.1)

By transfer, (6.10.1) holds for all n ∈ ∗N and all hyperintegers k such
that

0 ≤ k ≤ n.

Similarly to the intermediate value theorem, choose an infinite hyper-
natural N and put d = sh(sN) ∈ R. Then by continuity

f(sN) ≈ f(d). (6.10.2)

Definition 6.10.2. The infinitesimal-width partition P is

P = {a+ k(b− a)/N : k ∈ ∗N and 0 ≤ k ≤ N}
The partition P has the important property that it provides infin-

itely close approximations to all real numbers between a and b. The
halo of each x ∈ [a, b] contains points from this partition. To show
this, observe that if x is an arbitrary real number in [a, b], then for
each n ∈ N there exists an integer k < n with

a+
k(b− a)

n
≤ x ≤ a+

(k + 1)(b− a)

n
.

Hence by transfer there exists a hyperinteger K < N such that x
lies in the interval

[

a+
K(b− a)

N
, a+

(K + 1)(b− a)

N

]

of infinitesimal width (b−a)/N . Therefore x ≈ a+K(b−a)/N , so x is
indeed infinitely close to a member of P . It follows by continuity of f
at x that

f(x) ≈ f

(

a+K(b− a)

N

)

(6.10.3)
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But the values of f on P are dominated by f(sN), as (6.10.1) holds for
all n ∈ ∗N, so

f(a+K(b− a)/N) ≤ f(sN) (6.10.4)

Putting (6.10.2), (6.10.3), and (6.10.4) together gives

f(x) ≈ f

(

a+
K(b− a)

N

)

≤ f(sN) ≈ f(d),

which implies f(x) ≤ f(d), since f(x) and f(d) are real. Thus f
attains its maximum value at d. The proof that f attains a minimum
is similar. �



CHAPTER 7

Uniform continuity and convergence, derivatives

7.1. Uniform Continuity, LSEQ operator

Let A ⊆ R and f : A → R. Traditionally, the uniform continuity
of f on A is defined as follows.

Definition 7.1.1. The function f is uniformly continuous on A if
the following sentence is true:

(∀ε ∈ R+)(∃δ ∈ R+)(∀x, y ∈ A) (|x− y| < δ → |f(x)− f(y)| < ε).

This definition should be compared to the formal sentence just prior
to Theorem 6.7.2. Essentially, this says that for a given ε, the same δ
for the continuity condition works at all points of A. More precisely,
consider the formula Φ(ǫ, f, A) of (6.7.1):

(∀c ∈ A)(∃δ ∈ R+)(∀x ∈ A) (|x− c| < δ → |f(x)− f(c)| < ǫ). (7.1.1)

Continuity of f in A is expressed by

(∀ǫ ∈ R+) Φ(ǫ, f, A). (7.1.2)

Definition 7.1.2 (LSEQ). Let Ψ be a formula containing one
occurrence of the existence quantifier. The transformation of Ψ, de-
noted LSEQ(Ψ) (for “leftward shift of the existence quantifier”) con-
sists in shifting the existence quantifier in Ψ all the way to the left of
the formula.

Example 7.1.3. Applied to formula Φ of (7.1.1), LSEQ produces
formula LSEQ(Φ) given by

(∃δ ∈ R+)(∀c ∈ A)(∀x ∈ A) (|x− c| < δ → |f(x)− f(c)| < ǫ).

Then uniform continuity of f on A can be presented as follows:

(∀ε ∈ R+) LSEQ(Φ(ǫ, f, A)).

This formula strengthens the condition of continuity (7.1.2).

73
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The LSEQ operator may be useful in clarifying the axiom of Ideal-
isation.1

Theorem 7.1.4. A function f is uniformly continuous on A if and
only if x ≈ y implies f(x) ≈ f(y) for all hyperreals x, y ∈ ∗A.

Proof. Exercise.2

Remark 7.1.5. This theorem displays the distinction between uni-
form and ordinary continuity in a more intuitive and readily com-
prehensible way than the traditional definitions do. For by Theo-
rem 7.1.4, f is continuous on A ⊆ R iff x ≈ y implies f(x) ≈ f(y)
for x, y ∈ ∗A with y standard. Thus uniform continuity amounts to
preservation of the “infinite closeness” relation ≈ at all hyperreal points
in the enlargement ∗A of A, while continuity only requires preservation
of this relation at the real points.

Theorem 7.1.6. If the real function f is continuous on the closed
interval [a, b] ⊆ R, then f is uniformly continuous on [a, b].

Proof. Take hyperreals x, y ∈ ∗[a, b] with x ≈ y. Let c = sh(x).
Then since a ≤ x ≤ b and x ≈ c, we have c ∈ [a, b]. By hypothe-
sis, f is continuous at c. Applying Theorem 6.6.1, we get f(x) ≈ f(c)
and f(y) ≈ f(c), whence f(x) ≈ f(y). Hence f is uniformly continuous
by Theorem 7.1.4. �

7.2. Permanence principles

One of the distinctive features of nonstandard analysis is the pres-
ence of so-called permanence principles, which assert that

certain functions must exist, or be defined, on a larger
domain than that which is originally used to define
them.

For instance, any real function f : A → R automatically extends
to the enlargement ∗A of its real domain A. In discussing continuity
of a real function f at a real point c, we may want (the extension

1Consider the following axiom of Countable Idealisation (CI) in an axiomatic set
theory such as IST, BST, or SPOT (here CI is somewhat analogous to saturation;
see Section 9.5). Let φ be an ∈-formula with arbitrary parameters. Then

∀stn ∈ N ∃x ∀m ∈ N (m ≤ n→ φ(m,x)) ↔ ∃x ∀stn ∈ N φ(n, x). (7.1.3)

Now let Ψ be the formula ∀stn ∈ N ∃x ∀m ∈ N (m ≤ n→ φ(m,x)). The axiom of
Countable Idealisation can then be reformulated as the implication Φ→ LSEQ(Ψ).
Here LSEQ(Ψ) is of course equivalent to the right-hand side of (7.1.3).

2This is proved in Section 7.1 of https://u.math.biu.ac.il/~katzmik/tidg.
pdf

https://u.math.biu.ac.il/~katzmik/tidg.pdf
https://u.math.biu.ac.il/~katzmik/tidg.pdf
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of) f to be defined at points infinitely close to c. For this it suffices
that f be defined on some real neighbourhood (c − ε, c + ε) in R, for
then the domain of the extension of f includes the enlarged interval
∗(c− ε, c+ ε), which contains the halo hal(c) of c. But the converse of
this is also true:

Proposition 7.2.1. If the extension of f is defined on hal(c),
then f must be defined on some real interval of the form (c− ε, c+ ε),
and hence on ∗(c− ε, c+ ε).

In fact, it can be shown that for this last conclusion it suffices that f
be defined on some hyperreal interval (c − d, c + d) of infinitesimal
radius d. This is our first example of a permanence statement that
is sometimes called Cauchy’s principle. It asserts that if a property
holds for all points within some infinitesimal distance of c, then it
must actually hold for all points within some real (hence appreciable)
distance of c.

Proof of Proposition 7.2.1. At present we can show this for
the transforms of properties expressible in the formal language LR.
Let φ(x) be a formula of this language for which there is some posi-
tive d ≈ 0 such that

∗φ(x) is true for all hyperreal x with c− d < x < c+ d.

Then the sentence

(∃y ∈ ∗R+)(∀x ∈ ∗R) (|x− c| < y → ∗φ)

is seen to be true by interpreting y as d. But then by downward transfer
there is some real ε > 0 such that

(∀x ∈ R)(|x− c| < ε→ φ),

so that φ is true throughout (c − ε, c + ε) in R. Hence by upward
transfer back to ∗R,

(∀x ∈ ∗R)(|x− c| < ǫ→ ∗φ),

showing that

∗φ(x) is true for all hyperreal x with c− ε < x < c+ ε.

This completes the proof of the proposition. �

Remark 7.2.2. In this argument c is a real number. Later it will
be shown that permanence works for any hyperreal number in place
of c, and applies to a broader class of properties than those expressible
in the language LR.
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7.3. Pointwise and uniform convergence of 〈fn〉
Let 〈fn : n ∈ N〉 be a sequence of functions fn : A→ R defined on

some subset A ⊆ R.

Definition 7.3.1. The sequence is said to converge pointwise to
the function f : A→ R if for each x ∈ A the R-valued sequence 〈fn(x) :
n ∈ N〉 converges to the number f(x).

Symbolically, this asserts that

(∀x ∈ A) lim
n→∞

fn(x) = f(x),

which is rendered in full by the sentence

(∀x ∈ A)(∀ε ∈ R+)(∃m ∈ N)(∀n ∈ N) (n > m→ |fn(x)− f(x)| < ε).

In this statement, the integer m that is asserted to exist depends on
the choice of x ∈ A as well as on ε. The stronger property is that of
uniform convergence.

Definition 7.3.2. We say that 〈fn : n ∈ N〉 converges uniformly
to the function f if m depends only on ε in the sense that for a given ε,
the same m works for all x ∈ A:

(∀ε ∈ R+)(∃m ∈ N)(∀x ∈ A)(∀n ∈ N)(n > m→ |fn(x)− f(x)| < ε).

Now, we know how to extend a sequence of numbers to a hyperse-
quence but at this point we would like to do the same for a sequence
of functions. For n ∈ N, the function fn extends to a function with do-
main ∗A, but we would like to define fn : ∗A→ ∗R also for infinite rank n.
To achieve this we first identify the original sequence (fn : n ∈ N) of
functions with the single function

F : N× A→ R

defined by setting F (n, x) = fn(x) for all n ∈ N and x ∈ A. This
function F has an extension

∗F : ∗N× ∗A→ ∗R,

which can then be used to define fn : ∗A → ∗R by setting fn(x) =
∗F (n, x).

Thus we now have a hypersequence of functions (fn : n ∈ ∗N) as
required.

Lemma 7.3.3. For each standard integer n ∈ N, the new construc-
tion of fn just reproduces the extension of the original function fn.
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Proof. Let n be a standard integer. We apply upward transfer to

(∀x ∈ A) (fn(x) = F (n, x)),

proving the lemma. �

Moreover, for each x ∈ A, the real-number sequence s = 〈fn(x) :
n ∈ N〉 has as its extension the hypersequence 〈fn(x) : n ∈ ∗N〉. This
follows by transfer of

(∀n ∈ N)(s(n) = F (n, x)).

In view of the characterisation of converging number sequences
given above we can thus immediately infer the following result.

Theorem 7.3.4 (Characterisation of pointwise convergence). The
sequence (fn : n ∈ N) of real-valued functions defined on A ⊆ R con-
verges pointwise to the function f : A→ R if and only if for each x ∈ A
and each infinite n ∈ ∗N, one has fn(x) ≈ f(x).

On the other hand, we have the following characterisation of uni-
form convergence.

Theorem 7.3.5. A sequence (fn : n ∈ N) converges uniformly
to the function f : A → R if and only if for each x ∈ ∗A and each
infinite n ∈ ∗N, fn(x) ≈ f(x).

Proof. Exercise.
The ideas underlying this characterisation are well illustrated by

the following example.

Example 7.3.6. Consider the behaviour of the sequence (fn : n ∈
N) given by fn(x) = xn on A = [0, 1]. This converges pointwise to the
function f that is constantly zero on [0, 1) and has f(1) = 1:

f(x) =

{

0 if 0 ≤ x < 1

1 if x = 1

Thus when x < 1, the sequence (xn : n ∈ N) converges to 0, but
as x moves towards 1 the rate of convergence slows down, in the sense
that for a fixed ε ∈ R+, as x approaches 1 we have to move further and
further along the sequence of powers of x before reaching a point where
the terms are less than ε. Ultimately, when x becomes infinitely close
to 1 (but still less than 1), it takes “infinitely long” for xn to become
infinitely close to 0. Indeed, by transferring the statement of pointwise
convergence and taking ε to be a positive infinitesimal, it follows that
there will be some M ∈ ∗N such that for n > M we have xn < ε and
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hence xn ≈ 0 for this fixed x infinitely close to 1. Note that since x < 1
we have f(x) = 0.

Now, this M will be infinite, because when n is finite, x ≈ 1 im-
plies xn ≈ 1. Hence

the set {xn : n ∈ N} is contained entirely within the halo of 1.

But there is a permanence principle3 that concludes from this that

there is some infinite H such that {xn : n ≤ H} is
contained in the halo of 1

(cf. Robinson’s sequential lemma to be treated below). In particu-
lar, xH 6≈ 0, i.e.,

fH(x) 6≈ f(x),

showing that the condition of Theorem 7.3.5 is violated, and therefore
that the original standard sequence (fn : n ∈ N) is not uniformly
convergent to f .

7.4. Continuity of a Uniform Limit

A sequence 〈fn : n ∈ N〉 of continuous functions can converge point-
wise to a discontinuous function. We have just discussed the standard
example: take fn(x) = xn on A = [0, 1]. Under the hypothesis of uni-
form convergence this phenomenon cannot occur. We now present a
hyperreal approach to this classical result.

Theorem 7.4.1. If the functions 〈fn : n ∈ N〉 are all continuous
on A ⊆ R, and the sequence converges uniformly to the function f :
A→ R, then f is continuous on A.

Proof. Let c belong to A. To prove that f is continuous at c, we
invoke Theorem 6.7.2 (hyperreal characterisation of continuity). If x ∈
∗A with x ≈ c, we need to prove f(x) ≈ f(c), i.e., |f(x)− f(c)| < ε for
any positive real ε. The key to this is to analyse the inequality

|f(x)−f(c)| ≤ |f(x)−fn(x)|+ |fn(x)−fn(c)|+ |fn(c)−f(c)|. (7.4.1)

On the right-hand side of the inequality, the middle term |fn(x)−fn(c)|
will be infinitesimal for any n ∈ N because x ≈ c and fn is continuous
at c.

We will show that by taking a large enough n, the first and last
terms on the right can be made small enough that the sum of the three
terms is less than ε.

3The property of lying in a halo is not expressible in the language LR that we
have developed so far.
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To see how this works in detail, for a given ε ∈ R+ we apply the
definition of uniform convergence as follows. We apply the definition
to the number ε/4 to get that there is some integer m ∈ N such that

n > m implies |fn(x)− f(x)| < ε/4

for all n ∈ N and all x ∈ A, and hence for all n ∈ ∗N and all x ∈ ∗A by
upward transfer.

Now fix n as a standard integer, say by setting n = m + 1. Then
for any x ∈ ∗A with x ≈ c it follows, since x, c ∈ ∗A, that

|fn(x)− f(x)|, |fn(c)− f(c)| < ε/4,

and so in (7.4.1) we get

|f(x)− f(c)| < ε/4 + infinitesimal + ε/4 < ε

as required. �

Remark 7.4.2. This proof is a combination of standard and non-
standard arguments: it uses the hyperreal characterisation of conti-
nuity of fn and f , but the standard definition of uniform convergence
of (fn : n ∈ N) rather than the characterisation given by Theorem 7.3.5.

7.5. The derivative

We come now to an examination – from the modern infinitesimal
perspective – of the cornerstone concept of the calculus.

The derivative of a function f at a real number x is the real num-
ber f ′(x) that represents the rate of change of the function as it varies
near x. Alternatively, it is the slope of the tangent to the graph of f
at x. Formally it is defined as the number

lim
h→0

f(x+ h)− f(x)

h
.

Theorem 7.5.1. If f is defined at x ∈ R, then the real num-
ber L ∈ R is the derivative of f at x if and only if for every nonzero
infinitesimal ε, f(x+ ε) is defined and

f(x+ ε)− f(x)

ε
≈ L.

Proof. Let g(h) = f(x+h)−f(x)
h

and apply the characterisation of
the expression

“ lim
h→0

g(h) = L” (7.5.1)

given earlier.4 �

4Specify where @@.
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Remark 7.5.2 (Shadow). When f is differentiable (i.e., has a de-
rivative) at x, we have

f ′(x) = sh

(

f(x+ ε)− f(x)

ε

)

for all infinitesimal ε 6= 0.

If (7.5.1) holds only for all positive infinitesimal ε, then L is the
right-hand derivative of f at x, defined classically as

lim
h→0+

f(x+ h)− f(x)

h
.

Similarly, if (7.5.1) holds for all negative c ≈ 0, then L is the left-hand
derivative given by the limit as h→ 0−.

7.6. Increments and Differentials

Let ∆x denote an arbitrary nonzero infinitesimal representing a
change or increment in the value of variable x. The corresponding
increment in the value of the function y = f(x) at x is

∆y = f(x+ ∆x)− f(x).

To be explicit we should denote this increment by ∆y(x,∆x), since
its value depends both on the value of x and the choice of the infin-
itesimal ∆x. This notation will be exploited in (7.8.1). The more
abbreviated notation is, however, convenient and suggestive. If f is
differentiable at x ∈ R, Theorem 7.5.1 implies that

∆y

∆x
≈ f ′(x),

so the quotient ∆y
∆x

is finite. Hence as

∆y =
∆y

∆x
∆x,

it follows that the increment ∆y in f is infinitesimal. Thus f(x+∆x) ≈
f(x) for all infinitesimal ∆x, and this proves the following result.

Theorem 7.6.1. If f is differentiable at x ∈ R, then f is continuous
at x.

Definition 7.6.2. The differential of f at x corresponding to ∆x
is defined to be dy = f ′(x)∆x.

Thus whereas ∆y represents the increment of the “y-coordinate”
along the graph of f at x, the differential dy represents the increment
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along the tangent line to this graph at x. Writing dx for ∆x, the
definition of dy yields

dy

dx
= f ′(x).

Now, since f ′(x) is finite and ∆x is infinitesimal, it follows that dy is
infinitesimal. Hence dy and ∆y are infinitely close to each other. In
fact, their difference is infinitely smaller than ∆x, for if

ε =
∆y

∆x
− f ′(x),

then ε is infinitesimal, because ∆y
∆x
≈ f ′(x), and

∆y − dy = ∆y − f ′(x)∆x = ε∆x,

which is also infinitesimal (being a product of infinitesimals). But

∆y − dy
∆x

=
ε∆x

∆x
≈ 0,

and in this sense ∆y − dy is infinitesimal compared to ∆x. These
relationships are summarised in the following theorem.

Theorem 7.6.3. [Incremental Equation] If f ′(x) exists at real x
and ∆x = dx is infinitesimal, then ∆y and dy are infinitesimal, and
there is an infinitesimal ε, dependent on x and ∆x, such that

∆y = f ′(x)∆x+ ε∆x = dy + εdx,

and so
f(x+ ∆x) = f(x) + f ′(x)∆x+ ε∆x.

This last equation elucidates the role of the derivative function f ′

as the best linear approximation to the function f at x. For the graph
of the linear function

l(∆x) = f(x) + f ′(x)∆x

gives the tangent to f at x when the origin is translated to the point (x, 0),
and l(∆x) differs from f(x + ∆x) by the amount ε∆x, which we saw
above is itself infinitely smaller than ∆x when ∆x is infinitesimal, and
in that sense is “negligible”.

7.7. Rules for Derivatives

Theorem 7.7.1. If f and g are differentiable at x ∈ R, then so are
the functions f + g, fg, and f/g, provided that g(x) 6= 0. Moreover,

(1) (f + g)′(x) = f ′(x) + g′(x),
(2) (fg)′(x) = f ′(x)g(x) + f(x)g′(x),

(3) (f/g)′(x) = f ′(x)g(x)−f(x)g′(x)
g(x)2

.
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Proof. We prove Leibniz’s rule (2), and leave the others as exer-
cises. If ∆x 6= 0 is infinitesimal, then, by Theorem 7.5.1, f(x + ∆x)
and g(x+ ∆x) are both defined, and hence so is

(fg)(x+ ∆x) = f(x+ ∆x) g(x+ ∆x).

Then the increment of fg at x corresponding to ∆x is

∆(fg) = f(x+ ∆x)g(x+ ∆x)− f(x)g(x)

= (f(x) + ∆f)(g(x) + ∆g)− f(x)g(x)

= (∆f)g(x) + f(x)∆g + ∆f∆g

It follows that

∆(fg)

∆x
=

∆f

∆x
g(x) + f(x)

∆g

∆x
+ ∆f

∆g

∆x
≈ f ′(x)g(x) + f(x)g′(x) + 0,

since ∆f
∆x
≈ f ′(x), ∆g

∆x
≈ g′(x), ∆f ≈ 0 and all quantities involved are

finite. Hence by Theorem 7.5.1, the expression f ′(x)g(x) + f(x)g′(x)
is the derivative of fg at x. �

7.8. Chain Rule

Theorem 7.8.1. If f is differentiable at x ∈ R, and g is dif-
ferentiable at f(x), then g ◦ f is differentiable at x with derivative
g′(f(x))f ′(x).

Proof. Let ∆x be a nonzero infinitesimal. Then f(x + ∆x) is
defined and f(x+ ∆x) ≈ f(x). But g is defined at all points infinitely
close to f(x), since g′(f(x)) exists, so (g ◦ f)(x+ ∆x) = g(f(x+ ∆x))
is defined. �

Now let

∆f = f(x+ ∆x)− f(x),

∆(g ◦ f) = g(f(x+ ∆x))− g(f(x))

be the increments of f and g ◦ f at x corresponding to ∆x. Then ∆f
is infinitesimal, and

∆(g ◦ f) = g(f(x) + ∆f)− g(f(x)),

which shows, crucially, that

∆(g ◦ f) is also the increment of g at f(x) corresponding to ∆f.

In the full incremental notation, this reads

∆(g ◦ f)(x,∆x) = ∆g(f(x),∆f). (7.8.1)
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By the incremental equation (Theorem 7.6.3) for g, it then follows that
there exists an infinitesimal ε such that

∆(g ◦ f) = g′(f(x))∆f + ε∆f.

Hence

∆(g ◦ f)

∆x
= g′(f(x))

∆f

∆x
+ ε

∆f

∆x
≈ g′(f(x))f ′(x) + 0,

establishing that g′(f(x))f ′(x) is the derivative of g ◦ f at x.

7.9. Critical Point Theorem

Theorem 7.9.1. Let f have a maximum or a minimum at x on
some real interval (a, b). If f is differentiable at x, then f ′(x) = 0.

Proof. Suppose f has a maximum at x. By transfer,

f(x+ ∆x) ≤ f(x)

for all infinitesimal ∆x. Hence if ε is positive infinitesimal and δ is
negative infinitesimal,

f ′(x) ≈ f(x+ ε)− f(x)

ε
≤ 0 ≤ f(x+ δ)− f(x)

δ
≈ f ′(x),

and so as f ′(x) is real, it must be equal to 0. The case of f having a
minimum at x is similar. �

Using the critical point and extreme value theorems, the following
results can be successively derived about a function f that is continuous
on [a, b] ⊆ R and differentiable on (a, b). The proofs do not require any
further reasoning about infinitesimals or limits.

Theorem 7.9.2 (Rolle’s Theorem). If f(a) = f(b) = 0, then f ′(x) =
0 for some x ∈ (a, b).

Theorem 7.9.3 (Mean Value Theorem). For some x ∈ (a, b), f ′(x) =
f(b)−f(a)

b−a
.

Theorem 7.9.4. If f ′ is zero/positive/negative on (a, b), then f is
constant/increasing/decreasing on [a, b].

7.10. Inverse function theorem

The material in this section is optional.

Lemma 7.10.1. The inverse x = g(y) of a continuous strictly monotone
function f(x) is continuous at y.
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Proof. Using the intermediate value theorem and monotonicity of f it
can be shown that g is defined on some real open interval around y. Let ∆y
be a nonzero infinitesimal. Now, if g(y+∆y) were not infinitely close to g(y),
then there would be a real number r on the x-axis strictly between them.
But then, by monotonicity of would be a real number on the y-axis strictly
between y + ∆y and y. Since y is real, this would mean that y + ∆y and y
were an appreciable distance apart, which is not so. Hence

∆x = g(y + ∆y)− g(y)

is infinitesimal and is nonzero. This establishes that g is continuous at y. �

Theorem 7.10.2. Let f be continuous and strictly monotone (increasing
or decreasing) on (a, b), and suppose g is the inverse function of f . If f is
differentiable at x in (a, b), with f ′(x) 6= 0, then g is differentiable at y =
f(x), with g′(y) = 1

f ′(x) .

Proof. The result g′(f(x)) = 1/f ′(x) would follow easily by the chain
rule applied to the equation g(f(x)) = x if we knew that g was differentiable
at f(x). But that is what we have to prove!

We need to show that

g(y + ∆y)− g(y)

∆y
≈ 1

f ′(x)
.

Observe that ∆x is, by definition, the increment ∆g(y,∆y) of g at y corre-
sponding to ∆y. Since g(y) = x, the last equation gives

g(y + ∆y) = x + ∆x,

so

f(x + ∆x) = f(g(y + ∆y)) = y + ∆y.

Hence

∆y = f(x + ∆x)− f(x) = ∆f,

the increment of f at x corresponding to ∆x. Altogether we have

∆f(x,∆x)

∆x
=

∆y

∆x

and
∆g(y,∆y)

∆y
=

∆x

∆y
=

∆x

∆f
.

Put more briefly, we have shown that

∆g

∆y
=

1

∆f/∆x
.

To derive from this the conclusion g′(y) = 1
f ′(x) , we invoke the hypothe-

sis that f ′(x) 6= 0 (which is essential: consider what happens at x = 0
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when f(x) = x3). Since sh(∆f/∆x) = f ′(x), it follows that ∆f/∆x is
appreciable. But then

sh

(

∆x

∆f

)

= sh

(

1

∆f/∆x

)

=
1

f ′(x)
.

Therefore,
∆g

∆y
=

∆x

∆y
≈ 1

f ′(x)
.

Because ∆y is an arbitrary nonzero infinitesimal, this establishes that the
real number 1/f ′(x) is the derivative of g at y, as required. �





CHAPTER 8

Internal sets, external sets, and transfer

8.1. Internal sets

In the construction of ∗R as an ultrapower in Section 2.9, each
sequence of points r = 〈rn : n ∈ N〉 in R gives rise to the single
point [r] of ∗R, which we also denote by the more informative sym-
bol [rn]. Equality of ∗R-points is given by

[rn] = [sn] iff {n ∈ N : rn = sn} ∈ F.
This description works for other kinds of entities than points. We will
show that

• a sequence of subsets of R determines a single subset of ∗R;
• a sequence of functions on R determines a single function

on ∗R.

Definition 8.1.1. An internal set in ∗R is given by the following
construction. Given a sequence 〈An : n ∈ N〉 of subsets An ⊆ R, define
a subset [An] ⊆ ∗R by specifying, for each [rn] ∈ ∗R,

[rn] ∈ [An] iff {n ∈ N : rn ∈ An} ∈ F.
It must be checked that this is a well-defined notion that does not

depend on how points are named, which means that if [rn] = [sn] then

{n ∈ N : rn ∈ An} ∈ F iff {n ∈ N : sn ∈ An} ∈ F.
This is a slight extension of the argument given in Section 2.9.

Remark 8.1.2. A first application will be an internal well-order
principle for ∗N; see Section 8.4.

Here are some examples.

Example 8.1.3. If 〈An〉 is a constant sequence with An = A ⊆ R
for all n ∈ N, then the internal set [An] is just the enlargement ∗A of A
defined in Section 3.1. Hence we may also denote ∗A as [A].

Corollary 8.1.4. The enlargement of any subset of R is an in-
ternal subset of ∗R.

87
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In particular, we see that ∗N, ∗Z, and ∗Q and ∗R itself are all inter-
nal, as is any finite subset A ⊆ R, since in that case A = ∗R.

Example 8.1.5. More generally, any finite set X = {[r1n], . . . , [rkn]}
of hyperreals is internal, for then X = [An], where An = {r1n, . . . , rkn}.

Example 8.1.6. If a < b in ∗R, then the hyperreal open interval

(a, b) = {x ∈ ∗R : a < x < b}

is internal. Indeed, if a = [an] and b = [bn], then (a, b) is the internal set
defined by the sequence 〈(an, bn) : n ∈ N〉 of real intervals (an, bn) ⊆ R.
This follows because

[an] < [rn] < [bn] iff {n ∈ N : an < rn < bn} ∈ F.

Similarly, the hyperreal intervals (a, b], [a, b), [a, b], and {x ∈ ∗R : a <
x} are internal.

Remark 8.1.7. If a is positive infinite, then each of these intervals
is disjoint from R, so none of them can be the enlargement ∗A of a
set A ⊆ R, since ∗A always includes the (real) members of A.

Example 8.1.8. If H ∈ ∗N, then the set

{k ∈ ∗N : k ≤ H} = {1, 2, . . . , H}

is internal. If H = [Hn], then this is the internal set [An], where

An = {k ∈ N : k ≤ Hn} = {1, 2, . . . , Hn}

(since H ∈ ∗N, we have {n : Hn ∈ N} ∈ F , so we may as well as-
sume Hn ∈ N for all n ∈ N).

Example 8.1.9. If H = [Hn] ∈ ∗N, then the set

{

k

H
: k ∈ ∗N ∪ {0} and k ≤ H

}

=

{

0,
1

H
,

2

H
, . . .

H − 1

H
, 1

}

is the internal set [An], where

An =

{

0,
1

Hn

,
2

Hn

, . . . ,
Hn − 1

Hn

, 1

}

These last two examples illustrate the notion of hyperfinite set,
which will be studied in Section 13.8.
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8.2. Algebra of internal sets

Theorem 8.2.1. Internal sets have the following properties:

(1) The collection of internal sets is closed under the standard
finite set operations ∩, ∪, and −, with

[An] ∩ [Bn] = [An ∩ Bn],

[An] ∪ [Bn] = [An ∪ Bn],

[An]− [Bn] = [An − Bn].

(2) [An] ⊆ [Bn] iff {n ∈ N : An ⊆ Bn} ∈ F .
(3) [An] = [Bn] iff {n ∈ N : An = Bn} ∈ F .
(4) [An] 6= [Bn] iff {n ∈ N : An 6= Bn} ∈ F .
Proof. (1) Exercise.
(2) If [An] 6⊆ [Bn], then there is some hyperreal [rn] ∈ [An] − [Bn],

so by (1) we have

I = {n ∈ N : rn ∈ An −Bn} ∈ F.
Define J by

J = {n ∈ N : An ⊆ Bn}.
Then I ⊆ J c, so J c ∈ F and hence J 6∈ F .

Conversely, if J 6∈ F , then J c ∈ F , so choosing rn ∈ An − Bn for
each n ∈ J c and rn arbitrary for n ∈ J , the argument reverses to give
a point [rn] ∈ [An]− [Bn].

(3) This follows from (2) and closure properties of F .1

(4) Exercise. �

Part (3) above is important for what it says about the sequence
〈An : n ∈ N〉 that determines a certain internal set. We can replace
this sequence by another 〈Bn : n ∈ N〉 without changing the resulting
internal set, provided that An = Bn for F -almost all n. Thus we are
free to alter An arbitrarily when n is outside a set that belongs to F .
For instance, if [An] is nonempty, then as ∅ = [∅], we can assume
that An 6= ∅ for every n ∈ N while if [An] is a subset of ∗N, then
as ∗N = [N], we can assume that An ⊆ N for every n. Moreover, we
can combine finitely many such conditions, using the closure of F under
finite intersections.

Corollary 8.2.2. If [An] is a nonempty subset of ∗N, we can as-
sume that ∅ 6= An ⊆ N for every n ∈ N.

1Note that the result is not a matter of the definition of [An] via F , since
equality of [An] and [Bn] is defined independently of F to mean “having the same
members”.
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8.3. Subsets of Internal Sets

The fact that the intersection of two internal sets is internal allows
us to prove the following result.

Theorem 8.3.1. If a set A of real numbers is internal, then so is
every subset of A.

Proof. Let X ⊆ A. Then ∗X is internal, so if A is internal, then
so is A ∩ ∗X. But since A ⊆ R,

A ∩ ∗X = A ∩ ∗X ∩ R = A ∩X
so X = A ∩X is internal. �

This result will be used in Section 9.2 to show that actually the
only internal subsets of R are the finite ones.

8.4. Internal Least Number Principle

A characteristic feature of N is that each of its nonempty subsets
has a least member.2 The same is not true, however, for ∗N. Namely
the set ∗N− N of infinite hypernaturals has no least member, for if H
is infinite, then so is H − 1. But we do have the following result.

Theorem 8.4.1. Any nonempty internal subset of ∗N has a least
member.

Proof. Let [An] be a nonempty internal subset of ∗N. Then by
Corollary 8.2.2, we can assume that An is nonempty for each n ∈ N,
and so An has a least member rn . This defines a point [rn] ∈ ∗R with

{n ∈ N : rn ∈ An} = N ∈ F,
so [rn] ∈ [An]. Moreover, if [sn] ∈ [An], then

{n ∈ N : sn ∈ An} ∈ F and {n ∈ N : sn ∈ An} ⊆ {n ∈ N : rn ≤ sn},
leading to the conclusion [rn] ≤ [sn] in ∗R. Hence [An] indeed has a
least member, namely the hyperreal number [rn] determined by the
sequence of least members of the sets An. Writing “min X” for the
least element of a set X, this construction can be expressed concisely
by the equality

min[An] = [minAn].

�

2Indeed this holds for any subset of Z that has a lower bound.
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8.5. Internal induction

The least number principle for N is equivalent to the following prin-
ciple of induction.

A subset of N that contains 1 and is closed under the
successor function n 7→ n+ 1 must be equal to N.

The corresponding assertion about subsets of ∗N is not in general
true, and can only be derived for internal sets, as follows.

Theorem 8.5.1 (Internal Induction). If X is an internal subset
of ∗N that contains 1 and is closed under the successor function n 7→
n+ 1, then X = ∗N.

Proof. Let Y = ∗N−X. Then Y is internal so if it is nonempty,
it has a least element n. Then n 6= 1, as 1 ∈ X, so n − 1 ∈ ∗N. But
now n − 1 6∈ Y , as n is least in Y, so n − 1 ∈ X, and therefore n =
(n−1)+1 is in X by closure under successor. This contradiction forces
us to conclude that Y = ∅, and so X = ∗N. �

8.6. The Overflow Principle

The set N cannot be internal, or else by internal induction it would
be equal to ∗N. Thus if an internal set X contains all members of N,
then since X cannot be equal to N, it must “overflow” into ∗N−N. This
explains the term overflow principle.3 Indeed, we will see that X must
contain the initial segment of ∗N up to some infinite hypernatural. In
fact, a slightly stronger statement than this can be demonstrated by
assuming only that X contains “almost all” members of N, as follows.

Theorem 8.6.1. Let X be an internal subset of ∗N and k ∈ N.
If n ∈ X for all n ∈ N with k ≤ n, then there is an infinite K ∈ ∗N
with n ∈ X for all n ∈ ∗N with k ≤ n ≤ K.

Proof. If all infinite hypernaturals are in X, then any infinite K ∈
∗N will do. Otherwise there are infinite hypernaturals not in X. If we
can show that there is a least such infinite number H, then all infinite
numbers smaller than H will be in X, giving the desired result. To
spell this out: if ∗N − X has infinite members, then these must be
greater than k, and so the set

Y = {n ∈ ∗N : k < n ∈ ∗N−X}
is nonempty. But Y is internal, by the algebra of internal sets, since it
is equal to

(∗N− {1, . . . , k}) ∩ (∗N−X).

3Hatzafa
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Hence Y has a least element H by the internal least number prin-
ciple. Then H is a hypernatural that is greater than k but not in X,
so it must be the case that H 6∈ N, because of our hypothesis that all
finite n ≥ k are in X. Thus H is infinite. Then K = H − 1 is infinite
and meets the requirements of the theorem: H is the least hypernatural
greater than k that is not in X, so every n ∈ ∗N with k ≤ n ≤ H − 1
does belong to X. �

8.7. Internal order-completeness

The principle of order-completeness, attributed to Dedekind, as-
serts that every nonempty subset of R with an upper bound in R must
have a least upper bound in R. The corresponding statement about ∗R
is false.

Example 8.7.1. R itself is a nonempty subset of ∗R that is bounded
but has no least upper bound. This is because the upper bounds of R
in ∗R are precisely the positive infinite numbers, and there is no least
positive infinite number.

Just as for the least number principle, order-completeness is pre-
served in passing from R to ∗R for internal sets:

Theorem 8.7.2. If a nonempty internal subset of ∗R is bounded
above/ below, then it has a least upper/ greatest lower bound in ∗R.

Proof. We treat the case of upper bounds. In effect, the point of
the proof is to show that the least upper bound of a bounded internal
set [An] is the hyperreal number determined by the sequence of least
upper bounds of the An’s:

lub[An] = [lubAn].

More precisely, it is enough to require that F -almost all An’s have least
upper bounds to make this work.

Suppose that a nonempty internal set [An] has an upper bound [rn].
Write An ≤ x to mean that x is an upper bound of An in R, and put

J = {n ∈ N : An ≤ rn}.
We want J ∈ F . If not, then J c ∈ F . But if n ∈ J c, there exists some an
with rn < an ∈ An. This leads to the conclusion [rn] < [an] ∈ [An],
contradicting the fact that [rn] is an upper bound of [An]. It follows
that J ∈ F . Since [An] 6= ∅, this then implies

J ′ = {n ∈ N : ∅ 6= An ≤ rn} ∈ F.
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Now, if n ∈ J ′, then An is a nonempty subset of R bounded above
(by rn), and so by the order-completeness of R, An has a least upper
bound sn ∈ R. Then if [bn] ∈ [An],

{n ∈ N : bn ∈ An} ∩ J ′ ⊆ {n ∈ N : bn ≤ sn},
leading to [bn] ≤ [sn], and showing that [sn] is an upper bound of [An].
Finally, if [tn] is any other upper bound of [An], then {n : An ≤ tn} ∈ F
by the same argument as for [rn], and

{n ∈ N : An ≤ tn} ∩ J ′ ⊆ {n ∈ N : sn ≤ tn}.
so we get [sn] ≤ [tn]. This shows that [sn] is indeed the least upper
bound of [An] in ∗R. �

Internal completeness is discussed further in Section 15.5.

8.8. External sets

Definition 8.8.1. A subset of ∗R is external if it is not internal.

Many of the properties that are special to the structure of ∗R define
external sets.

Example 8.8.2 (Infinite hypernaturals). Since ∗N−N has no least
member, the internal least number principle implies that it cannot be
internal.

Example 8.8.3. [Finite Hypernaturals] If N were internal, then so
too would be ∗N−N, which we have just seen to be false. Alternatively,
by the internal induction principle, if N were internal, it would be equal
to ∗N.

Example 8.8.4 (Real numbers). R is external, for if it were inter-
nal, then so too would be R ∩ ∗N = N.

Alternatively, as noted earlier R is bounded but has no least up-
per bound in ∗R, so must fail to be internal by the internal order-
completeness property.

The fact that N is external will be used in the next section to show
that all infinite subsets of R are external.

Example 8.8.5 (Finite hyperreals). The set L of finite numbers is
external for the same reason R is: it is bounded above by all members
of ∗R+

∞, but has no least upper bound. Since

L =
⋂

{(−b, b) : b is infinite },
it follows that the intersection of an infinite family of internal sets can
fail to be internal.
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Observe that if X is an internal set that includes L, then X 6= L,
and so X must contain infinite members. In fact, by considering lower
and upper bounds of ∗R+

∞−X and ∗R−
∞−X, respectively, we can show

that if X is an internal set with L ⊆ X, then [−b, b] ⊆ X for some
infinite b.

Example 8.8.6 (Infinitesimals). The set I = hal(0) of infinitesimals
is bounded above (by any positive real), so if it were internal, it would
have a least upper bound b ∈ ∗R. Such a b would have to be positive
but less than every positive real, forcing b ≈ 0. But then b < 2b ∈ I,
so b cannot be an upper bound of I after all.

By similar reasoning, any halo hal(r) is seen to be an external set,
as are its “left and right halves” {x > r : x ≈ r} and {x < r : x ≈ r}.

Corollary 8.8.7. If X is any internal subset of I, then the least
upper bound and greatest lower bound of X must be infinitesimal, and
so X ⊆ [−ε, ε] for some ε ≈ 0.



CHAPTER 9

Defining internal sets, Saturation

A central application of analysis with infinitesimals is a hyperfinite
construction of the Lebesgue measure via counting measures. An im-
portant principle used in the construction is the saturation principle
that will be dealt with in Sections 9.5 and 13.1.

An elegant application of saturation is a short proof of Cantor’s
theorem on nested sequences of compact sets; see Section 9.7.

9.1. Geometric example of internal set definition

To develop an ultrafiter-free definition of internal sets, we will de-
velop a method of defining them via formulas not referring to the ultra-
power construction. We first consider the following geometric example
that will help motivate the general definition.

Example 9.1.1 (r-neighborhoods). Let A ⊆ Rm be a subset, and
let r > 0. The r-neighborhood UrA of A in Rm is the set

UrA = {x ∈ Rm : (∃a ∈ A) (|x− a| < r)}.
Now consider the formula φ(x, r, A) specified as

(∃a ∈ A) (|x− a| < r).

Then φ is a formula in the language LR (see Section 4.1), with three
free variables x, r, and A. Note that A is a set variable. Then the
set B = UrA can be viewed as defined by the formula

x ∈ B iff φ(x, r, A) is true.

We now develop a hyperreal analog of this situation. Consider the
corresponding formula

∗φ ∈ L ∗R

in the language of the relational structure ∗R defined in Section 4.1. We
can replace the variables x, r, and A in ∗φ by their hyperreal analogs.
Thus ∗φ([xn], [rn], [An]) would be the sentence

(∃a ∈ [An]) (
∣

∣[xn]− a
∣

∣ < [rn]).

95
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It can be shown that this sentence is true if and only if

{n ∈ N : (∃a ∈ An) (|xn − a| < rn)} ∈ F
(the usual translation in terms of the ultrafilter). Then we obtain the
following general fact.

Corollary 9.1.2. The formula
∗φ([xn], [rn], [An]) is true (9.1.1)

if and only if

{n ∈ N : φ(xn, rn, An) is true} ∈ F. (9.1.2)

This leads to a new way of defining internal sets: holding the hy-
perreal [rn] and the internal set [An] fixed and allowing the value of b
to range over ∗Rm, we define the set

X = {b ∈ ∗Rm : ∗φ(b, [rn], [An]) is true}. (9.1.3)

Correspondingly, for each n ∈ N, we set

Bn = {b ∈ Rm : φ(b, rn, An) is true}.
Then the equivalence of (9.1.1) and (9.1.2) amounts to saying that for
all [bn],

[bn] ∈ X iff {n ∈ N : rn ∈ Bn} ∈ F.
But this shows that X is the internal set [Bn] determined by the se-
quence of real subsets 〈Bn : n ∈ N〉.

Corollary 9.1.3. Formula (9.1.3) can be seen as a definition of
the internal set [Bn].

9.2. Internal set definition principle

Expressing this phenomenon in the most general form available at
this stage, we have the following statement.

Theorem 9.2.1 (Internal Set Definition Principle). Let

φ(x0, x1, . . . , xn, A1, . . . , Ak)

be an LR-formula with free variables x0, x1 . . . , xn as well as set sym-
bols A1, . . . , Ak. Then for any hyperreals c1, . . . , cn and any internal
sets X1, . . . , Xk, the collection

{b ∈ ∗R : ∗φ(b, c1, . . . , cn, X1, . . . , Xk)}
is an internal subset of ∗R.

It provides a ready means of demonstrating that various sets are
internal, including the examples from Section 8.1.
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Example 9.2.2. Taking φ(x0, x1, . . . , xn) as the formula

(x0 = x1 ∨ · · · ∨ x0 = xn)

shows that any finite set

{c1, . . . , cn} = {b ∈ ∗R : ∗φ(b, c1, . . . , cn)}

of hyperreals is internal.

Example 9.2.3. Taking φ(x0, x1, x2) as the formula (x1 < x0 < x2)
yields that any open hyperreal interval is internal.

Recall that N is an external set (see Example 8.8.3). We can now use
internal set definition to show the following, as promised in Section 8.3.

Theorem 9.2.4. Every infinite set of real numbers is external. In
other words, if A ⊆ R is internal, then A must be finite.

Proof. We assume that A is internal and argue by contradiction.
If such an A were infinite, then it would contain an infinite sequence,
i.e., there would be an injective function f : N→ A. Put

X = {f(n) : n ∈ N}.

Then X is internal, since it is a subset of the internal set A, and by
Theorem 8.3.1, any subset of an internal set of real numbers is internal.

Now, the set X is a bijective copy of N by a standard function, so
we should be able to show that N is internal if X is, thereby getting a
contradiction because we already know that N is external. We therefore
apply the internal set definition principle, applied with φ(x, S) as the
formula

x ∈ N ∧ f(x) ∈ S.
Consider the corresponding formula ∗φ ∈ L ∗R. By the internal set
definition principle, the set

B = {n ∈ ∗R : ∗φ(n,X)}

is internal. 0bserve that

B = {n ∈ ∗N : ∗f(n) ∈ X} = ∗f−1(X).

However, as f is injective, ∗f : ∗N→ ∗A is an injective extension of f (by
transfer). It follows that B is just N itself. The resulting contradiction
proves the theorem. �
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9.3. The Underflow Principle

The underflow principle is the order-theoretic dual of the overflow
principle of Theorem 8.6.1. Its proof requires the additional reasoning
power provided by the internal set definition principle of Section 9.2.

Theorem 9.3.1. Let X be an internal subset of ∗N, and let K ∈ ∗N
be infinite. If every infinite hypernatural H ≤ K belongs to X, then
there is some k ∈ N such that every finite n with n ≥ k belongs to X.

To comment on terminology, our internal set of infinite hypernatu-
rals “spills over” into the finite natural numbers.

Proof. For M,N ∈ ∗N with M ≤ N , let

⌊M,N⌋ = {z ∈ ∗N : M ≤ z ≤ N}
be the interval in ∗N between M and N . By hypothesis, the condi-
tion ⌊H,K⌋ ⊆ X is satisfied for all infinite hypernatural H ≤ K. We
need to show that ⌊k,K⌋ ⊆ X for some (finite) k ∈ N.

Equivalently, we want to show that the set

Y = {k ∈ ∗N : ⌊k,K⌋ ⊆ X}
has a finite member.

Now, if Y is internal, then by the internal least number principle
it has a least element k, and such a k must belong to N, because if it
were infinite, then k − 1 would be infinite, so by our hypothesis k − 1
would also be in Y but less than k.

It thus suffices to show that Y is internal. Now let φ(x, y, A) be the
formula

x ∈ N ∧ x ≤ y ∧ ∀z ∈ N (x ≤ z ≤ y → z ∈ A)

expressing “x ∈ N and ⌊x, y⌋ ⊆ A”.1 Then by the internal set definition
principle, the set

{k ∈ ∗R : ∗φ(k,K,X)} =

{k ∈ ∗N : k ≤ K and ∀z ∈ ∗N(k ≤ z ≤ K → z ∈ X)}
is internal. This set is just Y . �

9.4. Internal sets and permanence

Overflow/permanence was already discussed in Section 8.6. The
following is an additional result in this direction. The novelty com-
pared to the earlier results is that the parameter b below could be
nonstandard, e.g., infinite.

1The relation ⊆ is not part of the language we are working with.
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Theorem 9.4.1. If an internal set X ⊆ ∗R contains all points that
are infinitely close to b ∈ ∗R, then there is a positive real e such that X
contains all points that are within e of b.

Proof. By hypothesis, hal(b) ⊆ X. Since hal(b) is an external
set, we cannot use it in a formula to which the internal definition
principle would be applicable. Instead, we consider for each k ∈ ∗N,
the (internal) hyperreal interval (b− 1

k
, b+ 1

k
), or more precisely

{z ∈ ∗R : |z − b| < 1
k
}.

Whenever k is infinite, 1
k

is infinitesimal, and so

(b− 1
k
, b+ 1

k
) ⊆ hal(b) ⊆ X

by our hypothesis. Now consider the set

Y = {k ∈ ∗N : (b− 1
k
, b+ 1

k
) ⊆ X}.

Note that Y contains all infinite members of ∗N. Hence by underflow
we could conclude that (b− 1

k
, b+ 1

k
) ⊆ X for some (finite) k ∈ N, and

thereby complete the proof by setting e = 1
k
, if we knew that Y were

internal.
To show that Y is internal, we apply internal set definition principle

with φ(x, y, A) as the formula

x ∈ N ∧ (∀z ∈ R)(|z − y| < 1
x
→ z ∈ A). (9.4.1)

This formula expresses “x ∈ N and (y − 1
x
, y + 1

x
) ⊆ A”.2 It follows

that the set

{k ∈ ∗R : ∗φ(k, b,X)} = {k ∈ ∗N : (∀z ∈ ∗R) (|z − b| < 1
k
→ z ∈ X)}

is internal, and this set is just Y . �

9.5. Introduction to saturation

Internal sets form a special collection whose members are related
to each other in remarkable ways. For instance, it is impossible to
construct a nested sequence of internal sets whose intersection is empty.
This fact, which we will prove below, is known as countable saturation.
The use of the term saturation is explained at the beginning of the
Section 13.3. We will first treat a special case in Lemma 9.5.1 to
provide motivation, and then the general case in Theorem 13.1.1.

2The relation ⊆ is not part of the language we are working with, and therefore
cannot be used in equation (9.4.1).
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Lemma 9.5.1. Consider a nested sequence of nonempty sets in R:

X1 ⊇ X2 ⊇ · · · ⊇ Xk ⊇ · · ·
Then the intersection of their natural extensions is always nonempty:

⋂

k∈N
∗Xk 6= ∅.

Proof. The argument involves a kind of diagonalisation proce-
dure. We have ∗Xk = [Ak

n], where 〈Ak
n : n ∈ N〉 is the constant se-

quence Ak
n = Xk. For each n ∈ N, we choose some sn ∈ An

n (a kind of
diagonalisation). Since the sequence Xk is nested, we have

sn ∈ A1
n ∩ · · · ∩ An

n.

Then the set {n ∈ N : sn ∈ Xk} is a cofinite set in N. Therefore the
hyperreal [sn] belongs to each of the ∗Xk. �

Example 9.5.2. A nested sequence of open intervals Xk = (0, 1
k
) ⊆

R has empty intersection:
⋂

k∈NX
k = ∅.

On the other hand, the natural extension ∗Xk contains the infinitesi-
mal [ 1

n
] for each k. The existence of such an infinitesimal follows from

Lemma 9.5.1.

Definition 9.5.3. A family of sets is said to have the finite inter-
section property if the intersection of any finite subfamily is nonempty.

Corollary 9.5.4. Suppose a countable family {Xk}, Xk ⊆ R, has
the finite intersection property. Then

⋂

k∈N
∗Xk 6= ∅.

Proof. We apply Lemma 9.5.1 to the nested sequence of intersec-
tions X1 ∩ · · · ∩Xk. �

The general case (nested sequence of internal sets) will be treated
in Section 13.1.

This version of saturation for a countable family {Xk} can be re-
formulated as follows.

∀n ∈ N∀ k = (k1, . . . , kn) ∈ Nk ∃ x ∈ Xk1∩ · · · ∩Xkn −→ ∃ x ∈
⋂

k∈N

∗Xk.

(9.5.1)
This should be spelled out in terms of additional quantifiers so as to
avoid using the ellipsis.

The implication (9.5.1) can be reformulated in terms of LSEQ op-
erator provided a starring adjustment is made; see Section 7.1. The
result is Φ −→ LSEQ(∗Φ). Here Φ is the formula

∀n ∈ N∀ k = (k1, . . . , kn) ∈ Nk ∃ x ∈ Xk1 ∩ · · · ∩Xkn
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(as before, this should be reformulated in terms of additional quantifiers
so as to avoid using the ellipsis).

For a countable family of internal subsets Xk ⊆ ∗R, we obtain the
following version of saturation: Φ −→ LSEQ(Φ) (without the stars).

9.6. Characterisation of compactness

As an application of saturation, we give a characterisation of com-
pact sets via infinitesimal analysis.

Theorem 9.6.1 (Characterisation of compactness). Let X be a
metric space. Then the following two conditions are equivalent:

(1) X is compact;
(2) every y ∈ ∗X is infinitely close to a suitable point x ∈ X.

Definition 9.6.2. A point y ∈ ∗X is said to be nearstandard in X
if it is infinitely close to a point of X.

Proof of (1)⇒ (2). Assume X is compact, and let y ∈ ∗X. Let
us show that y is nearstandard in X (this direction does not require
saturation).

We give a proof by contradiction. Suppose that y is not nearstan-
dard in X. Namely, it is not in the halo of any point p ∈ X. Then
every p ∈ X has a (standard) open neighborhood Up such that y 6∈ ∗Up.
Consider the collection {Up}p∈X . This collection is an open cover3 of X.
Since X is compact, the collection has a finite subcover Up1 , . . . , Upn ,
so that

X = Up1 ∪ . . . ∪ Upn . (9.6.1)

Due to the finiteness of the union (9.6.1), by the algebra of natural
extensions we have

∗X = ∗Up1 ∪ · · · ∪ ∗Upn .

In particular, y ∈ ∗X must belong to one of the sets ∗Up1 , . . . ,
∗Upn ,

contradicting our hypothesis. �

Proof of (2)⇒ (1). We will give a proof in the case when X is
separable (for example, subset of Rn) and therefore the topology of X
admits a countable basis.4 This direction exploits saturation. Assume
that every y ∈ ∗X is nearstandard. Given a countable open cover {Ua}
of X, we need to find a finite subcover.

3kisui patuach
4Metrisable compact spaces are necessarily separable, but non-metrizable

may not be. For examples see https://math.stackexchange.com/questions/

74923 (a compact Hausdorff space that is not metrizable). Davis [3, p. 78] uses
concurrency.

https://math.stackexchange.com/questions/74923
https://math.stackexchange.com/questions/74923
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The proof is by contradiction. Suppose that the union of any finite
collection of Ua is not all of X. Then the complements of Ua form a
collection of (closed) sets {Sa}, where Sa = X − Ua, with the finite
intersection property. It follows that the collection {∗Sa} similarly has
the finite intersection property.

We now use the condition that the family is countable. By satura-
tion and Corollary 9.5.4, the intersection of all ∗Sa is non-empty. Let y
be a point in this intersection:

y ∈
⋂

a
∗Sa.

By hypothesis of nearstandardness in X, there is a point p ∈ X such
that y ∈ hal(p). Now {Ua} is a cover of X so there is a Ub such
that p ∈ Ub. But y is in ∗Sa for all a, in particular y ∈ ∗Sb. Thus y ∈
∗Sb ∩ ∗Ub = ∅, a contradiction. �

9.7. Application of saturation: Cantor’s intersection theorem

We can now use saturation to prove Cantor’s theorem on infinite
nested sequences of compact sets.

Theorem 9.7.1 (Cantor’s intersection theorem). A nested decreas-
ing sequence of nonempty compact sets has a common point.

Proof. Given a nested sequence of compact sets, 〈Sk : k ∈ N〉,
we consider the corresponding decreasing nested sequence of internal
sets, 〈 ∗Sk : k ∈ N〉. This sequence has a common point x by satura-
tion. By Theorem 9.6.1, for a compact set Sk, every point of ∗Sk is
nearstandard in Sk, i.e., infinitely close to a standard point xk ∈ Sk.
In particular, sh(x) ∈ Sk for all k. In more detail, we have xk ≈ x ≈ xℓ
and therefore xk = xℓ (∀k, ℓ) is the common point of all the compact
sets Sk. �
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CHAPTER 10

Effective infinitesimals

10.1. Axiom of choice

For simplicity we will restrict the discussion to families of subsets
of R. Let (Ai)i∈I be a family of nonempty disjoint subsets of R. Thus
for each i, we have Ai ⊆ R, Ai 6= ∅, and Ai∩Aj = ∅ whenever i, j ∈ I
with i 6= j. Note that I is not necessarily countable.

Definition 10.1.1. A choice function for the family (Ai) is a func-
tion f : I → R such that f(i) ∈ Ai for each i ∈ I.

Then the axiom of choice asserts the existence of a choice function.
A more general statement of the axiom of choice asserts the existence
of a choice function for any family of disjoint nonempty sets (not nec-
essarily subsets of R).

10.2. Set theories

Let ZF be the Zermelo–Fraenkel set theory. Let ZFC be the Zermelo–
Fraenkel set theory with the axiom of choice. Let ACC be the axiom of
countable choice, and ADC the axiom of (countable) dependent choice.
The theories ZF, ZF+ACC, and ZF+ADC have the advantage (over
ZFC) of not entailing set-theoretic paradoxes such as Banach–Tarski.
Similarly, ZF, ZF+ACC, and ZF+ADC do not prove the existence of
nonprincipal ultrafilters.

The theories SPOT and SCOT developed in [8] provide frameworks
for analysis with infinitesimals that are conservative respectively over
ZF and ZF+ADC, and therefore share the same advantage (the axioms
of SPOT and SCOT appear in Section 11). Mathematicians generally
consider theorems provable in ZF as more effective than results that
require the full ZFC for their proof, and many feel this way not only
about ZF but about ZF+ADC, as well. In this sense, the theories
SPOT and SCOT enable an effective development of analysis based on
infinitesimals. Some applications were already presented in [8], such as
(local) Peano’s existence theorem for first-order differential equations
[8, Example 3.5] and infinitesimal construction of Lebesgue measure
via counting measures [8, Example 3.6].

105
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We first consider the case of compactness. In Section 10.3, we
present the traditional extension view. Following an outline of SPOT
and SCOT in Sections 10.4 and 11, we deal with compactness in in-
ternal set theories in Section 11.3. After preliminaries on continuity in
Section 12.1, we present an effective proof using infinitesimals of the
compactness of a continuous image of a compact set in Section 12.2.
After preliminaries on uniform continuity in Sections 12.3 and 12.4, we
present an effective proof using infinitesimals of the Heine–Borel theo-
rem in Section 12.5. In Section 12.6, we show that Nelson’s Radically
Elementary Probability Theory is a subtheory of SCOT.

10.3. Compactness in the extension view

In this section, we analyze compactness from the viewpoint of tradi-
tional extensions R →֒ ∗R to hyperreals. These cannot be constructed
in ZF+ADC and cannot be described as effective in the sense of Sec-
tion 10.2. In Section 11.3, we will present an effective treatment of
compactness in axiomatic frameworks for analysis with infinitesimals.

For N, R, P = P(R), or any set X, the corresponding nonstan-
dard extensions ∗X, etc. satisfying the transfer principle can be formed
either via the compactness theorem of first-order logic, or via ultra-
powers XN/F , etc., in terms of a fixed nonprincipal ultrafilter F .

Lemma 10.3.1. For a finite union, the star of the union is the union
of stars.

Proof. Given sets A,B ⊆ X, we have

(∀y ∈ X)
[

y ∈ A ∪ B ←→ (y ∈ A) ∨ (y ∈ B)
]

. (10.3.1)

Applying upward transfer to (10.3.1), we obtain

(∀y ∈ ∗X)
[

y ∈ ∗(A ∪ B)←→ (y ∈ ∗A) ∨ (y ∈ ∗B)
]

,

and the claim follows by induction. �

Theorem 10.3.2. If 〈An : n ∈ N〉 is a nested sequence of nonempty
subsets of R then the sequence 〈∗An : n ∈ N〉 (standard n) has a common
point.

Proof. We give an alternative argument to the one given in Sec-
tion 9.5. Let P = P(R) be the set of all subsets of R. Consider a
sequence 〈An ∈ P : n ∈ N〉 viewed as a function f : N → P, n 7→ An.
By the extension principle we have a function ∗f : ∗N→ ∗P . Let Bn =
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∗f(n). For each standard n, we have Bn = ∗An ∈ ∗P .1 For a nonstan-
dard value of the index n = H, the entity BH ∈ ∗P is by definition
internal but is in general not the natural extension of any subset of R.

If 〈An〉 is a nested decreasing sequence in P \ {∅} then by trans-
fer 〈Bn : n ∈ ∗N〉 is nested in ∗P \ {∅}. Let H be a fixed nonstandard
index. Since n < H for each standard n, the set ∗An ⊆ ∗R includes BH .
Choose any element c ∈ BH . Then c is contained in ∗An for each stan-
dard n:

c ∈
⋂

n∈N

∗An

as required.2 �

Definition 10.3.3. Let I be a set. A collection H ⊆ P(I) has the
finite intersection property if the intersection of every nonempty finite
subcollection of H is nonempty, i.e.,

B1 ∩ · · · ∩ Bn 6= ∅ for all n ∈ N and all B1, . . . , Bn ∈ H.
Then Theorem 10.3.2 has the following equivalent formulation.

Corollary 10.3.4 (Countable Saturation). If a family of sub-
sets {An}n∈N has the finite intersection property (see Definition 10.3.3)
then the intersection

⋂

n∈N
∗An is nonempty.

Recall that a topological space T is second-countable if its topol-
ogy admits a countable base. Recall that a space is Lindelöf if every
open cover includes a countable subcover. A second countable space is
necessarily Lindelöf (over ZF+ACC). If T is a separable metric space
then T is second countable and hence Lindelöf.

A point y ∈ ∗T is called nearstandard in T if y is infinitely close to
a standard point p ∈ T , i.e., such that y is contained in the star ∗U
of every open neighborhood U of p. The intersection of all such ∗U is
called the halo of p. The relation x ≃ y holds if and only if for all open
sets O, x ∈ ∗O if and only if y ∈ ∗O.

1The injective map ∗ : P → ∗P sends An to ∗An. For each standard natural n
we have a symbol an in the appropriate language (including at least the names
for all subsets of R), whose standard interpretation is An ∈ P. Meanwhile the
nonstandard interpretation of an is the entity ∗An ∈ ∗P . The sequence 〈An : n ∈
N〉 in P is the standard interpretation of the symbol a = 〈an〉. Meanwhile, the
nonstandard interpretation of the symbol a is 〈Bn : n ∈ ∗N〉 in ∗P . In particular,
one has Bn = ∗An for standard n.

2The conclusion of non-empty intersection remains valid for any nested se-
quence of nonempty internal sets, i.e., members of ∗P ; see e.g., [6, Theorem 11.10.1,
p. 138]. The proof is more involved and can be found in Section 13.1.
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Theorem 10.3.5. Assume T is Lindelöf. Then the following two
conditions are equivalent:

(1) T is compact (i.e., every open cover admits a finite subcover);
(2) every y ∈ ∗T is nearstandard in T .

Proof of (1)⇒ (2). Assume T is compact, and let y ∈ ∗T . Let
us show that y is nearstandard in T (this direction does not require
saturation).

Suppose on the contrary that y is not nearstandard in T , i.e., y is
not in the halo of any (standard) point p ∈ T . Then we can form the
open cover U of T containing all open sets U such that

y /∈ ∗U. (10.3.2)

Since T is compact, U includes a finite subcover U1, . . . , Un. Applying
Lemma 10.3.1 to the finite union T = U1 ∪ · · · ∪ Un, we obtain

∗T = ∗U1 ∪ · · · ∪ ∗Un.

Hence y is in one of the ∗Ui, i = 1, . . . , n, contradicting (10.3.2). The
contradiction establishes that y is necessarily nearstandard in T . �

Proof of (2)⇒ (1). This direction exploits saturation. Assume
each y ∈ ∗T is nearstandard in T . Given an open cover {Ua} of T , we
need to find a finite subcover. Since T is Lindelöf, we can assume that
the cover is countable.

Suppose on the contrary that no finite subcollection of {Ua} cov-
ers T . Then the complements Sa of Ua form a countable collection
of (closed) sets {Sa} with the finite intersection property. Applying
countable saturation (Corollary 10.3.4) to this countable family, we
conclude that the intersection of all ∗sa is non-empty. Let y ∈ ⋂

a
∗sa.

By assumption, there is a point p ∈ T such that

y ≃ p. (10.3.3)

Since {Ua} is a cover of T , it contains a set Ub such that p ∈ Ub, and
hence y ∈ ∗Ub since U is open. But y ∈ ∗sa for all a, in particular y ∈ ∗sb,
so y 6∈ ∗Ub by Lemma 10.3.1, contradicting (10.3.3). The contradiction
establishes the existence of a finite subcover. �

10.4. Internal set theories

In this section we explain in what sense analysis with infinitesimals
does not require the axiom of choice any more than traditional non-
infinitesimal analysis, following [8]. There are two popular approaches
to Robinson’s nonstandard mathematics (including analysis with in-
finitesimals):
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(1) model-theoretic, and
(2) axiomatic/syntactic.

For a survey of the various approaches see [4].
The model-theoretic approach (including the construction of the

ultrapower) typically relies on strong forms of the axiom of choice.
The axiomatic/syntactic approach turns out to be more economical in
the use of foundational material, and exploits a richer st-∈-language,
as explained below.

The traditional set-theoretic foundation for mathematics is Zermelo–
Fraenkel set theory (ZF). The theory ZF is a set theory formulated in
the ∈-language. Here “∈” is the two-place membership relation. In
ZF, all mathematical objects are built up step-by-step starting from ∅
and exploiting the one and only relation ∈.

For instance, the inequality 0 < 1 is formalized as the membership
relation ∅ ∈ {∅}, the inequality 1 < 2 is formalized as the membership
relation {∅} ∈ {∅, {∅}}, etc. Eventually ZF enables the construction
of the set of natural numbers N, the ring of integers Z, the field of real
numbers R, etc.

For the purposes of mathematical analysis, a set theory SPOT has
been developed in the more versatile st-∈-language (its axioms are
given in Section 11). Such a language exploits a predicate st in addition
to the relation ∈. Here “st” is the one-place predicate standard so
that st(x) is read “x is standard”.

Theorem 10.4.1 ([8]). The theory SPOT is a conservative exten-
sion of ZF.

This means that every statement in the ∈-language provable in
SPOT is provable already in ZF. In particular, the axiom of choice and
the existence of non-principal ultrafilters are not provable is SPOT,
because they are not provable in ZF. Thus SPOT does not require any
additional foundational commitments beyond ZF.

Remark 10.4.2. The Separation Axiom of ZF asserts, roughly, that
for any ∈-formula φ and any set A, there exists a set S such that x ∈ S
if and only if x ∈ A ∧ φ(x) is true. This remains valid in SPOT which
is a conservative extension of ZF. But Separation does not apply to
formulas involving the new predicate st. Specifically, Separation does
not apply to the predicate st itself.

Example 10.4.3. The collection of standard natural numbers is
not a set that could be described as “{x ∈ N : st(x)}.” Such ex-
ternal collections can be viewed informally as classes defined by the
corresponding predicate. Thus, in [8] one uses the dashed curly brace
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notation n ∈ N : st(n) for such a class, when convenient. Writ-

ing k ∈ n ∈ N : st(n) is equivalent to writing “st(k) (is true)”. In

many cases the passage from a predicate to a set turns out to be unnec-
essary: as mentioned in the introduction, in SCOT (conservative over
ZF+ADC) one can give an infinitesimal construction of the Lebesgue
measure; in BST (a modification of Nelson’s IST, possessing better
meta-mathematical properties), the Loeb measure can be handled, as
well; see [9].

Remark 10.4.4 (Sources in Leibniz). The predicate st formal-
izes the distinction already found in Leibniz between assignable and
inassignable numbers. An inassignable (nonstandard) natural num-
ber µ is greater than every assignable (standard) natural number. One
of the formulations of Leibniz’s Law of Continuity posits that “the
rules of the finite are found to succeed in the infinite and vice versa”
(cf. Robinson [14, p. 266]), formalized by Robinson’s transfer principle.
See further in [1], [2], and [11].

If µ ∈ N is a nonstandard integer, then its reciprocal ε = 1
µ
∈ R

is a positive infinitesimal (smaller than every positive standard real).
Such an ε is a nonstandard real number.

A real number smaller in absolute value than some standard real
number is called limited, and otherwise unlimited. SPOT proves that
every nonstandard natural number is unlimited [8, Lemma 2.1].

The theory SPOT enables one to take the standard part, or shadow,
of every limited real number r, denoted sh(r). This means that the
difference r − sh(r) is infinitesimal.

The derivative of the standard function f(x) is then sh
(

f(x+ε)−f(x)
ε

)

for nonzero infinitesimal ε. In more detail, we have the following.

Definition 10.4.5. Let f be a standard function, and x a standard
point. A standard number L is the slope of f at x if

(∀inε)(∃inλ) f(x+ ε)− f(x) = (L+ λ)ε. (10.4.1)

where ∀in and ∃in denote quantification over infinitesimals.3

The Riemann integral of f over [a, b] (with f, a, b standard), when
it exists, is the shadow of the sum

∑µ
i=1 f(xi)ε as i runs from 1 to µ,

where the xi are the partition points of an equal partition of [a, b] into µ
subintervals. For a fuller treatment see [8, Example 2.8].

The (external) relation of infinite proximity x ≃ y for x, y ∈ R is
defined by requiring x− y to be infinitesimal.

3For further details, see note 1.



CHAPTER 11

The theories SPOT and SCOT

We will now present the axioms that enable this effective approach
(conservative over ZF) to analysis with infinitesimals.

11.1. Axioms of the theory SPOT

SPOT is a subtheory of axiomatic (syntactic) theories developed
in the 1970s independently by Hrbacek [7] and Nelson [12]. In ad-
dition to the axioms of ZF, SPOT has three axioms: Standard Part,
Nontriviality, and Transfer (for the historical origins of the latter see
Remark 10.4.4):

T (Transfer) Let φ be an ∈-formula with standard
parameters. Then ∀stxφ(x)→ ∀xφ(x).

O (Nontriviality) ∃ν ∈ N∀stn ∈ N (n 6= ν).

SP (Standard Part) Every limited real is infinitely
close to a standard real.

An equivalent existential version of the Transfer axiom is
∃x φ(x) =⇒ ∃stx φ(x), for ∈-formulas φ with standard parameters.

Nontriviality asserts simply that there exists a nonstandard integer.
An equivalent version of Standard Part is the following.

SP′ (Standard Part)

∀A ⊆ N∃stB ⊆ N∀stn ∈ N (n ∈ B ↔ n ∈ A).

Remark 11.1.1. The latter formulation can be motivated intu-
itively as follows. Given a real number 0 < r < 1, consider its base-2
decimal expansion. Let A be the set of ranks where digit 1 appears.
The set A is not standard if r is not standard. The corresponding
standard set B (whose existence is postulated by SP′) can be thought
of as the set of nonzero digits of the shadow sh(r) of r. The fact that r
and sh(r) are infinitely close reflects the fact that A and B agree at all
limited ranks. The detailed argument is a bit more technical because
binary representation (like decimal representation) is not unique; see
[8, Lemma 2.4].
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In the model-theoretic frameworks one has three categories of sets:
sets that are natural extensions of, say, subsets of R, more general
internal sets, as well as external sets. In the axiomatic frameworks, the
standard and nonstandard sets correspond to the natural extensions
and the internal sets, whereas there are no external sets.

11.2. Additional principles

The theory SPOT proves that standard integers are an initial seg-
ment of N [8, Lemma 2.1].

Lemma 11.2.1 (Countable Idealisation). Let φ be an ∈-formula with
arbitrary parameters. The theory SPOT proves the following:

∀stn ∈ N ∃x ∀m ∈ N (m ≤ n→ φ(m,x)) ←→ ∃x ∀stn ∈ N φ(n, x).

This is proved in [8, Lemma 2.2]. One could elucidate Countable
Idealization by means of an equivalent version with countable A in
words as follows. If for every standard finite subset a ⊆ A there is
some x such that for all z ∈ a, one has φ(z, x), then there is a single x
such that φ(z, x) holds for all standard z ∈ A simultaneously (the
converse is obvious given that all elements of a standard finite set are
standard, which is a consequence of [8, Lemma 2.1]). This is analogous
to saturation (see Corollary 10.3.4).

Definition 11.2.2. SN is the standardisation principle for st-∈-
formulas with no parameters. Namely, let φ(v) be an st-∈-formula
with no parameters. Then

∀stA ∃stS ∀stx (x ∈ S ←→ x ∈ A ∧ φ(x)). (11.2.1)

It is proved in [8, Lemma 6.1] that SN is equivalent to standardis-
ation for formulas with only standard parameters.

Although separation does not hold, SN is a kind of approximation
to it in the following sense. The standard elements of S (but not all
elements) are exactly those for which φ(x) holds. Note also that the
assumption that all parameters are standard is necessary to maintain
conservativity over ZF, because otherwise one could prove the existence
of nonprincipal ultrafilters (see [8]).

Note that SPOT+SN is also conservative over ZF [8, Theorem B,
p. 4]. The axiom SN enables one to give a simple infinitesimal definition
of the derivative function conservatively over ZF.1

1To dot the i’s, let φf (x, L) be the formula of (10.4.1) depending on the standard
parameter f , a real-valued function. Let A = R2 in (11.2.1). Then passing from f
to f ′ is enabled by the following consequence of (11.2.1) containing only standard
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SCOT incorporates the following choice-type axiom CC (which is
a strengthening of SP); see [8, Section 3, p. 10].

Definition 11.2.3. (CC) Let φ(u, v) be an st-∈-formula with ar-
bitrary parameters. Then

∀stn ∈ N ∃x φ(n, x) −→ ∃f (f is a function ∧ ∀stn ∈ N φ(n, f(n)).

The following definition was given in [8, p. 10].

Definition 11.2.4. SCOT is the theory SPOT+ADC+SN+CC.

SCOT (in fact, its subtheory SPOT+CC) also proves the following
statement SC [8, Lemma 3.1].

Definition 11.2.5. SC (Countable Standardisation) Let ψ(v) be
an st-∈-formula with arbitrary parameters. Then

∃stS ∀stn (n ∈ S ←→ n ∈ N ∧ ψ(n)).

11.3. Compactness in internal set theories

In this section, we use infinitesimals to deal with compactness con-
servatively over ZF or ZF+ADC, as indicated below (the traditional
extension view was already elaborated in Section 10.3).

Let T be a standard topological space. A point x ∈ T is nearstan-
dard in T if there is a standard p ∈ T such that p ∈ O implies x ∈ O
for every standard open set O (in other words, x is in the halo of p.)

Lemma 11.3.1. Assume T is a standard Lindelöf space. If every x
in T is nearstandard in T then T is compact.

Proof. Suppose T is not compact. By downward transfer, there
is a standard countable cover U of T by open sets such that for every
(standard) finite k-tuple O1, . . . , Ok ∈ U there is a p ∈ T \⋃1≤i≤k Oi.
By Countable Idealisation with the standard parameters T , U , there
is x ∈ T such that x 6∈ O for any standard O ∈ U . Such an x is not
nearstandard in T , because if x were in the halo of some standard p ∈ T ,
we would have a standard O ∈ U such that p ∈ O (U is a cover) and
hence x ∈ O, a contradiction.2 �

parameters: ∃stf ′ ∀st(x, L)
(

(x, L) ∈ f ′ ←→ (x, L) ∈ R2 ∧ φf (x, L)
)

where f ′ is

thought of as its graph in the plane.
2An analogous proof goes through for arbitrary standard topological spaces if

one has full idealisation (with standard parameters) such as in the theory BSPT′

[8], which is still conservative over ZF (unfortunately it is not known whether SN
can be added to it conservatively over ZF). Note that BSPT′ proves the existence
of a finite set containing all standard reals [8, p. 10]. Such sets are used in Benci’s
approach to measure theory.
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Lemma 11.3.2. Assume T is a standard second countable space.
If T is compact then every x ∈ T is nearstandard in T .

Proof. Suppose µ ∈ T is not nearstandard in T . Then for every
standard p ∈ T there is a standard open set O such that p ∈ O and µ 6∈
O. Let B be a standard countable base for the topology of T , and let

U = st{O ∈ B : µ 6∈ O}.
This set is obtained by SC (Countable Standardisation, see Defini-
tion 11.2.5) with a nonstandard parameter (namely, µ), available in
SCOT [8, Lemma 3.1]. By the above and transfer, U is a standard
open cover of T . If T were compact, U would have, by transfer, a stan-
dard finite open subcover O1, . . . , Ok. Then µ ∈ Oi for some 1 ≤ i ≤ k,
contradicting the definition of U . �

Since second countable implies Lindelöf, we have the equivalence
of the two definitions of compactness, for second-countable spaces in
SCOT.



CHAPTER 12

Continuity and uniform continuity

12.1. Continuity

Based on the results of Section 11.3, the following can be proved
conservatively over ZF+ADC using infinitesimals. We will first discuss
continuity over SPOT.

In this section, f is a standard map between standard topologi-
cal spaces. f is said to be S-continuous at c if whenever x ≃ c, one
has f(x) ≃ f(c).

Lemma 12.1.1. If a standard map f from a first countable topolog-
ical space into a topological space is S-continuous at a standard point c
then f is continuous at c.

Proof. Let Bc be a standard countable base of open neighbor-
hoods of c. Assume that f is not continuous at c. Then there is
a standard open neighborhood U of f(c) such that for every (stan-
dard) finite O1, . . . , Ok ∈ Bc there is x ∈ ⋂

1≤i≤k Oi with f(x) /∈ U .
By Countable Idealization there is x such that x ∈ O holds for all
standard O ∈ Bc and f(x) /∈ U . Then x ≃ c and f(x) 6≃ f(c), a
contradiction. �

Lemma 12.1.2. If a standard function f is continuous at a standard
point c then f is S-continuous at c.

Proof. Assume that f is not S-continuous at c. Then there is x ≃
c for which f(x) 6≃ f(c), i.e., f(x) /∈ U holds for some standard neigh-
borhood U of f(c). By continuity of f there is a standard open neigh-
borhood O of c such that z ∈ O implies f(z) ∈ U . As x ≃ c, we
have x ∈ O and hence f(x) ∈ U , a contradiction. �

12.2. Continuous image of compacts

We prove the following well-known result in SCOT.

Theorem 12.2.1. Let f : T → Y be a continuous map between
second-countable topological spaces. Let E ⊆ T be compact. Then f(E)
is compact.
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Proof. We prove the theorem under the assumption that f, T, Y
are standard; its validity for arbitrary f, T.Y follows by transfer. By
Lemma 11.3.2, every point x ∈ E is infinitely close to a standard
point p ∈ E. By the nonstandard characterisation of continuity of f
(Lemma 12.1.2), the point f(x) is infinitely close to f(p). Thus ev-
ery point f(x) in the image f(E) is infinitely close to a standard
point f(p) ∈ f(E). By Lemma 11.3.1, applied to f(E), the space f(E)
is compact. �

The proof compares favorably with the traditional proof using pull-
backs of open covers, and is as effective (in the sense explained in
Section 10.2) as the traditional proof.

12.3. Characterisation of uniform continuity

Let D,E be standard metric spaces; we will denote the distance
functions by | · |. A standard map f : D → E is uniformly continuous
on D if

(∀ǫ ∈ R+)(∃δ ∈ R+)

(∀x ∈ D)(∀x′ ∈ D)
[

|x′ − x| < δ → |f(x′)− f(x)| < ǫ
]

.
(12.3.1)

f is S-continuous on D if

(∀x ∈ D)(∀x′ ∈ D) [x ≃ x′ → f(x) ≃ f(x′)] . (12.3.2)

Lemma 12.3.1. If f is uniformly continuous on D then it is S-
continuous there.

Proof. To show that condition (12.3.1) implies (12.3.2), fix a stan-
dard parameter ǫ. By downward transfer, there is a standard δ such
that the underlined part of formula (12.3.1) holds:

(∀x ∈ D)(∀x′ ∈ D)
[

|x′ − x| < δ → |f(x′)− f(x)| < ǫ
]

. (12.3.3)

If x ≃ x′ then the condition |x − x′| < δ is satisfied regardless of the
value of the standard number δ > 0. Therefore

|f(x′)− f(x)| < ǫ. (12.3.4)

Since (12.3.4) is true for each standard ǫ > 0, we conclude that f(x′) ≃
f(x), proving (12.3.2). �

Lemma 12.3.2. If f is S-continuous on D then f is uniformly con-
tinuous there.
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Proof. We will show the contrapositive statement, namely that
¬(12.3.1) implies ¬(12.3.2). Assume the negation of (12.3.1). By down-
ward transfer it follows that there exists a standard number ǫ > 0 such
that

(∀δ ∈ R+)(∃x ∈ D)(∃x′ ∈ D)
[

|x′ − x| < δ ∧ |f(x′)− f(x)| > ǫ
]

.
(12.3.5)

The formula is true for all positive δ, so in particular it holds for an
infinitesimal δ0 > 0. For this value, we obtain

(∃x ∈ D)(∃x′ ∈ D)
[

|x′ − x| < δ0 ∧ |f(x′)− f(x)| > ǫ
]

. (12.3.6)

Fix such x and x′. The condition |x′ − x| < δ0 implies that x ≃ x′,
while |f(x′)−f(x)| > ǫ. As the lower bound ǫ > 0 is standard, it follows
that f(x′) 6≃ f(x). This violates condition (12.3.2) and establishes the
required contrapositive implication ¬(12.3.1) =⇒ ¬(12.3.2). �

12.4. Continuity implies uniform continuity

As shown in Section 12.3, the theory SPOT proves that uniform
continuity of a map between metric spaces amounts to S-continuity at
all points (standard and nonstandard) of the domain.

Theorem 12.4.1. A continuous map from a compact metric space
to a metric space is uniformly continuous.

Proof. Let f : E → Y where f, E, Y are standard. By the char-
acterisation of the compactness of E (Lemma 11.3.2), if x ∈ E then x
is infinitely close to a standard point p ∈ E. For each x′ ≃ x, one
has x′ ≃ p ≃ x. If f is continuous at p then f(x′) ≃ f(p) ≃ f(x),
and therefore f is S-continuous at all points of E, establishing uni-
form continuity by Lemma 12.3.2. By transfer, the theorem holds for
arbitrary f, E, Y . �

This proof in SPOT compares favorably with the traditional proof:
given ǫ > 0, we need to find δ > 0 such that if dE(x, y) < δ then one
has dY (f(x), f(y)) < ǫ. By continuity, for each x ∈ E there exists
a δx > 0 such that if d(x, y) < δx then d(f(x), f(y)) < ǫ

2
. Then

{

B(x, δx
2

) : x ∈ E
}

is an open cover of E. By compactness, there are points x1, . . . , xn ∈ E
such that

{

B(x1,
δ1
2

), . . . , B(xn,
δn
2

)
}

is a finite subcover covering E.

Let δ = min( δ1
2
, . . . , δn

2
). If y, z ∈ E and d(y, z) < δ ≤ δk

2
for each k =

1, . . . , n, then by the triangle inequality

d(xk, z) ≤ d(xk, y) + d(y, z) ≤ δk
2

+ δk
2
< δk.
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Therefore

d(f(y), f(z)) ≤ d(f(y), f(xk)) + d(f(xk), f(z)) < ǫ
2

+ ǫ
2

= ǫ,

establishing uniform continuity.

12.5. Heine–Borel theorem

Here we present an effective approach to the Heine–Borel theo-
rem exploiting the characterisation of compactness of Section 11.3. A
standard set C in a standard metric space is closed if every standard
element near some element of C is actually in C. It is bounded1 if it
contains no unlimited elements. If standard x and y are infinitely close
then x = y.

Lemma 12.5.1. If C is compact then it is closed and bounded.

Proof. Every element of C is nearstandard in C by compactness,
so there are no unlimited elements, i.e., C is bounded. Let a standard
point x be infinitely close to some y ∈ C. By compactness of C there
is a standard z ∈ C such that z ≃ y. Thus x = z ∈ C and C is
closed. �

Lemma 12.5.2. For standard n, if C ⊆ Rn is closed and bounded
then it is compact.

Proof. For standard n, the condition of infinite proximity in Rn

amounts to the condition of infinite proximity for each of the n coor-
dinates. A similar remark applies to boundedness.

Let x ∈ C. Since C is bounded, x is limited and hence infinitely
close to a standard y ∈ Rn. By closure, y ≃ x entails y ∈ C. Thus x is
nearstandard in C. This proves that C is compact. �

12.6. Radically Elementary Probability Theory

Nelson’s Radically Elementary Probability Theory is based on tra-
ditional mathematics plus axioms 1 through 5 stated in [13, Section 4,
pp. 13–14]. The axioms 1 through 4 hold in SPOT. Axiom 5, which ac-
cording to Nelson is rarely used, is the axiom CC (see Definition 11.2.3).
It follows that Radically Elementary Probability Theory is conserva-
tive over ZF+ADC. Furthermore, it follows that all results from [13]
automatically hold in SCOT. In particular, this includes Nelson’s S-
integral.

1Here C must be a subset of a metric space for the notion of boundedness to
make sense. Note that Countable Idealisation (CI) is needed to prove its equivalence
to the usual definition “There is a real r such that for all x ∈ C, d(x, p) < r holds
for some (equivalently, all) p ∈ C.” CI is available in SPOT.
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Further applications include proofs in SPOT of Peano and Osgood
theorems for ordinary differential equations [10].

Our perspective fits with a relative view of the foundations of math-
ematics such as that provided by Hamkins’ multiverse. For the relation
between the Gitman–Hamkins “toy” model of the multiverse [5] and
nonstandard analysis, see Fletcher et al. [4, Section 7.3].
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CHAPTER 13

Saturation, topology, hyperfinite sets

In Section 9.5 we treated countable saturation in the case of natural
extensions of standard sets. Now we will deal with the general case of
countable saturation for internal sets.

13.1. Saturation of internal sets: the general case

Theorem 13.1.1. The intersection of a decreasing sequence

X1 ⊇ X2 ⊇ · · · ⊇ Xk ⊇ · · ·
of nonempty internal sets is always nonempty:

⋂

k∈NX
k 6= ∅.

Proof. This is a delicate analysis of the ultrapower construction,
involving a kind of diagonalisation argument.1 It is a refinement of the
proof of Lemma 9.5.1.

For each k ∈ N, let Xk = [Ak
n], so that Xk is the internal set defined

by the sequence 〈Ak
n : n ∈ N〉 of subsets of R. By Section 8.2 (algebra

of internal sets), both sets

{n ∈ N : Ak
n 6= ∅} and {n ∈ N : Ak

n ⊇ Ak+1
n }

belong to F . Now let

Jk = {n ∈ N : A1
n ⊇ · · · ⊇ Ak

n 6= ∅}. (13.1.1)

Remark 13.1.2. Intuitively, the set Jk is the set of indices n for
which the k real sets A1

n, . . . A
k
n behave “as they should” in the sense of

mimicking the nesting behavior of the internal sets X1, . . . , Xk them-
selves.

Since the ultrafilter F is closed under finite intersections, for each k ∈
N we have Jk ∈ F . Note that J1 ⊇ J2 ⊇ · · · .

1A possibly more conceptual argument was outlined by Andreas Blass at
https://math.stackexchange.com/a/442194/72694.
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We want to find a hyperreal [sn] that belongs to every Xk. This
will require that for each k we have sn ∈ Ak

n for F -almost all n. We
will arrange this to work for F -almost all n ≥ k, in the sense that

{n ∈ N : k ≤ n} ∩ Jk ⊆ {n ∈ N : sn ∈ Ak
n}. (iii)

Note that

• the set {n ∈ N : k ≤ n} is cofinite in N, and so belongs to the
nonprincipal ultrafilter F ;
• as already mentioned, Jk ∈ F .

Hence formula (iii) yields {n ∈ N : sn ∈ Ak
n} ∈ F . Therefore [sn] ∈ Xk

as required.
It thus remains to define sn satisfying condition (iii). For n ∈ J1

let

kn = max{i : i ≤ n and n ∈ J i}. (iv)

Then n ∈ Jkn , so by the definition (13.1.1) of Jkn we can choose
some sn ∈ Akn

n , and hence

sn ∈ A1
n ∩ · · · ∩ Akn

n . (v)

For n 6∈ J1, let sn be arbitrary. Now, to prove (iii), observe that if k ≤ n
and n ∈ Jk, then by (iv), k ≤ kn, and so by (v), sn ∈ Ak

n. �

13.2. Algebra of countable families of internal sets

Countable saturation has some important consequences for the na-
ture of countable unions and intersections of internal sets:

Corollary 13.2.1. If {Xn : n ∈ N} is a collection of internal sets
and X is internal, then:

(1) ∩n∈NXn 6= ∅ if {Xn : n ∈ N} has the finite intersection prop-
erty.

(2) If X ⊆ ∪n∈NXn, then already X ⊆ ∪n≤kXn for some k ∈ N.
(3) If ∩n∈NXn ⊆ X, then already ∩n≤kXn ⊆ X for some k ∈ N.
(4) If ∪n∈NXn is internal, then it equals ∪n≤kXn for some k ∈ N.
(5) If ∩n∈NXn is internal, then it equals ∩n≤kXn for some k ∈ N.

Proof. (1) Let Y k = X1 ∩ · · · ∩ Xk. Then Y 1 ⊇ Y 2 ⊇ · · · , and
each Y k is internal by Section 8.2 (algebra of internal sets). The finite
intersection property implies that Y k 6= ∅, so by Theorem 13.1.1 there
is some hyperreal that belongs to every Y k, and hence to every Xk.

(2) We argue by contradiction. Suppose that for all k ∈ N, we
have X 6⊆ ∪n≤kXn and hence the finite intersection satisfies

∩n≤k(X −Xn) = X − (∪n≤kXn) 6= ∅.
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Then {X − Xn : n ∈ N} is a collection of internal sets with the
finite intersection property, so by (1) there is some x with

x ∈ ∩n∈N(X −Xn) = X − (∪n∈NXn).

Hence X 6⊆ ∪n∈NXn, contradicting our hypothesis.
(3) Exercise.
(4) Put X = ∪n∈NXn in (2).
(5) Similarly, from (3). �

Result (4) of Corollary 13.2.1 plays a crucial role in the nonstandard
approach to measure theory discussed later.

13.3. Saturation creates nonstandard entities

The use of the term saturation is intended to convey that ∗R is
“full of elements”. Countable saturation ensures the existence of those
elements that can be characterised as belonging to the intersection of
a decreasing sequence of internal sets.

Example 13.3.1. Let Xn be the hyperreal interval (0, 1
n
) ⊆ ∗R.

Then 〈Xn : n ∈ N〉 is a decreasing sequence of nonempty internal
sets. Its (nonempty) intersection ∩n∈NXn is precisely the set of positive
infinitesimals.

Another consequence of saturation is the following property.

Theorem 13.3.2. Every sequence of infinitesimals has an infini-
tesimal upper bound.

Proof. Take 〈en : n ∈ N〉 with en ≈ 0 for all n ∈ N.
Let Xn be the hyperreal interval [en,

1
n
). Then Xn is internal, and

the collection {Xn : n ∈ N} has the finite intersection property. For in
general, if e is the maximum element of {en1

, . . . , enk
}, then

e ∈
[

en1
, 1
n1

)

∩ · · · ∩
[

enk
, 1
nk

)

.

By saturation, the countable intersection is nonempty. But any mem-
ber of

⋂

n∈NXn is an upper bound of the en’s that is smaller than 1
n

for all n ∈ N, and hence is infinitesimal. �

Dually, we can use saturation to show the following.

Theorem 13.3.3. Every sequence 〈sn : n ∈ N〉 of infinite hyper-
natural numbers has an infinite hypernatural lower bound.

Proof. For each n ∈ N, consider the internal interval Xn = (n, sn].
Then any x belonging to ∩n∈NXn 6= ∅ is a positive infinite lower bound
of the terms sn. By transfer, we can take a member of ∗N between x−1
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and x to get an infinite hypernatural number that is less that sn for
all n ∈ N. (Alternatively, put Xn = (n, sn] ∩ ∗N in this argument.) �

13.4. The cardinality of an internal set

Countable saturation implies that ∗R has so many elements that an
infinite internal set cannot be countably infinite.

Theorem 13.4.1. Every internal set is either finite or uncountable.

In the case of subsets of R, we already showed that any internal
set of reals must be finite. In proving this in Section 9.2 we showed in
effect that an internal subset of R cannot be put in one-to-one corre-
spondence with N. We can now can demonstrate this for any internal
set whatsoever.

Proof. Suppose X = {xn : n ∈ N} (possibly with repetitions)
is a countable internal set. We remove all the points from X one by
one, by defining for each n the set Xn = X − {x1, . . . , xn}, which is
internal. Then the sets Xn form a decreasing sequence. If they were
all nonempty, countable saturation would imply that their intersection
would be nonempty, which is false. We must therefore conclude that
there is an n for which Xn = ∅ and so X = {x1, . . . , xn},

This shows that any countable internal set must be finite. Hence
an infinite internal set must be uncountable. �

This observation has the following consequence for the structure of
the set ∗N of hypernatural numbers. If H is an infinite hypernatural,
then the initial segment {1, 2, . . . , H} of ∗N is internal, and is certainly
infinite, since it includes all of N, so is uncountable. It follows that
there must be uncountably many infinite members of ∗N that are less
than H. The set of all infinite hypernaturals is partitioned into ∗N-
galaxies, each of which looks like a copy of Z. If H is infinite, then
there are uncountably many of these ∗N-galaxies between N and H.

13.5. Closure of the shadow of an internal set

For any X ⊆ ∗R, let

sh(X) = {sh(x) : x ∈ X and x is finite}.
Example 13.5.1. Let X be the interval (a, b) ⊆ ∗R. Let a, b be

finite. Then sh(X) is the closed interval [sh(a), sh(b)] in R. If a is finite
but b infinite, then sh(X) = [sh(a),+∞) ⊆ R, again a topologically
closed subset of R.

Theorem 13.5.2. If X is internal, then sh(X) is closed.
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Proof. Let r ∈ R be a closure point of sh(X). We need to show
that r ∈ sh(X), i.e., r is the shadow of some y ∈ X. For each n ∈ N,
the hyperreal open interval (r − 1

n
, r + 1

n
) meets sh(X) in some real

point sn that must be the shadow of some xn ∈ X. Hence xn ≈ sn ∈
(r − 1

n
, r + 1

n
), so the internal set

Xn = X ∩ (r − 1
n
, r + 1

n
)

contains xn and is therefore nonempty. The sets Xn form a decreasing
sequence. By countable saturation, there is a point y ∈ ⋂

n∈NXn in
their intersection. Then y ∈ X and |y− r| < 1

n
for all n ∈ N, so y ≈ r.

Hence

r = sh(y) ∈ sh(X).

Hence sh(X) contains all its closure points and so is closed. �

Topological closure of the shadow of an internal set plays an impor-
tant role in the hyperreal “reconstruction” of the Lebesgue measure.
This will be explained later.

13.6. Interval topology and hyper-open sets

We introduce the following three notions.

Definition 13.6.1. A set A of hyperreals is interval-open if each of
its points belongs to some hyperreal open interval (a, b) that is included
in A. The family of interval-open sets is the interval topology on ∗R.

Thus the interval-open sets are precisely those that are unions of
hyperreal open intervals. A “thinner” family of sets is the following.

Definition 13.6.2. A real-open set is one that is a union of hyper-
real open neighbourhoods (r − c, r + c) having real radius c > 0.

Equivalently, a real-open set is a union of hyperreal open intervals
of appreciable length. Each real-open set is interval-open, but not
conversely: the real-open sets are not a topology on ∗R, since they are
not closed under intersection.

Example 13.6.3. Let r = 2 − ε for a positive infinitesimal ε > 0.
Then the intersection of hyperreal intervals (−1, 1) and (r − 1, r + 1)
is of infinitesimal size in the sense that it is contained in hal(1), and
therefore not real-open.

An even “thinner” family of sets is the following.
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Definition 13.6.4. An S-open set is a union of S-neighbourhoods
((r − c, r + c)) having real radius c > 0, where

((r − c, r + c)) = {x ∈ ∗R : hal(x) ⊆ (r − c, r + c)}.2

The S-open sets form the S-topology on ∗R.

Every S-open set is real-open, but not conversely. Every S-open set
is a union of halos, but not conversely.

Example 13.6.5. The set

L = ∪n∈N(−n, n)

of finite numbers is external. Thus, while a real-open set is always a
union of internal sets (namely, open intervals), it may itself be external.

We now introduce a further class of subsets of ∗R.

Definition 13.6.6. An internal set [An] is hyper-open if

{n ∈ N : An is open in R} ∈ F.
Each hyperreal interval (a, b) is hyper-open: if a = [an] and b = [bn],

then (a, b) is the internal set defined by the sequence 〈An : n ∈ N〉,
where An is the real interval (an, bn), which is indeed open in R.

Lemma 13.6.7. Every hyper-open set is a union of hyperreal open
intervals.

Proof. Let A = [An] be hyper-open. Take a point r = [rn] ∈ A.
Then we find that the set

J = {n ∈ N : rn ∈ An and An is open in R}
belongs to the ultrafilter F . Our task is to show that r belongs to some
hyperreal interval (a, b) that is included in A.

Now, if n ∈ J , then there is some real interval (an, bn) ⊆ R with rn ∈
(an, bn). Since J ∈ F , this is enough to specify a as the hyperreal
number [an] and b as [bn]. Furthermore, working with the properties
of F , we can show that

(1) [an] < [rn] < [bn], and
(2) [sn] ∈ [An] whenever [an] < [sn] < [bn].

Therefore

r ∈ (a, b) ⊆ A

as required. �

2Here we discard a pair of half-halos at the extremities of (r − c, r + c).
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This lemma implies that every hyper-open set is interval-open. But
there are interval-open sets, like the set L of finite numbers, that are
not hyperopen, simply because they are external, whereas hyper-open
sets are always internal by definition. The example of L shows that the
family of hyperopen sets is not a topology, because it is not closed under
infinite unions. Instead, it is what is known as a base for the interval
topology, because every interval-open set is a union of hyper-open sets
(open intervals).

Lemma 13.6.8. The families of real-open sets and hyper-open sets
are incomparable.

Proof. The set L is real-open (indeed S-open) but not hyper-open,
while any infinitesimal length open interval is hyper-open but not real-
open. �

This latter example shows that even for internal sets the two classes
remain distinguishable. There is a characterisation of S-openness of
internal sets that corresponds to the nonstandard characterisation of
openness of subsets of R and involves an interesting application of
underflow.

Theorem 13.6.9. If B is an internal set, then B is S-open if and
only if it contains the halo of each of its points.

Proof. The proof uses the underflow principle. Recall that an
S-open set is a union of halos.

Conversely, assume that hal(r) ⊆ B whenever r ∈ B. For such
an r, consider the set

X =
{

n ∈ ∗N : (∀x ∈ ∗R) (|r − x| < 1
n
→ x ∈ B)

}

.

Since B is internal, it follows by the internal set definition principle
that X is internal. Moreover, since hal(r) ⊆ B, it follows that X
contains every infinite hypernatural n, because for such an n, the
bound |r − x| < 1

n
implies x ∈ hal(r). Hence by underflow, X must

contain some standard n ∈ N. It follows that B includes the real-radius
interval (r − 1

n
, r + 1

n
). But then, since 1

n
is real,

r ∈ ((r − 1
n
, r + 1

n
)) ⊆ (r − 1

n
, r + 1

n
) ⊆ B.

It follows that B is the union of S-neighbourhoods, and is thereby
S-open. �

13.7. Internal functions

Let 〈fn : n ∈ N〉 be a sequence of functions fn : An → R, with
domains An ⊆ R.
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Definition 13.7.1. An internal function is an ∗R-valued func-
tion [fn] defined on the internal set [An] by setting

[fn]([rn]) = [fn(rn)].

Observe that if [rn] ∈ [An], then the set J = {n ∈ N : rn ∈ An}
belongs to F , and for each n ∈ J , fn(rn) is defined. This is enough to
make [fn]([rn]) well-defined. We have

dom[fn] = [domfn].

In the case that (fn) is a constant sequence, with fn = f : A → R for
all n, then [fn] is just the function ∗f : ∗A→ ∗R extending f .

The following result shows that we only need to specify almost all
of the real functions fn in order to determine the internal function [fn].

Theorem 13.7.2. Let 〈fn : n ∈ N〉 and 〈gn : n ∈ N〉 be sequences of
partial functions from R to R. Then the internal functions [fn] and [gn]
are equal if and only if

{n ∈ N : fn = gn} ∈ F.
Proof. Let

Jfg = {n ∈ N : fn = gn}. (13.7.1)

Suppose Jfg ∈ F . Now in general, two functions are equal precisely
when they have the same domain and assign the same values to all
members of that domain. Thus

Jfg ⊆ {n ∈ N : domfn = domgn},
leading to the conclusion that the internal sets [domfn] and [domgn]
are equal, i.e., dom[fn] = dom[gn]. But for [rn] ∈ dom[fn],

Jfg ∩ {n ∈ N : rn ∈ domfn} ⊆ {n ∈ N : fn(rn) = gn(rn)},
which, by (13.7.1), leads to [fn]([rn]) = [gn]([rn]). Hence [fn] = [gn].

For the converse, suppose that Jfg 6∈ F . Now, J c
fg is a subset of the

union

{n ∈ N : domfn 6= domgn} ∪ {n ∈ N : domfn = domgn but fn 6= gn},
so either {n ∈ N : domfn 6= domgn} ∈ F , whence dom[fn] 6= dom[gn]
and so [fn] 6= [gn], or else

J = {n ∈ N : domfn = domgn but fn 6= gn} ∈ F.
But for n ∈ J there exists some rn with fn(rn) 6= gn(rn). This leads
to [fn]([rn]) 6= [gn]([rn]), and so [fn] 6= [gn]. �
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13.8. Hyperfinite sets

If An is finite for (almost) all n ∈ N, then [An] may nevertheless
be infinite (and then in fact uncountable by Theorem 13.4.1) but will
have many properties that are similar to those of finite sets.

Definition 13.8.1. An internal set A = [An] is called hyperfinite
if almost all of the sets An are finite, i.e., if

{n ∈ N : An is finite} ∈ F.
In that case, we may as well assume that all the sets An are finite

and have finite integer size |An|.
Definition 13.8.2. The internal cardinality (or size) of A is the

hyperinteger

|A| = [〈|An| : n ∈ N〉].
More succinctly, |[An]| = [|An|].
Example 13.8.3. Let An = {1, . . . , n} ⊆ N. The resulting hyperfi-

nite set A includes N. Being internal, it must therefore be an uncount-
able subset of ∗N. To see that N ⊆ A, observe that if m ∈ N, then the
set {n ∈ N : m ∈ An} is cofinite, being equal to {m,m + 1, . . .}, so
belongs to F . Hence ∗m ∈ A.

Example 13.8.4. In the previous example, we saw that

N ⊆ [An] ⊆ ∗N.

We can refine the example by replacing N by B. If B is any countable
subset of R, then there exists a hyperfinite set A with

B ⊆ A ⊆ ∗B.

For if B = {xn : n ∈ N}, let A = [An] where An = {x1, . . . , xn}. In
this case the internal size of A is ω = [(1, 2, 3, . . .)].

Remark 13.8.5. gLater we will see that the restriction to count-
ability here can be removed: any subset B of R has a “hyperfinite
approximation” A satisfying B ⊆ A ⊆ ∗B.3

Example 13.8.6. Any finite set of hyperreals is hyperfinite: as
observed in Section 8.1, if X = {[r1n], . . . , [rkn]} ⊆ ∗R, then X is the
hyperfinite set [An], where

An = {r1n, . . . , rkn}.
3This involves more advanced models than those we have constructed so far.
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If H = [Hn] ∈ ∗N, then the set

{k ∈ ∗N : k ≤ H} = {1, 2, . . . , H}
discussed in Section 8.1 is hyperfinite and has internal cardinality H,
since it is equal to [An], where An = {1, 2, . . . , Hn} and |An| = Hn.

Example 13.8.7. If H = [Hn] ∈ ∗N, then the set
{

k

H
: k ∈ ∗Z and 0 ≤ k ≤ H

}

=

{

0,
1

Hn

. . . ,
Hn − 1

Hn

, 1

}

is hyperfinite of internal cardinality H + 1, since it is equal to [An],
where

An =

{

0,
1

Hn

, · · · , Hn − 1

Hn

, 1

}

.

Example 13.8.8. More generally, for any hyperreals a, b, and anyH ∈
∗N, the uniform partition

{

a+ k
(b− a)

H
: k ∈ ∗Z and 0 ≤ k ≤ H

}

is hyperfinite of internal cardinality H + 1.



CHAPTER 14

Universes

14.1. Counting a hyperfinite set

The results of Section 13.8 are indicative of ways in which hyper-
finite sets behave like finite sets. More fundamentally, a finite set can
be defined as one that has n elements for some n ∈ N, and so is in
bijective correspondence with the set {1, . . . , n}. Correspondingly, for
hyperfinite sets we have the following result.

Theorem 14.1.1. An internal set A is hyperfinite with internal car-
dinality H if and only if there is an internal bijection f : {1, . . . , H} →
A.

For the proof see the note.1

An important feature of this result is that it gives a characterisation
of hyperfinite sets that makes no reference to the ultrafilter F , but
requires only the hypernatural numbers ∗N and the notion of an internal
function. Superstructures provide a systematic way of adopting an
approach which sidesteps ultrafilters.

1Let A = [An]. If A is hyperfinite with internal cardinality H = [Hn], then we
may suppose that for each n ∈ N, An is a finite set of cardinality Hn. Thus there
is a bijection fn : {1, . . . , Hn} → An. Let f = [fn]. Then f is an internal function
with domain {1, . . . , H} that is injective (Goldblatt’s 12.2(4)) and has range A
(Goldblatt’s 12.2(1) ). Conversely, suppose that f = [fn] is an internal bijection
from {1, . . . , H} onto A. Then [domfn] = dom[fn] = {1, . . . , H} = [{1, . . . , Hn}],
so for F -almost all n,

domfn = {1, . . . , Hn} (i)

Also, as A is the image of {1, . . . , H} under [fn], Goldblatt’s Exercise 12.2(1) implies
that A = [fn({1, . . . , Hn})], so

fn({1, . . . , Hn}) = An (ii)

for F -almost all n. Finally, by Goldblatt’s 12.2(4),

fn is injective (iii)

for F -almost all n. Then the set J of those n ∈ N satisfying (i)-(iii) must belong
to F . But for n ∈ J , the set An is finite of cardinality Hn. Hence A is hyperfinite
of internal cardinality H.

133
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14.2. Motivating superstructures

Remark 14.2.1. The goal of Sections 14.2 through 14.8 is to mo-
tivate the introduction of superstructures, defined in Section 14.9.

We formulate some questions concerning the extension of the power
of our techniques so as to make it applicable in a variety of fields in
mathematics.

Remark 14.2.2 (Proofs based on transfer; range of quantifiers). In
earlier sections, we proved internal versions of

(1) induction,
(2) least number principle,
(3) order-completeness,

etc. The proofs of these results reverted to ultrafilter calculations.
Could one, instead, obtain such results by a transfer principle, involv-
ing an extended version of the formal language of Chapter 4? The idea
would be to use a more expressive language that would allow the quan-
tifiers ∀ and ∃ to range over suitable collections of sets or functions
rather than just over numbers.

Remark 14.2.3 (Generalizing internality; power set). Now that
we see how to identify certain subsets and functions in ∗R as being
internal, can we do the same for other more complex entities? If a
set A is hyperfinite, is its powerset

P(A)

also hyperfinite, or is it the collection of internal subsets of A that
should be hyperfinite?

14.3. What do we need in the mathematical world?

In developing a mathematical theory, or analysing a particular
structure, access may be needed to a wide range of entities: sets, mem-
bers of sets, sequences, relations, functions, etc.

Remark 14.3.1 (U, LU, ∗U). We will posit the existence of a “uni-
verse”

U

that contains all such entities that might be required. This will have
an associated formal language

LU
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whose sentences express properties of the members of U. Then U will
be enlarged to another universe

∗U

that contains certain new (nonstandard) entities whose behaviour can
be used to establish results about U by the use of transfer and other
principles.

What kind of entities and closure properties should U have?

14.3.1. Individuals; set X. Although a real number might be
viewed as a set of Cauchy sequences, or a pair of sets of rationals, when
studying real analysis we generally regard real numbers as individuals,2

i.e., as “points” or entities that have no internal structure. The same
applies to the basic elements of any other structure that might concern
us, be they elements of an algebraic number field, complex numbers,
vectors in some Hilbert space, and so on. The universe U will contain
a set

X

of entities that are viewed as individuals in this way. An element
of X will be taken to have no members within U. It will be assumed
that R ⊆ X.

14.3.2. Functions; BA. If two sets A and B belong to U, then we
may wish to have all functions f : A→ B available in U, along with

• the range of f ,
• the f -image f(C) ⊆ B of any C ⊆ A,
• the inverse image of any subset of B under f .

Moreover, the set
BA

of all functions from A to B should itself be in U. Also, we should be
able to compose functions in U.

14.3.3. Relations; Cartesian products. An m-ary relation is a
certain set of m-tuples 〈a1, . . . , am〉. Such a relation is usually presented
as a subset of some Cartesian product A1 × · · · ×Am, the latter being
the set of all m-tuples that have a1 ∈ A1, . . . , am ∈ Am. Thus U should
be closed under the formation of tuples, and of Cartesian products and
their subsets. For binary relations (m = 2) the domain and range
should be available, and the operations of composing and inverting
relations should be possible within our universe.

2Atoms - atomim? pritim? urelements?
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14.3.4. Set Operations. All the usual set operations of intersec-
tion A∩B, union A∪B, difference A−B, and power set P(A), when
performed on sets in U, should produce entities that belong to U. In
fact, some important constructions will require the union

∪Y
and intersection ∩Y of any (possibly infinite) collection Y ∈ U to be
available. Also, if a set A belongs to U, then all subsets of A should
too.

14.4. Transitivity

If a set A is in U (i.e., A ∈ U), we will want all members of A to be
present in U as well, i.e.,

A ⊆ U.

Definition 14.4.1. The condition (A ∈ U) → (A ⊆ U) is called
transitivity of U, because it takes the form

a ∈ A ∈ U implies a ∈ U. (14.4.1)

Remark 14.4.2. This has an important bearing on the interpreta-
tion of a bounded quantifier (∀x ∈ A). We naturally read this as “for
all x in A”, but when used to express a property of an entity of U,
there is a potential issue as to whether this means “for all x in A that
belong to U”, or whether the variable x is ranging over all members
of A absolutely. When U is transitive, this is not an issue: the members
of A that belong to U are simply all the members of A that there are.

Transitivity thus ensures that quantified variables always range over
members of U when given their natural interpretation.

14.4.1. Subset and relation closure. Transitivity of U together
with closure under the power set operation will guarantee that U has
the property mentioned above of closure under subsets of its members.
For then if A ⊆ B ∈ U, we get

A ∈ P(B) ∈ U, (14.4.2)

and hence A ∈ U by transitivity (14.4.1) applied to (14.4.2).
Then closure of U under Cartesian products will lead to closure

under relations between given sets in general.

Lemma 14.4.3. Let A, B be sets in U, and R ⊆ A×B. If A×B ∈ U,
then R ∈ U.

This follows by the argument just given for subset closure.
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14.5. Specifying primitive concepts: pairs are enough

The more we assume about the entities that exist and constructions
that can be performed within U, the more powerful will be this uni-
verse as a tool for applications. On the other hand, for demonstrating
properties of U itself or showing that it exists (and ∗U does too), the
following is desirable.

Remark 14.5.1 (Primitive concepts). It is desirable to have very
few primitive concepts, so that we can minimize the number of cases
and the amount and complexity of work required in carrying out proofs.

Studies of the foundations of mathematics have shown that these
opposing tendencies can be effectively balanced by basing our con-
ceptual framework on set theory. To see this we will first show that
apart from purely set-theoretic operations, the other notions described
in Section 14.3 can be reduced to the construction of sets of ordered
pairs.

Lemma 14.5.2 (Functions). A function f : A→ B can be identified
with the set of pairs

{〈a, b〉 : b = f(a)},
which is a subset of the Cartesian product set A×B.

Definition 14.5.3. Set-theoretically, we define a function from A
to B to be a set f of pairs satisfying

(i) if 〈a, b〉 ∈ f then a ∈ A and b ∈ B;
(ii) if 〈a, b〉, 〈a, c〉 ∈ f , then b = c (functionality);

(iii) for each a ∈ A there exists b ∈ B with 〈a, b〉 ∈ f (the domain
of f is A).

Lemma 14.5.4 (m-tuples). Given a construction for ordered pairs
(2-tuples), the case m > 2 can be handled, as well.

This is done by defining

〈a1 . . . , am〉 = {〈1, a1〉, . . . , 〈m, am〉}.
Thus an m-tuple becomes a set of ordered pairs (and actually is a
function with domain {1, . . . ,m}).3

Lemma 14.5.5 (Relations). An m-ary relation is a certain set of m-
tuples 〈a1, . . . , am〉, and hence becomes a set of sets of ordered pairs.

3An alternative approach would be to inductively put 〈a1, . . . , am+1〉 =
〈〈a1, . . . , am〉, am+1〉, so that an m-tuple becomes a pair of pairs of · · · of pairs.
This works just as well, but would be more complex set-theoretically than the
definition given.
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The Cartesian product A1 × · · · × Am is a particular case of this,
being the set of all such m-tuples that have a1 ∈ A1, . . . , am ∈ Am.

14.6. Actually, sets are enough

In Section 14.5, we argued that ordered pairs are sufficient for the
kinds of purposes we have in mind. But what is an ordered pair? Well,
one of the most effective ways to explain a mathematical concept is to
give an account of when two instances of the concept are equal, and
for ordered pairs the condition is that

〈a, b〉 = 〈c, d〉 iff a = c and b = d.

In fact, this condition is all that is ever needed in handling pairs, and
it can be fulfilled by setting

〈a, b〉 = {{a}, {a, b}}.
In this way pairs are represented as certain sets, and therefore so too
are m-tuples, relations, and functions. When it comes to the study of
a particular structure whose elements belong to some given set X, all
the entities we need can be obtained by applying set theory to X. This
demonstrates the power of set theory, and explains the sense in which
it provides a foundation for mathematics.

Lemma 14.6.1 (Product closure). Closure of U under Cartesian
products can be derived set-theoretically from

(1) transitivity and
(2) closure under unions and power sets.

Proof. If A,B ∈ U and 〈a, b〉 ∈ A× B, then both {a} and {a, b}
are subsets of A ∪ B, i.e., members of P(A ∪ B). Hence

〈a, b〉 = {{a}, {a, b}} ∈ PP(A ∪B).

This shows that A×B ⊆ PP(A ∪B), and so

A× B ∈ PPP(A ∪ B).

Thus, closure under ∪ and P and transitivity of U give A×B ∈ U. �

14.7. Strong transitivity

Before giving the axioms for a universe, there is a further important
property to be explained, which we do with the following example.

Example 14.7.1 (Question). If a binary relation R belongs to U,
then its domain domR should be available in U as well. Now, if a ∈
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domR, then there is some entity b with 〈a, b〉 ∈ R. According to our
new definition of pairs, we then have the “membership chain”

a ∈ {a} ∈ 〈a, b〉 ∈ R ∈ U.

Transitivity of U will ensure that it is closed downwards under such
membership chains, giving a ∈ U. But this leads only to the conclusion
that domR ⊆ U, whereas we want domR ∈ U. Is domR perhaps too
“big” to be an element of U?4

Now, if R itself were transitive, we would get a ∈ R, showing
domR ⊆ R ∈ U, from which our desired conclusion would result by
subset closure. But of course R need not be transitive. On the other
hand, it is reasonable to suppose that R can be extended to a transi-
tive set B that belongs to U (i.e., R ⊆ B ∈ U). Then we can reason
that domR ⊆ B ∈ U, leading to domR ∈ U, as desired, by subset
closure. The justification for this is that any set A has a transitive
closure

Tr(A),

whose members are precisely the members of members of · · · of mem-
bers of A.

Definition 14.7.2. Tr(A) is the smallest transitive set that in-
cludes A, so that any transitive set including A will also include Tr(A).

We are going to require that U be “big enough” to have room for
the transitive closure of any set A ∈ U. For this to hold it is enough
that some transitive set including A belong to U. Thus our requirement
is strong transitivity.

Definition 14.7.3. Strong Transitivity is the property that for any
set A ∈ U there exists a transitive set B ∈ U with A ⊆ B ⊆ U.

Note that the stipulation that B ⊆ U is superfluous if U were as-
sumed transitive, since the inclusion B ⊆ U would then follow from B ∈
U. But the definition of strong transitivity itself implies that U is tran-
sitive. Indeed, we get A ⊆ U when A ∈ U because A ⊆ B ⊆ U.5 So
this single statement captures all that is needed. In a strongly transi-
tive U we can assume that any set we are dealing with is located within
a large transitive set. This will be the “key to the universe”, as will
become apparent.

4That this is not an idle question is evident from the discussion in Section 15.1.
5In more detail, let A ∈ U. Consider the transitive closure B ∈ U of A,

so that A ⊆ B. By the last hypothesis of Definition 14.7.3, we have B ⊆ U.
Thus A ⊆ U, i.e., every member of A belongs to U. This proves the transitivity
of U.
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14.8. Universes

Definition 14.8.1. A universe is any strongly transitive set U such
that

• if a, b ∈ U, then {a, b} ∈ U;
• if A and B are sets in U, then A ∪ B ∈ U;
• if A is a set in U, then P(A) ∈ U.

We can further specify the individuals of U.

Definition 14.8.2. Such a U is a universe over X if

(1) X is a set that belongs to U (X ∈ U), and
(2) the members of X are regarded as individuals that are not sets

and have no members:

(∀x ∈ X)[x 6= ∅ ∧ (∀y ∈ U)(y 6∈ x)].

It will always be assumed further that a universe contains at least
one set, and also contains the positive integers 1, 2, . . . to ensure that m-
tuple formation can be carried out. In practice we will be using uni-
verses that have R ∈ U, with each member of R being an individual,
so these conditions will hold.

Here now is a list of the main closure properties of such universes,
many of which have been indicated already. Uppercase letters A, B,
Ai, etc. are reserved for members of U that are sets.

14.8.1. Set theory.

• If a ∈ U, then {a} ∈ U.
• A1, . . . , Am ∈ U implies A1 ∪ · · · ∪ Am ∈ U.
• U contains all its finite subsets: if A ⊆ U and A is finite,

then A ∈ U.
• A ⊆ B ∈ U implies A ∈ U.
• ∅ ∈ U.
• If {Ai : i ∈ I} ⊆ A ∈ U, then ∪i∈IAi ∈ U. (Note: this uses

strong transitivity.)
• U is closed under unions of sets of sets: if B = {Ai : i ∈ I} ∈ U

and each Ai is a set, then ∪B = ∪i∈IAi ∈ U.
• U is closed under arbitrary intersections: if {Ai : i ∈ I} ⊆ U,

then ∩i∈IAi ∈ U, whether or not the set {Ai : i ∈ I} itself
belongs to U.

14.8.2. Relations.

• If a, b ∈ U, then also the pair 〈a, b〉 ∈ U
• If A,B ∈ U and R ⊆ A×B, then R ∈ U.
• If a1 . . . , am ∈ U (m > 2), then 〈a1, . . . , am〉 ∈ U.
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• U is closed under finitary relations: if A1, . . . , Am ∈ U and R ⊆
A1 × · · · × Am, then R ∈ U.
• If R ∈ U is a binary relation, then U contains the domain
domR, the range ranR, the R-image Ri(C) of any set C ⊆
domR, and the inverse relation R−1, where

domR = {a : ∃b (〈a, b〉 ∈ R)},
ranR = {b : ∃a (〈a, b〉 ∈ R)},

Ri(C) = {b : ∃a ∈ C (〈a, b〉 ∈ R)},
R−1 = {〈b, a〉 : 〈a, b〉 ∈ R}.

• If R, S ∈ U are binary relations, then U contains their compo-
sition

R ◦ S = {〈a, c〉 : ∃b (〈a, b〉 ∈ R and 〈b, c〉 ∈ S)}.

14.8.3. Functions.

• If f : A → B is a function with A,B ∈ U, then also f ∈ U.
Moreover, for any C ⊆ A and D ⊆ B, the universe U contains
the image

f i(C) = {f(a) : a ∈ C}
and the inverse image

f−1(D) = {a ∈ A : f(a) ∈ D}.
• If A,B ∈ U, then the set BA of all functions from A to B

belongs to U.
• If {Ai : i ∈ I} ∈ U and I ∈ U, then (

∏

i∈I Ai) ∈ U.

The discussion until now has aimed to motivate the introduction of
superstructures in Section 14.9.

14.9. Superstructures

It is time to demonstrate that there are such things as universes.
Let X be a set with R ⊆ X.

Definition 14.9.1. The nth cumulative power set Un(X) of X is
defined inductively by

U0(X) = X,

Un+1(X) = Un(X) ∪ P(Un(X)),

so that

U0(X) ⊆ U1(X) ⊆ · · · ⊆ Un(X) ⊆ · · ·



142 14. UNIVERSES

Definition 14.9.2. The superstructure over X is the union of all
these cumulative power sets:

U(X) =
⋃

∞

n=0
Un(X).

Definition 14.9.3. The rank of an entity a is the least n such
that a ∈ Un(X).

The rank 0 entities (members of X) will be regarded as individuals:

(∀x ∈ U0(X))
(

x 6= ∅ ∧ (∀y ∈ U(X)) (y 6∈ x)
)

.

All other members of U(X) (those with positive rank) are sets, and
so U(X) has just these two types of entity. We can show the following.

(1) Un+1(X) = X ∪ P(Un(X)).
(2) Un(X) ∈ Un+1(X). Hence Un(X) ∈ U(X), and in particu-

lar, X ∈ U(X).
(3) Un+1(X) is transitive. Indeed, a ∈ B ∈ Un+1(X) implies a ∈

Un(X).6

(4) If a, b ∈ Un(X), then {a, b} ∈ Un+1(X).
(5) If A,B ∈ Un(X), then A ∪ B ∈ Un+1(X).
(6) A ∈ Un(X) implies P(A) ∈ Un+2(X).

From item (3) it follows that U(X) is strongly transitive, since every
element of U(X) belongs to some Un+1(X). Properties (4)–(6) then
ensure that U(X) is a universe, and by (2) it is a universe over X.

In fact, U(X) is the smallest universe containing X, in the sense
that if any universe U has X ∈ U, then U(X) ⊆ U. Another description
of this superstructure over X is the following.

Lemma 14.9.4. U(X) is the smallest transitive set that contains X
and is closed under binary unions A ∪B and power sets P(A).

6For example, if a ∈ B ∈ U1(X), then by definition of U1(X), either B ∈ X

or B ∈ P(X), i.e, B ⊆ X. In the former case B is an individual and hence contains
no elements a. In the latter case, a ∈ B ⊆ X so that a ∈ X = U0(X).



CHAPTER 15

Superstructure, language, NS framework, measure

15.1. Boundedness

Let X be a set of individuals (atoms). In Section 14.9, we defined
a particular type of universe called superstructure U(X) over X induc-
tively as follows:

U0(X) = X

Un+1(X) = Un(X) ∪ P(Un(X)),

U(X) =
⋃

∞

n=0
Un(X).

A universe is not closed under arbitrary subsets: if A ⊆ U, it need
not follow that A ∈ U (e.g., consider A = U). The relevant requirement
is that of boundedness.

Lemma 15.1.1. In a superstructure, A belongs to U(X) iff there
is an upper bound n ∈ N on the ranks of the members of A, i.e.,
iff A ⊆ Un(X) for some n.

Lemma 15.1.2. If A,B ∈ Un(X), then any subset of A×B, and in
particular any function from A to B, is in Un+2(X).

All the entities typically involved in studying the analysis of X can
be obtained in U(X) using only rather low ranks. By Lemma 15.1.2,
constructing a function between given sets increases the rank by at
most 2. Using this, we see the following.

(1) A topology on X is a subset of P(X), hence a subset of U1(X),
so belongs to U2(X). Thus the set of all topologies on X is
itself a member of U3(X).

(2) An R-valued measure on X is a function µ : A → R with A a
collection of subsets of X. Thus A is of rank 2 and µ of rank 4.
Thus the set of all measures on X is also an element of U5(X)
(i.e., of rank 5).

(3) A metric on X is a function d : X×X→ R of rank 5 (since X×X
has rank 3). The set of all metrics on X has rank 6.

143
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(4) The Riemann integral on a closed interval [a, b] can be viewed
as a function

∫ b

a

: R[a, b]→ R.

where R[a, b] is the set of integrable functions f : [a, b] → R.
Such an f is of rank 3, since [a, b] and R have rank 1, so R[a, b]
has rank 4 and therefore the integral is an entity of rank 6.

15.2. The language of a universe

Given a denumerable list of variables, a language

LU

associated with the universe U is generated much as the language LR
of Chapter 4, by defining

• terms,
• atomic formulas,
• formulas, and
• sentences.

The first significant difference is that one is starting with a larger
collection of constant terms (see Section 4.3), namely all the entities
belonging to U. We will point out additional significant differences as
we go along; see e.g., Section 15.4.

15.3. Nonstandard framework; starring a formula

Let ∗ : U→ U′ be a mapping between two universes taking each a ∈
U to an element ∗a ∈ U′.

(1) (Terms) Each LU-term τ has an associated *-transform ∗τ ,
which is the LU′-term obtained by replacing each constant
symbol a by ∗a.

(2) (Formulas) A constant a occurring in an LU-formula φ will oc-
cur as part of a term τ that appears either in an atomic formula
or within one of the quantifier forms (∀x ∈ τ) and (∃x ∈ τ).
Applying the replacement a 7→ ∗a to all such constants trans-
forms φ into an LU′-formula ∗φ. If φ is a sentence, then so too
is ∗φ.

Definition 15.3.1. A nonstandard framework for a set X is a pair

U, ∗
where U is a universe over X and ∗ : U→ U′ is a map with the following
three properties:
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(1) ∗a = a for all a ∈ X.
(2) ∗∅ = ∅.
(3) Transfer: an LU-sentence φ is true if and only if the LU′-

sentence ∗φ is true.

Such a map will be called a universe embedding or transfer map. It
preserves many set-theoretic operations:

• a = b iff ∗a = ∗b. Hence a 7→ ∗a is injective.
• a ∈ B iff ∗a ∈ ∗B.
• A ⊆ B iff ∗A ⊆ ∗B.
• If A ⊆ X, then A ⊆ ∗A ⊆ ∗X. In particular, X ⊆ ∗X.
• ∗(A ∩ B) = ∗A ∩ ∗B.
• ∗(A ∪ B) = ∗A ∪ ∗B.
• ∗(A−B) = ∗A− ∗B.
• ∗{a1, . . . , am} = {∗a1, . . . , ∗am}. Thus ∗A = {∗a : a ∈ A} if A is

finite.

Lemma 15.3.2. We have ∗P(A) ⊆ P(∗A).

Proof. We apply the transfer principle to

(∀x ∈ P(A))(∀y ∈ x) (y ∈ A).

This shows that if x ∈ ∗P(A), then y ∈ x implies y ∈ ∗A, and so x ⊆ ∗A,
whence x ∈ P(∗A). The exact relationship between ∗P(A) and P(∗A) is
mentioned in Section 15.5. �

15.4. Transforming functions

The hyperreal extension of a real-valued function f was denoted
by f , as well. In the more general situation of a universe, a trans-
formed function ∗f need not agree with f where their domains overlap.
Therefore more caution is needed with notation for functions than for
the language LR. In general, if a ∈ domf , then ∗f(∗a) = ∗(f(a)), but
even when ∗a = a this will reduce to ∗f(a) = f(a) only when ∗(f(a)) is
equal to f(a). This need not hold in general.

Example 15.4.1. Let f : R→ P(R) be defined by

f(r) = {x ∈ R : x > r}.
For a given r ∈ R, transfer of the sentence

(∀x ∈ R)(x ∈ f(r)↔ x > r)

shows (since ∗r = r) that
∗f(r) = ∗(f(r)) = {x ∈ ∗R : x > r}.

In particular, f(0) = R+, while ∗f(0) = ∗R+.
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15.5. Punchlines

The punchlines1 are as follows.

(1) The nonstandard universe ∗U(X) is generated by an ultrapower
of U(X).2

(2) An internal set is an element of the star of a standard set.
Thus, a subset I ⊆ ∗R is internal iff I ∈ ∗P(R).

(3) Transfer is valid for formulas involving quantification over sets,
so long as those sets are internal.

Example 15.5.1. Internal order-completeness of the hyperreals was
already discussed in Theorem 8.7.2. If c ∈ R is an upper bound for a
set A ⊆ R, we will abbreviate the formula (∀x ∈ A)(x < c) as

A ≤ c.

The completeness property of R asserts that if A is bounded from
above, then there is a least upper bound d ∈ R for A, or in formulas

(∀A ⊆ R)
[

(∃c ∈ R)(A ≤ c)→ (∃d ∈ R)(A ≤ d)∧ (∀e ∈ R)(A ≤ e→ d ≤ e)
]

.
(15.5.1)

To reformulate the completeness property (15.5.1) in a way amenable
to an application of the transfer principle, we write

(∀A ∈ P(R))
[

(∃c ∈ R)(A ≤ c)→ (∃d ∈ R)(A ≤ d)∧(∀e ∈ R)(A ≤ e→ d ≤ e)
]

.
(15.5.2)

To make this more readable, we introduce the collection of bounded
sets Pbd(R). Then the completeness property becomes

(∀A ∈ Pbd(R))
[

(∃d ∈ R)
(

(A ≤ d) ∧ (∀e ∈ R)(A ≤ e→ d ≤ e)
)]

.
(15.5.3)

Applying the transfer principle to (15.5.3), we obtain

(∀A ∈ ∗Pbd(R))
[

(∃d ∈ ∗R)
(

(A ≤ d) ∧ (∀e ∈ ∗R)(A ≤ e→ d ≤ e)
)]

.
(15.5.4)

Here formula (15.5.4) expresses the internal completeness of ∗R.

15.6. Rings and algebras

Developing the Loeb measure (starting in Section 16.1) will require
some algebraic preliminaries.

1shurat machatz
2By using an ultrafilter over a large index set, one can obtain higher saturation

properties for the nonstandard extension. We will not pursue this since countable
saturation is sufficient for Loeb measures; see Chapter 16.
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Definition 15.6.1. Let K be a set. A ring of sets is a nonempty
collection A of subsets of K that is closed under set differences and
unions:

If A,B ∈ A then A−B, A ∪ B ∈ A.

It follows that ∅ ∈ A, since A− A = ∅, and that A is closed under
symmetric differences A∆B and intersections A ∩B, since

A∆B = (A−B) ∪ (B − A),

and
A ∩ B = A− (A−B).

Definition 15.6.2 (Algebra of sets). An algebra is a ring A that
has K ∈ A and hence (indeed equivalently) is closed under comple-
ments Ac = K − A.

If A is a ring, then A∪{K−A : A ∈ A} is an algebra, the smallest
one including A.

Definition 15.6.3. A σ-ring is a ring that is closed under countable
unions:

If An ∈ A for all n ∈ N, then ∪n∈NAn ∈ A.

The equation

∩n∈NAn = A1 − ∪n∈N(A1 − An))

shows that a σ-ring is also closed under countable intersections.

Definition 15.6.4. A σ-algebra is a σ-ring that is an algebra.

The intersection of any family of σ-algebras is a σ-algebra.

Corollary 15.6.5. For any A ⊆ P(K), there is a smallest σ-
algebra

S(A) ⊆ P(K)

that includes A, called the σ-algebra generated by A.

15.7. Examples of rings and algebras, CR

Example 15.7.1. The powerset P(K) itself is a σ-algebra.

Example 15.7.2. If K is infinite, then

• the collection of all finite subsets of K is a ring that is not an
algebra;
• the collection of all finite or cofinite subsets of K is an algebra

that is not a σ-algebra;
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• the collection of all countable subsets of K is a σ-ring that is
not an algebra when K is uncountable.

Example 15.7.3. Let CR be the collection of all subsets of R that
are finite unions of left-open intervals

(a, b] = {x ∈ R : a < x ≤ b}
with a, b ∈ R and a ≤ b. (Thus ∅ = (a, a] ∈ CR.) Then CR is
a ring in which each member is in fact a disjoint union of left-open
intervals (a, b]. Note that CR is not an algebra, and is not closed under
countable unions: (0, 1) is not in CR, since each member of CR will have
a greatest element, but (0, 1) is the union of the intervals (0, 1 − 1

n
]

for n ∈ N.

The ring CR does, however, contain certain significant countable
unions. For instance (0, 1] is the union of the pairwise disjoint inter-
vals ( 1

n+1
, 1
n
]. Any reasonable notion of measure should thus assign

to (0, 1] the infinite sum of the measures of the intervals ( 1
n+1

, 1
n
].

15.8. Borel algebra

Definition 15.8.1 (Borel sets). Let BR be the σ-algebra generated
by CR.

Thus BR = S(CR). Each open interval (a, b) in R is in BR, being
the union of the countably many left-open intervals (a, b− 1

n
] for n ∈ N.

Hence every open subset of R is in BR, being the union of countably
many open intervals (take ones with rational end points).

On the other hand, if a σ-algebra contains all open intervals, it must
contain any left-open (a, b] as the intersection of all (a, b+ 1

n
) for n ∈ N.

Corollary 15.8.2. BR is also the σ-algebra generated by the open
intervals, as well as the σ-algebra generated by the open sets of R.

The members of BR are called the Borel sets.

15.9. Algebras of hyperfinite sets

Let K = {1, . . . , N} ⊆ ∗N with N an infinite hypernatural. Then K
is hyperfinite. Consider the collection PI(K) of all internal subsets
of K. Note that PI(K) ⊆ ∗P(N). Then PI(K) is an algebra (also
hyperfinite) that by transfer of the finite case will be closed under
hyperfinite unions, i.e., unions of internal sequences 〈An : n ≤ H〉
for H ∈ ∗N.
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The family PI(K) is not, however, a σ-algebra. Indeed, it contains
each initial segment {1, . . . , n} with n ∈ N, but does not contain their
union because that is the external set N.

This same analysis applies to the algebra of internal subsets of any
nonstandard hyperfinite set K = {sn : n ≤ N} indexed by the set K
above.

Example 15.9.1. Let A be an algebra in some universe U. In any
enlargement of U, the collection ∗A will be an algebra, by transfer, but
in a countably saturated enlargement, the algebra ∗A will not in general
be a σ-algebra, even if A is. To see this, let 〈An : n ∈ N〉 be a sequence
of members of ∗A with union a set A. Each An is internal, and if A were
in ∗A, it would also be internal and hence by countable saturation would
already be equal to ∪n≤kAn for some k ∈ N (cf. Corollary 13.2.1).

Thus if A is a genuinely infinite union of the sets An, it cannot
be in ∗A. This will happen, for example, if the sets An are strictly
increasing (An ( An+1) or pairwise disjoint. For instance, in the case of
the Borel algebra, the internal sets ∗(−n, n) belong to ∗BR for all n ∈ N,
but their union is not in ∗BR because it is the external set of all finite
hyperreals.

The closure condition that we do get for ∗A is that the sequence 〈An :
n ∈ N〉 extends to an internal sequence 〈An : n ∈ ∗N〉 whose union can
be shown by transfer to be in ∗A. In this sense ∗A is a “hyper-σ-algebra”,
but that is not the type of structure on which a standard measure is
defined.

This reasoning in fact shows that for any internal algebra of sets
(not just one of the form ∗A),

The union of a countable sequence of sets can belong
to the algebra only if it is equal to the union of finitely
many of its terms.

It is this feature upon which Loeb measure is founded.3

15.10. Measures

Classical measure theory employs the extended real numbers

[−∞,+∞] = {−∞} ∪ R ∪ {+∞},
with −∞ < r < +∞ for r ∈ R, with rules such as r ±∞ = ±∞, etc.
We will usually put ∞ for +∞, and also make use of the set [0,∞] =
{r ∈ R : r ≥ 0} ∪ {∞}.

3It shows that a certain Caratheodory condition is vacuously satisfied.
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Definition 15.10.1 (Measure). Let A be a ring of subsets of a
set K, and µ a function from A to [0,∞] that has µ(∅) = 0. Then µ is
called a measure if it satisfies the following condition:

(M1) If 〈An : n ∈ N〉 is a sequence of pairwise
disjoint elements of A whose union is in the ring A,
then

µ (∪n∈NAn) =
∑

n∈N
µ(An).

This condition is called countable additivity.

Remark 15.10.2. The condition is not required to hold for all (pair-
wise disjoint) sequences 〈An : n ∈ N〉, but only those whose union
happens to belong to A (which is not guaranteed when A is not a σ-
algebra).

Definition 15.10.3. The function µ is called finitely additive if in
place of M1 it satisfies the following condition:

(M2) µ(A ∪ B) = µ(A) + µ(B) whenever A,B ∈ A
with A ∩ B = ∅.

Since a ring is closed under finite unions, condition M2 implies that

µ (∪n
i=1An) =

n
∑

i=1

µ(Ai)

whenever A1, . . . , An is a finite sequence of pairwise disjoint members
of A. Condition M2 also implies that µ is monotonic:

• A ⊆ B implies µ(A) ≤ µ(B), for all A,B ∈ A;
as well as being subtractive:
• A ⊆ B and µ(B) < ∞ implies µ(B − A) = µ(B) − µ(A), for

all A,B ∈ A.

Countable additivity implies the following important fact.

Proposition 15.10.4. Suppose µ satisfies M1. If 〈An : n ∈ N〉 is
an increasing sequence of elements of A whose union is in A, then

µ(∪n∈NAn) = lim
n→∞

µ(A).

Definition 15.10.5. An element A ∈ A is called µ-finite if µ(A) <
∞, and µ-null if µ(A) = 0.

Definition 15.10.6. The function µ is called σ-finite if the set K
is the union of countably many µ-finite subsets.

We give two examples.
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Example 15.10.7 (Counting measure). If A ⊆ K, put

µc(A) =

{

|A| if A is finite,

∞ if A is infinite.

Then µc is a measure on P(K), the counting measure, which is σ-finite
iff K is countable. The restriction of µc to the ring of finite subsets
of K, or to the algebra of finite or cofinite sets, is also a measure.

Example 15.10.8. On the ring CR of disjoint unions of left-open
intervals (a, b], put

λ((a, b]) = b− a
and extend λ additively to all members of CR.

Lemma 15.10.9. λ is a measure on CR, and λ is σ-finite.

Proof. Indeed, R is the union of intervals (−n, n]. �

This will be used in Section 16.3 to define the Lebesgue measure.
Here the symbol λ may be thought of as denoting “length”, but it

also stands for “Lebesgue”.

15.11. Counting measure on a hyperfinite set

Consider a countably saturated enlargement of a universe over a
set X that has [−∞,+∞] ⊆ X. Then the set

∗[0,∞] = {x ∈ ∗R : x ≥ 0} ∪ {∞}
is internal. Now let K be a hyperfinite set and PI(K) the algebra of
all internal subsets of K. For each A ∈ PI(K) put

µ(A) =
|A|
|K| ,

where |A| is the internal cardinality of the hyperfinite set A.
Then µ is finitely additive (with values in ∗R), because |A ∪ B| =

|A| + |B| when A ∩ B = ∅ (but note that we are referring to + in ∗R
rather than R). Since |A| ≤ |K| whenever A ⊆ K, µ takes finite values
between 0 and 1, i.e., we have

µ : PI(K)→ ∗[0, 1].

Definition 15.11.1. Setting

oµL(A) = sh(µ(A))
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defines oµL : PI(K) → [0, 1] as a real-valued finitely additive measure
on PI(K), with oµL(K) = 1.4

Remark 15.11.2. Here µ is an internal entity but oµL is not.

Proposition 15.11.3. oµL is a (σ-additive) measure.

Proof. The reason, based on internality, was already explained
in Example 15.9.1. If 〈An : n ∈ N〉 is a sequence of pairwise disjoint
elements of PI(K) whose union A belongs to PI(K), then A must
already be equal to ∪n≤kAn for some k. But then whenever m > k,
we necessarily have Am = ∅, since ∪n≤kAn and the Am are disjoint,
so that oµL(Am) = 0. Hence a countable union reduces to a finite
union:

⋃

n∈NAn = A1∪ · · ·∪Ak. Therefore we obtain
∑

n∈N
oµL(An) =

oµL(A1) + · · ·+ oµL(Ak), from which it follows that µ satisfies M1. �

Remark 15.11.4. The σ-additivity of oµL results from countable
saturation applied to families of internal sets via the reduction of being
σ-additive to being finitely-additive. This enables the application of
Caratheodory’s construction of outer measure, as in Section 16.1. In-
deed, Caratheodory’s starting point is a σ-additive measure on a ring.

15.12. Additional examples

Example 15.12.1 (Generalisation of counting measure). Let A be
an internal ring of subsets of some internal set K in a countably satu-
rated enlargement. Let µ : A → ∗[0,∞] be a finitely additive internal
function. Adapting the construction of Section 15.11, put

oµL(A) =

{

sh(µ(A)) if µ(A) is finite,

∞ if µ(A) is infinite or ∞.
Reasoning as in Section 15.11, we show that oµL : A → [0,∞] is σ-
additive, and so is a measure on the ring A.

This last construction has the example of Section 15.11 as a special
case, and also covers other natural extensions that involve hyperfinite
summation, such as the following.

Example 15.12.2. Let w : K → ∗R be an internal “weighting”
function on a hyperfinite set K. For each A ∈ PI(K) put

µw(A) =
∑

s∈A
w(s) (15.12.1)

4Goldblatt uses the notation µL which may not be sufficiently suggestive of
taking standard part. Robinson used the notation or for the standard part of r.
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(recall the definition of hyperfinite sums in Section 6.5). Then µw is a
“weighted counting function” that is finitely additive and induces the
measure oµw

L on PI(K). In fact, every internal finitely additive func-
tion µ : PI(K) → ∗[0,∞] arises in this way: put w(s) = µ({s}). The
example of Section 15.11 itself is the special case of a uniform weighting
in which each point is assigned the same weight, namely w(s) = 1

|K| .

Example 15.12.3. Weighted hyperfinite summation will be used
to relate the Loeb measure to the Lebesgue measure in Section 16.5.
It turns out that for every Lebesgue-measurable set B ⊆ R of finite
Lebesgue measure, the latter can be obtained as the infinimum in R of
µw(A) over all internal supersets

A ⊇ sh−1(B) ∩K
in a suitable hyperfinite set K.5 For details, see Section 16.6.

5This is due to µ-approximability; see [6, Section 16.6].





CHAPTER 16

Caratheodory, Lebesgue, Loeb, and beyond

16.1. Caratheodory’s outer measure

The classical procedure of Caratheodory extends a measure µ on a
ring of sets A to a measure on a σ-algebra including A. Classically,
Caratheodory’s procedure is used to construct the Lebesgue measure
and the family of Lebesgue-measurable sets. We will summarize the
classical procedure, and then show how to use Caratheodory’s proce-
dure to construct the Loeb measure in Section 16.4.

If B is an arbitrary subset of the set K on which A is based, put

µ+(B) = inf

{

∑

n∈N
µ(An) : An ∈ A, B ⊆ ∪n∈NAn

}

. (16.1.1)

Here the infimum is taken over all sequences 〈An : n ∈ N〉 of members
of A that cover B.

Definition 16.1.1. The function µ+ : P(K) → [0,∞] is called
the outer measure defined by µ (although it may not actually be a
measure).

The outer measure has the following properties:

• µ+ agrees with µ on A: if B ∈ A, then µ+(B) = µ(B).
• µ+(∅) = 0.
• Monotonicity: if A ⊆ B, then µ+(A) ≤ µ+(B).
• Countable subadditivity: for any sequence 〈An〉 of subsets

of K, one has µ+(∪n∈NAn) ≤∑

n∈N µ
+(An).

• For any B ⊆ K and any ε ∈ R+ there is an increasing se-
quence A1 ⊆ A2 ⊆ · · · of A-elements that covers B and
has µ+(∪n∈NAn) ≤ µ+(B) + ε.

16.2. µ+-measurable sets via additive splittings

We summarize the properties of µ+ and the associative algebra of
measurable sets. We start with the following data.

(1) A is a ring of subsets of a set K;
(2) µ is a measure on A;

155
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(3) µ+ is the associated outer measure (16.1.1).

Definition 16.2.1. A set B ⊆ K is called µ+-measurable1 if it
splits2 every set E ⊆ K in a µ+-additive way, in the sense that

µ+(E) = µ+(E ∩B) + µ+(E −B).

For this to hold it is enough that

µ+(E) ≥ µ+(E ∩ B) + µ+(E −B).

whenever µ+(E) <∞.

Definition 16.2.2. We denote byA(µ) the set of all µ+-measurable
sets.

It has the following properties.

• A(µ) is a σ-algebra.
• A ⊆ A(µ), i.e., all members of A are µ+-measurable.
• It follows that the algebra A(µ) includes the σ-algebra S(A)

generated by A.
• All µ+-null sets belong to A(µ).
• µ+ is a measure on A(µ), and hence is a measure on S(A).
• If µ is σ-finite on A, and A is an algebra, then µ+ is the only

extension of µ to a measure on S(A) or on A(µ).

Lemma 16.2.3. µ+ is a complete measure on A(µ), meaning that
if A ⊆ B ∈ A(µ) and µ+(B) = 0, then A ∈ A(µ).

Proof. This follows from the fact that A(µ) contains all µ+-null
sets. �

This entails the following corollary.

Corollary 16.2.4. Let A,B ∈ A(µ). Suppose we have A ⊆ B
and µ+(A) = µ+(B). Then

(1) any subset of B − A belongs to A(µ) (and is µ+-null); hence
(2) any set C with A ⊆ C ⊆ B belongs to A(µ) and more-

over µ+(C) = µ+(A) = µ+(B).

16.3. Lebesgue measure

To construct the Lebesgue measure, we start with the measure λ on
the ring CR of Example 15.10.8. This measure satisfies λ((a, b]) = b−a.

Definition 16.3.1. The Lebesgue measure is the outer measure λ+

constructed from λ.
1medida
2pitzul
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Letting A = CR, we obtain the corresponding σ-algebra A(λ) =
CR(λ) as in Definition 16.2.2.

Definition 16.3.2. The members of the σ-algebra CR(λ) are the
Lebesgue measurable sets and include all members of the σ-algebra BR

of Borel sets generated by CR. We will write λ(B) for λ+(B) when-
ever B is Lebesgue measurable.

The following material is classical.

Theorem 16.3.3. The Lebesgue measure has the following proper-
ties.

(1) (Uniqueness) λ is the only measure on BR that has λ
(

(a, b)
)

=
b− a.

(2) Thus, any measure on an algebra including BR that agrees
with λ on open intervals must agree with λ on all Borel sets.

(3) (Approximation by Borel sets) For any Lebesgue measurable
set B there exist Borel sets C,D with C ⊆ B ⊆ D such
that λ(D − C) = 0, hence λ(B) = λ(C) = λ(D).

(4) (Approximation by open and closed sets) A set B ⊆ R is
Lebesgue measurable iff for each ε ∈ R+ there is a closed set
Cε ⊆ B and an open set Dε ⊇ B such that λ(Dε − Cε) < ε.

By using the axiom of choice it can be shown that there is a subset
of R that is not Lebesgue measurable.

16.4. Loeb measures

Loeb measures are defined by applying Caratheodory’s outer mea-
sure construction to measures of the type oµL introduced in Exam-
ple 15.12.1. From now on we work in a nonstandard framework that is
countably saturated. We start with the following data.

(1) (K,A, µ) is any “measure space”, meaning the following:
(2) µ : A → ∗[0,∞] is an internal finitely additive function (of

“counting” type) on an internal ringA of subsets of an internal
set K.

(3) oµL : A → [0,∞] is the (external) measure defined via stan-
dard part as in Example 15.12.1.

(4) oµ+
L is its associated outer measure on P(K).

(5) the family of oµ+
L -measurable sets is defined via additive split-

ting as in Section 16.2.

Definition 16.4.1. Members of the set A(oµL) of oµ+
L -measurable

subsets of K will be called the Loeb measurable sets determined by µ.
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Note that A(oµL) may contain sets that are not internal (see Ex-
ample 16.5.8).

Remark 16.4.2. We write oµL(B) for oµ+
L(B) whenever B is Loeb

measurable.3

Definition 16.4.3. oµL is the Loeb measure and (K,A(oµL), oµL)
is the Loeb measure space determined by µ.

Remark 16.4.4. This definition of Loeb measure via the outer mea-
sure construction is the way that the notion was first arrived at. By
analysing its properties, one can show that A(oµL) has a characterisa-
tion that would allow it and its measure oµL to be defined in a more
direct way.

See note.4

3As mentioned in note 5, for sets of finite measure one can obtain oµ+

L(B) is
the R-infinimum of µ(A) as the internal set A ranges over PI(T ) for a suitable
grid T . Therefore the notation is coherent.

4

Lemma 16.4.5. If B is Loeb measurable with respect to µ, then oµL(B) =
inf{oµL(A) : B ⊆ A ∈ A}.

Proof. By monotonicity, oµL(B) is a lower bound of the values oµL(A) for B ⊆
A ∈ A. If oµL(B) = ∞, then the result follows. If oµL(B) < ∞, to show that it
is the greatest lower bound it suffices to show that for any c ∈ R+ there is some
set Ac ∈ A with B ⊆ Ac and oµL(Ac) ≤ oµL(B) + c. Now, for such an c, by
properties of the outer measure oµ+

L , there is an increasing sequence A1 ⊆ A2 ⊆ · · ·
of A-elements whose union includes B and has oµ+

L(∪n∈NAn) < oµL(B) + c. The
sequence 〈An : n ∈ N〉 extends by sequential comprehensiveness5 to an internal
sequence 〈An : n ∈ ∗N〉 of elements of A. Then for each k ∈ N we have

(∀n ∈ ∗N)
(

n ≤ k implies An ⊆ Ak and µ(An) < oµL(B) + c
)

, (i)

since µ(An) ≈ oµL(An) ≤ oµ+

L(∪n∈NAn). But (i) is an internal assertion, since µ and
the extended sequence are internal, while k, c, and oµL(B) are fixed internal entities
(real numbers). Therefore by overflow (i) must be true with some infinite K ∈ ∗N

in place of k. For such a K we have AK ∈ A and An ⊆ AK for all n ∈ N, so
that B ⊆ ∪n∈NAn ⊆ AK , while µ(AK) < oµL(B) + c. Hence as µ(AK) ≈ oµL(AK),
we obtain oµL(AK) ≤ oµL(B)+ c, establishing that AK is the set Ac we are looking
for. �

Lemma 16.4.6. If B is Loeb measurable and also oµL-finite, then oµL(B) =
sup{oµL(A) : A ⊆ B and A ∈ A}.

Proof. Given any c ∈ R+, we will show that there is some set Ac ∈ A such
that Ac ⊆ B and oµL(B) − c < µ(Ac). Since oµL(B) < ∞, we know from the
previous Lemma 16.4.5 that there is some D ∈ A with B ⊆ D and oµL(D) < ∞.
The desired result is obtained by using complementation relative to D. Firstly, D−
B is Loeb measurable and oµL-finite, so by Lemma 16.4.5 there is a set C with D−
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16.5. Hyperfinite time line

Let H ∈ ∗N be a fixed infinite hypernatural number.

Definition 16.5.1. The hyperfinite time line is the set

T = { k
H

: k ∈ ∗Z and |k| ≤ H2}
= {−k

H
: 1 ≤ k < H2} ∪ {0} ∪ { k

H
: 1 ≤ k ≤ H2}.

The hyperfinite time line T is a hyperfinite set, of internal cardi-
nality 2H2 + 1, forming a grid of points spread across the hyperreal
line between −H and H, with adjacent points being of infinitesimal
distance 1

H
apart.

Lemma 16.5.2. Each real number r is approximated infinitely closely
on either side by the grid points in T .

Proof. Consider the statement

(∀n ∈ N)
(

|r| < n→ (∃k ∈ Z)
[

|k| < n2 and ( k
n
≤ r < k+1

n
)
])

and apply transfer. �

Now let A = PI(T ) be the set of all internal subsets of T . Here A
is an algebra, is itself internal and hyperfinite, and all its members are
hyperfinite. The function µ : A → ∗[0,∞) given by

µ(A) =
|A|
H

(16.5.1)

is internal and finitely additive. This is similar to the example of the
counting measure in Section 15.11. More precisely, µ is a weighted
counting function in the sense of Example 15.12.2, determined by as-
signing the infinitesimal weight 1

H
to each grid point. It induces the

measure oµL on A by setting

oµL(A) =

{

sh
(

|A|
H

)

if A
H

is finite,

∞ otherwise.

Definition 16.5.3. Let (T,A(oµL), oµL) be the associated Loeb
measure space as defined in Section 16.4.

B ⊆ C ∈ A and oµL(C) < oµL(D−B) + c. We may assume C ⊆ D (since we could
replace C by C∩D here). Let Ac = D−C ∈ A. Then Ac ⊆ B, and C is the disjoint
union of D−B and B−Ac, so oµL(D−B)+oµL(B−Ac) = oµL(C) < oµL(D−B)+c,
implying that oµL(B − Ae) < c. Therefore oµL(B) = oµL(Ac) + oµL(B − Ac) <
oµL(Ac) + c, so oµL(B)− c < µ(Ae) as required. �
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First we show that the Lebesgue measure of any real interval can
be obtained by using oµL to count the weighted number of grid points
between the endpoints of the interval.

Theorem 16.5.4. For any a, b ∈ R with a < b,

oµL({t ∈ T : a < t < b}) = b− a.
Proof. Let A = {t ∈ T : a < t < b}. Then A = T ∩ ∗(a, b), so A

is internal and belongs to the algebra A, hence is Loeb measurable.
Since A is hyperfinite, it has smallest and greatest elements, say a′

and b′. Since a and b can be approximated infinitely closely by members
of T , we must have a ≈ a′ and b ≈ b′. We have a′ = K+1

H
and b′ = L

H
for suitable K,L ∈ ∗Z. Thus

A =
{

K+1
H
, K+2

H
, . . . , L

H

}

=
{

M
H

: K < M ≤ L
}

.

The set A is hyperfinite of cardinality L −K, since the internal func-
tion f(x) = K+x

H
is a bijection from {1, . . . , L−K} onto A. It follows

that

µ(A) =
|A|
H

=
L−K
H

=
L

H
− K

H
≈ b− a,

and therefore oµL(A) = b− a as required. �

Note that the proof of Theorem 16.5.4 shows readily that oµL assigns
measure b− a as well to the sets

T ∩ ∗(a, b], T ∩ ∗[a, b), T ∩ ∗[a, b].

Corollary 16.5.5. If B is any finite interval in R, the Lebesgue
measure λ of B is equal to the Loeb measure of the set T ∩ ∗B of grid
points that are (possibly nonstandard) members of B.

One might wonder whether the equation

λ(B) = oµL(T ∩ ∗B)

holds in general, but such a notion is quickly dispelled by considering
the following case.

Example 16.5.6. Let B = Q. Since every grid point is a hyperra-
tional number, we have T ⊆ ∗Q. Thus, oµL(T ∩ ∗Q) = oµL(T ) = ∞,
while λ(Q) = 0.

Rather than T ∩ ∗B, the appropriate set to represent B in T is the
set of grid points that approximate members of B infinitely closely.
This is the inverse shadow of B.
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Definition 16.5.7. The inverse shadow of B (relative to the hy-
perfinite set T ) is the set

sh−1(B) = {t ∈ T : t is infinitely close to some r ∈ B}
= {t ∈ T : t is finite and sh(t) ∈ B}
= {t ∈ T : (∃b ∈ B)(t ≈ b)}.

The definition of sh−1(B) uses a condition that is not internal, so
the set itself cannot be guaranteed to be internal, and may not even
be Loeb measurable, i.e., may not belong to the algebra A(oµL) (see
Definition 16.4.1).

Example 16.5.8. One case in which the inverse shadow is not in-
ternal but nonetheless is Loeb measurable occurs when B = R. We
have

sh−1(R) = {t ∈ T : t is finite} = ∪n∈N (T ∩ ∗(−n, n)).

Each set T ∩ ∗(−n, n) is an internal subset of T and so belongs to A.
It follows that sh−1(R) belongs to A(oµL) by closure under countable
unions. But the set sh−1(R) cannot itself be internal, because it is
bounded in ∗R but has no least upper (or greatest lower) bound.

16.6. Lebesgue measure via Loeb measure

The precise relation between the Lebesgue and Loeb measures is as
follows. We define sh−1(B) ⊆ T as in Section 16.5.

Theorem 16.6.1. A subset B ⊆ R is Lebesgue measurable if and
only if sh−1(B) is Loeb measurable. When this holds, the Lebesgue
measure of B is equal to the Loeb measure of the set of grid points
infinitely close to points of B:

λ(B) = oµL(sh−1(B)).6

Proof. Consider the set of sets

M = {B ⊆ R : sh−1(B) ∈ A(oµL)}.
For B ∈M , we define ν by setting

ν(B) = oµL(sh−1(B)).

We will show thatM is precisely the class CR(λ) of Lebesgue-measurable
sets, and that ν is the Lebesgue measure λ.

We will use the fact that A is a σ-algebra to show that M is a σ-
algebra.

6For the use of notation oµL rather than oµ+

L see note 3.
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By properties of inverse images of functions,










sh
−1

(∅) = ∅,
sh−1(A−B) = sh−1(A)− sh−1(B),

sh
−1

(∪n∈NAn) = ∪n∈N sh
−1(An).

Since the algebra A(oµL) contains ∅ and is closed under set differences
and countable unions, these facts imply that M has the same closure
properties. Since sh

−1

(R) ∈ A(oµL), as was shown in Example 16.5.8,
we also have R ∈M .

It follows that M is a σ-algebra, on which ν turns out to be a
measure. To conclude the proof, we need the following lemma. �

Lemma 16.6.2. The σ-algebra M includes the Borel algebra BR,
and ν agrees with Lebesgue measure on all Borel sets.

Proof. To show that each open interval (a, b) ⊆ R belongs to M ,
note that sh−1

(

(a, b)
)

is the union of the sequence of internal sets 〈An :
n ∈ N〉, where

An = T ∩ ∗(a+ 1
n
, b− 1

n
) ∈ A.

But BR is the smallest σ-algebra containing all open intervals (a, b), so
this implies that BR ⊆ M . Also, by Theorem 16.5.4 on intervals, we
have

oµL(An) = (b− 1
n
)− (a+ 1

n
) = b− a− 2

n
.

Since the sets An form an increasing sequence, it follows that

ν
(

(a, b)
)

= oµL

(

sh−1
(

(a, b)
))

= lim
n→∞

oµL(An) = b− a.

Thus ν is a measure on BR that agrees with λ on all open intervals.
But any such measure must agree with λ on all Borel sets, as noted in
Section 16.3. �

We now complete the proof of the fact that Lebesgue measureable
sets are in M and that the function ν agrees with λ on all Lebesgue
measurable sets.

If B ⊆ R is Lebesgue measurable, then by Theorem 16.3.3, there
are Borel sets C,D with C ⊆ B ⊆ D and λ(C) = λ(B) = λ(D). Then

sh
−1

(C) ⊆ sh
−1

(B) ⊆ sh−1(D).

Now by Lemma 16.6.2, we have C,D ∈M , whence sh−1(C), sh−1(D) ∈
A(oµL), and

oµL(sh−1(C)) = ν(C) = λ(C) = λ(D) = ν(D) = oµL(sh−1(D)).
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Since oµL is a complete measure on A(oµL) (by the general theory of
outer measures), it follows that sh−1(B) ∈ A(oµL), and hence B ∈M ,
with

ν(B) = oµL(sh−1(B)) = oµL(sh−1(C)) = λ(C) = λ(B).

This establishes that every Lebesgue measurable set is in M (i.e., we
have an inclusion of algebras CR(λ) ⊆ M) and that the function ν
agrees with λ on all Lebesgue measurable sets.7

Corollary 16.6.3. If B is a Lebesgue-measurable set of finite
Lebesgue measure λ(B), the latter can be retrieved as the real infimum
of µ(A) where A ⊆ T ranges over internal sets containing the inverse
measure

sh−1(B) = {t ∈ T : (∃b ∈ B)(t ≈ b)},
and µ is the counting-type measure (16.5.1):

λ(B) = inf st {µ(A) : A ∈ PI(T ) and sh−1(B) ⊆ A}.

7The conclusion of the proof of Theorem 16.6.1 is on pages 218–219 in Gold-
blatt, where it is shown that M is no bigger than the set of Lebesgue-measurable
sets.





Bibliography

[1] Bair, Jacques; B laszczyk, Piotr; Ely, Robert; Katz, Mikhail; Kuhle-
mann, Karl. Procedures of Leibnizian infinitesimal calculus: An account
in three modern frameworks. British Journal for the History of Mathemat-
ics 36 (2021), no. 3, 170–209. https://doi.org/10.1080/26375451.2020.
1851120, https://arxiv.org/abs/2011.12628, https://mathscinet.ams.
org/mathscinet-getitem?mr=4353153

[2] J. Bair, A. Borovik, V. Kanovei, M. Katz, S. Kutateladze, S. Sanders,
D. Sherry, and M. Ugaglia, Historical infinitesimalists and modern historiogra-
phy of infinitesimals, Antiquitates Mathematicae 16 (2022), 189–257. http://
arxiv.org/abs/2210.14504, https://doi.org/10.14708/am.v16i1.7169

[3] Davis, Martin. Applied nonstandard analysis. Pure and Applied Mathemat-
ics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977.
Reprinted by Dover, NY, 2005.

[4] P. Fletcher, K. Hrbacek, V. Kanovei, M. Katz, C. Lobry, and S. Sanders, Ap-
proaches to analysis with infinitesimals following Robinson, Nelson, and oth-
ers, Real Analysis Exchange 42 (2017), no. 2, 193–252. https://arxiv.org/
abs/1703.00425, http://doi.org/10.14321/realanalexch.42.2.0193

[5] V. Gitman and J. Hamkins, A natural model of the multiverse axioms, Notre
Dame Journal of Formal Logic, 51 (2010), no. 4, 475–484.

[6] Goldblatt, Robert. Lectures on the hyperreals. An introduction to Nonstandard
Analysis. Springer, 1998.

[7] Hrbacek, Karel. Axiomatic foundations for nonstandard analysis. Fundamenta
Mathematicae 98 (1978), no. 1, 1–19.

[8] Hrbacek, Karel; Katz, Mikhail. Infinitesimal analysis without the Axiom
of Choice. Annals of Pure and Applied Logic 172 (2021), no. 6, 102959.
https://doi.org/10.1016/j.apal.2021.102959, https://arxiv.org/

abs/2009.04980, https://mathscinet.ams.org/mathscinet-getitem?

mr=4224071

[9] K. Hrbacek and M. Katz, Constructing nonstandard hulls and Loeb measures
in internal set theories, Bulletin of Symbolic Logic 29 (2023), no. 1, 97–
127. https://www.doi.org/10.1017/bsl.2022.43, https://arxiv.org/

abs/2301.00367

[10] K. Hrbacek and M. Katz, Peano and Osgood theorems via effective infinitesi-
mals, in preparation (2023).

[11] Katz, M.; Kuhlemann, K.; Sherry, D.; Ugaglia, M. Leibniz on bod-
ies and infinities: rerum natura and mathematical fictions. Review of
Symbolic Logic (2023). https://www.doi.org/10.1017/S1755020321000575,
https://arxiv.org/abs/2112.08155

165

https://doi.org/10.1080/26375451.2020.1851120
https://doi.org/10.1080/26375451.2020.1851120
https://arxiv.org/abs/2011.12628
https://mathscinet.ams.org/mathscinet-getitem?mr=4353153
https://mathscinet.ams.org/mathscinet-getitem?mr=4353153
http://arxiv.org/abs/2210.14504
http://arxiv.org/abs/2210.14504
https://doi.org/10.14708/am.v16i1.7169
https://arxiv.org/abs/1703.00425
https://arxiv.org/abs/1703.00425
http://doi.org/10.14321/realanalexch.42.2.0193
https://doi.org/10.1016/j.apal.2021.102959
https://arxiv.org/abs/2009.04980
https://arxiv.org/abs/2009.04980
https://mathscinet.ams.org/mathscinet-getitem?mr=4224071
https://mathscinet.ams.org/mathscinet-getitem?mr=4224071
https://www.doi.org/10.1017/bsl.2022.43
https://arxiv.org/abs/2301.00367
https://arxiv.org/abs/2301.00367
https://www.doi.org/10.1017/S1755020321000575
https://arxiv.org/abs/2112.08155


166 BIBLIOGRAPHY

[12] Nelson, Edward. Internal set theory: a new approach to nonstandard analysis.
Bulletin of the American Mathematical Society 83 (1977), no. 6, 1165–1198.

[13] E. Nelson, Radically Elementary Probability Theory, Annals of Mathematics
Studies 117, Princeton University Press, Princeton, NJ, 1987, 98 pp.

[14] Robinson, Abraham. Non-standard analysis. North-Holland Publishing, Am-
sterdam, 1966.


	Part 1.  Basic Infinitesimal Analysis
	Chapter 1. Infinitesimal calculus
	1.1. From natural numbers to real numbers
	1.2. A new ordered extension, microscopes, and telescopes
	1.3. Extension Principle
	1.4. Introduction to the Transfer Principle
	1.5. Three orders of magnitude for hyperreal numbers
	1.6. Standard part principle, shadow
	1.7. Infinitesimal increments, slope
	1.8. Dependent and independent variables
	1.9. Differentials dx, dy
	1.10. Leibniz rule
	1.11. Inverse function rule

	Chapter 2. The ultrapower construction of the hyperreals
	2.1. Equivalence classes of Cauchy sequences
	2.2. What is a large set?
	2.3. Filters and ultrafilters
	2.4. Examples of filters
	2.5. Facts about filters
	2.6. The ring of real-valued sequences
	2.7. Equivalence modulo an ultrafilter
	2.8. A suggestive logical notation
	2.9. The ultrapower construction; definition of R
	2.10. R as an ordered field
	2.11. Including the reals in the hyperreals
	2.12. Infinitesimals and infinite numbers

	Chapter 3. Enlarging sets and functions; Transfer Principle
	3.1. Enlargements of Sets
	3.2. Extending functions
	3.3. Partial Functions and Hypersequences
	3.4. Enlarging Relations
	3.5. Relations encompass sets and functions
	3.6. Introduction to the transfer principle
	3.7. Transforming Statements: the Archimedean Principle
	3.8. Density of the Rationals
	3.9. Finite sets
	3.10. Finitary set operations
	3.11. Discreteness of natural numbers
	3.12. Unbounded sets of real numbers

	Chapter 4. Relational structures, *-transform, transfer
	4.1. Relational Structures
	4.2. The Language of a Relational Structure
	4.3. Terms of the language
	4.4. What Does a Term Name?
	4.5. Atomic formulae of the language
	4.6. Formulae
	4.7. Sentences
	4.8. Truth and Quantification
	4.9. *-Transforms
	4.10. Preliminaries to the Transfer Principle
	4.11. Transfer principle

	Chapter 5. Transfer, Łoś, and arithmetic of hyperreals
	5.1. Justfying transfer
	5.2. Extending Transfer
	5.3. Hyperreals
	5.4. Infinite, Infinitesimal, and Appreciable Numbers
	5.5. Arithmetic of Hyperreals
	5.6. On the Use of ``Finite" and ``Infinite"
	5.7. Halos, Galaxies, and Real Comparisons
	5.8. Shadows
	5.9. Shadows and Completeness
	5.10. The Hypernaturals
	5.11. Convergence of Sequences

	Chapter 6. Sequences, series, continuity
	6.1. Limits
	6.2. Boundedness and Divergence
	6.3. Cauchy sequences
	6.4. Bolzano–Weierstrass theorem
	6.5. Series
	6.6. Continuous functions
	6.7. Continuity in A
	6.8. Continuity of the sine function
	6.9. The Intermediate Value Theorem
	6.10. The Extreme Value Theorem

	Chapter 7. Uniform continuity and convergence, derivatives
	7.1. Uniform Continuity, LSEQ operator
	7.2. Permanence principles
	7.3. Pointwise and uniform convergence of fn
	7.4. Continuity of a Uniform Limit
	7.5. The derivative
	7.6. Increments and Differentials
	7.7. Rules for Derivatives
	7.8. Chain Rule
	7.9. Critical Point Theorem
	7.10. Inverse function theorem

	Chapter 8. Internal sets, external sets, and transfer
	8.1. Internal sets
	8.2. Algebra of internal sets
	8.3. Subsets of Internal Sets
	8.4. Internal Least Number Principle
	8.5. Internal induction
	8.6. The Overflow Principle
	8.7. Internal order-completeness
	8.8. External sets

	Chapter 9. Defining internal sets, Saturation
	9.1. Geometric example of internal set definition
	9.2. Internal set definition principle
	9.3. The Underflow Principle
	9.4. Internal sets and permanence
	9.5. Introduction to saturation
	9.6. Characterisation of compactness
	9.7. Application of saturation: Cantor's intersection theorem


	Part 2.  Effective infinitesimals
	Chapter 10. Effective infinitesimals
	10.1. Axiom of choice
	10.2. Set theories
	10.3. Compactness in the extension view
	10.4. Internal set theories

	Chapter 11. The theories SPOT and SCOT
	11.1. Axioms of the theory SPOT
	11.2. Additional principles
	11.3. Compactness in internal set theories

	Chapter 12. Continuity and uniform continuity
	12.1. Continuity
	12.2. Continuous image of compacts
	12.3. Characterisation of uniform continuity
	12.4. Continuity implies uniform continuity
	12.5. Heine–Borel theorem
	12.6. Radically Elementary Probability Theory


	Part 3.  Topology, Universes, Superstructure
	Chapter 13. Saturation, topology, hyperfinite sets
	13.1. Saturation of internal sets: the general case
	13.2. Algebra of countable families of internal sets
	13.3. Saturation creates nonstandard entities
	13.4. The cardinality of an internal set
	13.5. Closure of the shadow of an internal set
	13.6. Interval topology and hyper-open sets
	13.7. Internal functions
	13.8. Hyperfinite sets

	Chapter 14. Universes
	14.1. Counting a hyperfinite set
	14.2. Motivating superstructures
	14.3. What do we need in the mathematical world?
	14.4. Transitivity
	14.5. Specifying primitive concepts: pairs are enough
	14.6. Actually, sets are enough
	14.7. Strong transitivity
	14.8. Universes
	14.9. Superstructures

	Chapter 15. Superstructure, language, NS framework, measure
	15.1. Boundedness
	15.2. The language of a universe
	15.3. Nonstandard framework; starring a formula
	15.4. Transforming functions
	15.5. Punchlines
	15.6. Rings and algebras
	15.7. Examples of rings and algebras, CR
	15.8. Borel algebra
	15.9. Algebras of hyperfinite sets
	15.10. Measures
	15.11. Counting measure on a hyperfinite set
	15.12. Additional examples

	Chapter 16. Caratheodory, Lebesgue, Loeb, and beyond
	16.1. Caratheodory's outer measure
	16.2. +-measurable sets via additive splittings
	16.3. Lebesgue measure
	16.4. Loeb measures
	16.5. Hyperfinite time line
	16.6. Lebesgue measure via Loeb measure

	Bibliography


