Differential geometry 88-826-01 homework set 1

- 1. Let $\mathcal{F} \subset \mathcal{P}(I)$ be an ultrafilter on a set I. Let $\{A_1, \ldots, A_n\}$ be a finite collection of pairwise disjoint $(A_i \cap A_j = \emptyset)$ sets such that $A_1 \cup \ldots \cup A_n \in \mathcal{F}$. Then $A_i \in \mathcal{F}$ for exactly one i such that $1 \leq i \leq n$. [Hint: use induction combined with one of the defining properties of the ultrafilter.]
- 2. Consider the real sequence $u = \langle u_n : n \in \mathbb{N} \rangle$, where each term $u_n \in \mathbb{R}$. Let $[u] \in {}^*\mathbb{R}$ denote the equivalence class of u in the ultrapower construction of ${}^*\mathbb{R}$ exploiting a nonprincipal ultrafilter \mathcal{F} .
 - (a) Consider the sequence with general term $u_n = \frac{n+1}{n}$. Does there exist a real number r infinitely close to [u]? If so, find r, with proof.
 - (b) Consider the sequence with general term $u_n = \frac{n+1}{n^2}$. Does there exist a real number r infinitely close to [u]? If so, find r, with proof.
 - (c) Consider the sequence with general term $u_n = \frac{n^2+1}{n}$. Does there exist a real number r infinitely close to [u]? If so, find r, with proof.
- 3. If $A \subset \mathbb{R}$ is finite, show that A = A.
- 4. Show that \approx (being infinitely close) is an equivalence relation on the field * \mathbb{R} .
- 5. Show that if $x \approx y$ and b is finite then $bx \approx by$. Show that the result can fail for infinite b.
- 6. Use transfer of the usual properties of trigonometric functions, show the following:
 - (a) If ϵ is infinitesimal then $\sin \epsilon \approx 0$.
 - (b) If ϵ is infinitesimal then $\cos \epsilon \approx 1$.
 - (c) If ϵ is infinitesimal then $\frac{\sin \epsilon}{\epsilon} \approx 1$.
- 7. Show that every hyperreal is infinitely close to some hyperrational number.
- 8. Let \mathbb{L} denote the ring of finite hyperreals, and \mathbb{I} the ring of infinitesimals. Show that \mathbb{R} is isomorphic to the ring of finite hyperrationals $\mathbb{R} \cap \mathbb{L}$ factored by its ideal $\mathbb{R} \cap \mathbb{I}$ of hyperrational infinitesimals.