
Open Access. © 2018 Błaszczyk et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Open Math. 2018; 16: 149–153

Open Mathematics

Research Article

Piotr Błaszczyk, Vladimir Kanovei, Mikhail G. Katz*, and Tahl Nowik

Monotone subsequence via ultrapower
https://doi.org/10.1515/math-2018-0015
Received August 13, 2017; accepted January 31, 2018.

Abstract: An ultraproduct can be a helpful organizing principle in presenting solutions of problems at many
levels, as arguedbyTerence Tao.Weapply it here to the solutionof a calculus problem: every in�nite sequence
has a monotone in�nite subsequence, and give other applications.
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1 Introduction
Solutions to even elementary calculus problems can be tricky but in many cases, enriching the foundational
framework available enables one to streamline arguments, yielding proofs that are more natural than the
traditionally presented ones.

We explore various proofs of the elementary fact that every in�nite sequence has a monotone in�nite
subsequence, including some that proceed without choosing a convergent one �rst.

An ultraproduct can be a helpful organizing principle in presenting solutions of problems atmany levels,
as argued by Terence Tao Tao in [1].We apply it here to the solution of the problemmentioned above. A related
butdi�erent problemof proving that every in�nite totally ordered set contains amonotone sequence is treated
by Hirshfeld in [2, Exercise 1.2, p. 222]. We �rst present the ultrapower construction in Section 2. Readers
familiar with ultraproducts can skip ahead to the proof in Section 3.

2 Ultrapower construction
Let us outline a construction (called an ultrapower) of a hyperreal extension R ↪→ *R exploited in our
solution in Section 3. LetRN denote the ring of sequences of real numbers, with arithmetic operations de�ned
termwise. Then we have a totally ordered �eld *R = RN/MAX where “MAX” is a suitable maximal ideal.
Elements of *R are called hyperreal numbers. Note the formal analogy between the quotient *R = RN/MAX
and the construction of the real numbers as equivalence classes of Cauchy sequences of rational numbers.
In both cases, the sub�eld is embedded in the super�eld by means of constant sequences, and the ring of
sequences is factored by amaximal ideal.
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Wenow describe a construction of such amaximal ideal MAX ⊆ RN exploiting a suitable �nitely additive
measure ξ : P(N) → {0, 1} (thus ξ takes only two values, 0 and 1) taking the value 1 on each co�nite set,

1

whereP(N) is the set of subsets ofN. The idealMAX consists of all “negligible” sequences 〈un〉, i.e., sequences
which vanish for a set of indices of fullmeasure ξ , namely, ξ

(
{n ∈ N : un = 0}

)
= 1. The subsetU = Uξ ⊆ P(N)

consisting of sets of full measure ξ is called a free ultra�lter (these can be shown to exist using Zorn’s lemma).
A similar construction applied toQproduces the �eld *Q of hyperrational numbers. The construction can also
be applied to a general ordered set F to obtain an ultrapower extension denoted *F = FN/U.

De�nition 2.1. The order on the �eld *F is de�ned by setting

[〈un〉] < [〈vn〉] if and only if ξ ({n ∈ N : un < vn}) = 1

or equivalently {n ∈ N : un < vn} ∈ U.

In particular, every element x ∈ F is canonically identi�ed with the class [〈x〉] of the constant sequence 〈x〉
with general term x. Then x ∈ *F satis�es x < v if and only if {n ∈ N : x < vn} ∈ U.

3 Solution
Let F be an ordered �eld. We are mainly interested in the cases F = Q and F = R though the arguments go
through in greater generality for an arbitrary totally ordered set.

Theorem 3.1. A sequence 〈un〉 of elements of F necessarily contains a subsequence 〈unk 〉 such that either unk ≥
un` whenever k > `, or unk ≤ un` whenever k > `.

This is an immediate consequence of the following more detailed result.

Theorem 3.2. Let u ∈ *F = FN/U be the element obtained as the equivalence class of the sequence 〈un〉.
Consider the partition N = A t B t C where A = {n ∈ N : un < u}, B = {n ∈ N : un = u}, C = {n ∈ N : un > u}.
Then exactly one of the following three possibilities occurs:
1. B ∈ U and then 〈un〉 contains an in�nite constant subsequence;
2. A ∈ U and then 〈un〉 contains an in�nite strictly increasing subsequence;
3. C ∈ U and then 〈un〉 contains an in�nite strictly decreasing subsequence.

Proof. By the property of an ultra�lter, exactly one of the sets A, B, C is inU. If B ∈ U then u is an element of
the sub�eld F ⊆ *F (embedded via constant sequences). Since B ⊆ N is necessarily in�nite, enumerating it
we obtain the desired subsequence.

Now assume A ∈ U. We choose any element un1 ∈ A to be the �rst term in the subsequence. We then
inductively choose the index nk+1 > nk in A so that unk+1 is the earliest term greater than unk and therefore
closer to u than the previous term unk . If the subsequence were to terminate at, say, up, this would imply
that {n ∈ N : un ≤ up} ∈ U and therefore u ≤ up, contradicting the de�nition of the set A. Therefore we
necessarily obtain an in�nite increasing subsequence.

The case C ∈ U is similar and results in a decreasing sequence.

Remark 3.3. The proof is essentially a two-step procedure: (1) we plug the sequence into the ultrapower
construction, producing an element u ∈ *F; (2) in each of the cases speci�ed by the element u, we inductively
�nd a monotone subsequence.

1 For each pair of complementary in�nite subsets of N, such a measure ξ “decides” in a coherent way which one is “negligible”
(i.e., of measure 0) and which is “dominant” (measure 1).
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The approach exploiting *F has the advantage that the proof does not require constructing a completion of
the �eld in the case F = Q. To work with the ultrapower, one needs neither advanced logic nor a crash course
in NSA, since the ultrapower construction involves merely quotienting by a maximal ideal as is done in any
serious undergraduate algebra course (see Section 2).

Amonotone sequence canalso be chosenby the followingmore traditional consideration. If the sequence
is unbounded, one can choose a sequence that diverges to in�nity. If the sequence is bounded, one applies the
Bolzano-Weierstrass theorem (each bounded sequence has a convergent subsequence) to extract a convergent
subsequence. Finally, a convergent sequence contains a monotone one by analyzing the terms lying on one
side of the limit (whichever side has in�nitely many terms).

The proof via an ultrapower allows one to bypass the issue of convergence. Once one produces a
monotone subsequence, it will also be convergent in the bounded case but only when the �eld is complete.
Furthermore, one avoids the use of the Bolzano–Weierstrass theorem.

Since in the case of F = Q the Bolzano–Weierstrass theorem is inapplicable, one would need �rst to
completeQ toR by an analytic procedure which is arguably at least as complex as the algebraic construction
involved in the ultrapower of Section 2.

There is a clever proof of the same result, as follows (see e.g., problem 6 on page 4 in Newman [3]). Call
a term in the sequence a peak if it is larger than everything which comes after it. If there are in�nitely many
peaks, they form an in�nite decreasing subsequence. If there are �nitely many peaks, start after the last one.
From here on every term has a larger term after it, so one inductively forms an increasing subsequence (from
this lemma one derives a simple proof of the Bolzano–Weierstrass theorem).

Remark 3.4. The proof in Newman consists of two steps: (1) introduce the idea of a peak; (2) consider
separately the caseswhen the number of peaks is �nite or in�nite to produce the desiredmonotone subsequence.
While the basic structure of the proof is similar to that using the ultrapower (see Remark 3.3), the basic di�erence
is that step (1) in Newman is essentially ad-hoc, is tailor-made for this particular problem, and is not applicable
to solving other problems. Meanwhile, the ultrapower construction is applicable in many other situations (see
e.g., Section 4).

While the proof in Newman does not rely on an ultrapower, the idea of the ultrapower proof is more
straightforward once one is familiar with the ultrapower construction, since it is natural to plug a sequence
into it and examine the consequences.

We provide another illustration of how the element u = [〈un〉] can serve as an organizing principle that
allows us to detect properties of monotone subsequences. To �x ideas let F = R. An element u ∈ *R is called
�nite if −r < u < r for a suitable r ∈ R. Let hR ⊆ *R be the subring of �nite elements of *R. The standard part
function st : hR → R rounds o� each �nite hyperreal u to its nearest real number u0 = st(u).

Proposition 3.5. If u ∈ hR and u > u0 then the sequence 〈un〉 possesses a strictly decreasing subsequence.

Proof. Since u > u0 we have {n ∈ N : un > u0} ∈ U. We start with an arbitrary n1 ∈ {n ∈ N : un > u0} and
inductively choose nk+1 so that unk+1 is closer to u than unk . We argue as in the proof of Theorem 3.2 to show
that the process cannot terminate and therefore produces an in�nite subsequence.

4 Compactness
Amore advanced application is a proof of the nested decreasing sequence property for compact sets (Cantor’s
intersection theorem) using the property of saturation. Such a proof exbibits compactness as closely related
to the more general property of saturation, shedding new light on the classic property of compactness.

A typical proof of Cantor’s intersection theorem for a nested decreasing sequence of compact subsets
An ⊆ R would use the monotone sequence 〈un〉 where un is the minimum of each An. We will present a
di�erent and more conceptual proof.
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Each set A ⊆ R has a natural extension denoted *A ⊆ *R. Similarly, the powerset P = P(R) has a natural
extension *P identi�ed with a proper subset of P(*R). Each element of *P is naturally identi�ed with a subset
of *R called an internal set.

The principle of saturation holds for arbitrary nested decreasing sequences of internal sets but we will
present it in a following special case.

Theorem 4.1 (Saturation). If 〈An : n ∈ N〉 is a nested decreasing sequence of nonempty subsets of R then the
sequence 〈*An : n ∈ N〉 has a common point.

Proof. Let P = P(R) be the set of subsets of R. We view the sequence 〈An ∈ P : n ∈ N〉 as a function f : N →
P, n 7→ An. By the extension principle we have a function *f : *N → *P. Let Bn = *f (n). For each �nite n we
have Bn = *An ∈ *P. For each in�nite value of the index n = H the entity BH ∈ *P is by de�nition internal but
is not (necessarily) the natural extension of any subset of R.

If 〈An〉 is a nested sequence in P then by transfer 〈Bn : n ∈ *N〉 is a nested sequence in *P with each Bn
nonempty. Let H be a �xed in�nite index. Then for each �nite n the set *An ⊆ *R includes BH . Choose any
element c ∈ BH . Then c is contained in *An for each �nite n so that c ∈

⋂
n∈N

*An as required.

Remark 4.2. An equivalent formulation of Theorem 4.1 is as follows. If the family of subsets {An}n∈N has the
�nite intersection property then ∃c ∈

⋂
n∈N

*An.

Let X be a topological space. Let p ∈ X. The halo of p, denoted h(p) is the intersection of all *U where U runs
over all neighborhoods of p in X (a neighborhood of p is an open set that contains p). A point y ∈ *X is called
nearstandard in X if there is p ∈ X such that y ∈ h(p).

Theorem 4.3. A space X is compact if and only if every y ∈ *X is nearstandard in X.

Proof. To prove the direction⇒, assume X is compact, and let y ∈ *X. Let us show that y is nearstandard (this
direction does not require saturation). Assume on the contrary that y is not nearstandard. Thismeans that it is
not in the halo of any point p ∈ X. This means that every p ∈ X has a neighborhood Up such that y ∉ *Up. The
collection {Up}p∈X is an open cover of X. Since X is compact, the collectionhas a �nite subcoverUp1 , . . . , Upn ,
so that X = Up1 ∪ . . . ∪ Upn . But for a �nite union, the star of union is the union of stars. Thus *X is the union
of *Up1 , . . . , *Upn , and so the point y is in one of the sets *Up1 , . . . , *Upn , a contradiction.

Next we prove the direction⇐ (this direction exploits saturation). Assume every y ∈ *X is nearstandard,
and let {Ua} be an open cover of X. We need to �nd a �nite subcover.

Assume on the contrary that the union of any �nite collection of Ua is not all of X. Then the complements
of Ua are a collection of (closed) sets {Sa} with the �nite intersection property. It follows that the collec-
tion {*Sa} similarly has the �nite intersection property. By saturation (see Remark 4.2), the intersection of
all *Sa is non-empty. Let y be a point in this intersection. Let p ∈ X be such that y ∈ h(p). Now {Ua} is a
cover of X so there is a Ub such that p ∈ Ub. But y is in *Sa for all a, in particular y ∈ *Sb, so it is not in *Ub, a
contradiction to y ∈ h(p).

Theorem 4.4 (Cantor’s intersection theorem). A nested decreasing sequence of nonempty compact sets has a
common point.

Proof. Given a nested sequence of compact sets Kn, we consider the corresponding decreasing nested
sequence of internal sets, 〈*Kn : n ∈ N〉. This sequence has a common point x by saturation. But for a compact
set Kn, every point of *Kn is nearstandard (i.e., in�nitely close to a point of Kn) by Theorem 4.3. In particular,
st(x) ∈ Kn for all n, as required.

More advanced applications can be found in [4–6].
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