HW 5 - Analytic and Differential geometry 88-201

Submission deadline: May 15, 2025.

- 1. Compute the fundamental forms of the following surfaces:
 - (a) A surface given implicitly by z = f(x, y).
 - (b) $X(\theta, \phi) = (\cosh \phi \cos \theta, \cosh \phi \sin \theta, \phi)$
 - (c) $X(\theta, \phi) = (\cosh \phi \cos \theta, \cosh \phi \sin \theta, \sinh \phi)$
- 2. Let $\alpha : [a, b] \to \mathbb{R}^2$ be a simple (non-self-intersecting) and regular curve. Define the cylinder over α as follows:

$$\Phi: (a, b) \times \mathbb{R} \to \mathbb{R}^3$$
$$\Phi(t, u) = (\alpha^1(t), \alpha^2(t), u)$$

where $\alpha = (\alpha^1, \alpha^2)$ Show that there exist coordinates on the cylinder (a parameterization of α) such that $(g_{ij}) = I$.

3. The unit sphere is defined by the following parameterization:

$$X(\theta, \phi) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$$

where $(\theta, \phi) \in [0, 2\pi] \times [0, \pi] = U$. We consider the curve α defined by:

$$\alpha(t) = (\pi, 2t), \quad t \in \left[0, \frac{\pi}{2}\right]$$

- (a) Find the length of the curve α .
- (b) Find the length of the curve $X \circ \alpha$.