
Chapter 6

Continuous Time Markov Chains

In Chapter 3, we considered stochastic processes that were discrete in both time and
space, and that satisfied the Markov property: the behavior of the future of the
process only depends upon the current state and not any of the rest of the past. Here
we generalize such models by allowing for time to be continuous. As before, we will
always take our state space to be either finite or countably infinite.

A good mental image to have when first encountering continuous time Markov
chains is simply a discrete time Markov chain in which transitions can happen at any
time. We will see in the next section that this image is a very good one, and that the
Markov property will imply that the jump times, as opposed to simply being integers
as in the discrete time setting, will be exponentially distributed.

6.1 Construction and Basic Definitions

We wish to construct a continuous time process on some countable state space S

that satisfies the Markov property. That is, letting FX(s) denote all the information
pertaining to the history of X up to time s, and letting j ∈ S and s ≤ t, we want

P{X(t) = j | FX(s)} = P{X(t) = j | X(s)}. (6.1)

We also want the process to be time-homogeneous so that

P{X(t) = j | X(s)} = P{X(t− s) = j | X(0)}. (6.2)

We will call any process satisfying (6.1) and (6.2) a time-homogeneous continuous
time Markov chain, though a more useful equivalent definition in terms of transition
rates will be given in Definition 6.1.3 below. Property (6.1) should be compared with
the discrete time analog (3.3). As we did for the Poisson process, which we shall see
is the simplest (and most important) continuous time Markov chain, we will attempt
to understand such processes in more than one way.

Before proceeding, we make the technical assumption that the processes under
consideration are right-continuous. This implies that if a transition occurs “at time
t”, then we take X(t) to be the new state and note that X(t) �= X(t−).
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Example 6.1.1. Consider a two state continuous time Markov chain. We denote the
states by 1 and 2, and assume there can only be transitions between the two states
(i.e. we do not allow 1 → 1). Graphically, we have

1 � 2.

Note that if we were to model the dynamics via a discrete time Markov chain, the
tansition matrix would simply be

P =

�
0 1
1 0

�
,

and the dynamics are quite trivial: the process begins in state 1 or 2, depending upon
the initial distribution, and then deterministically transitions between the two states.
At this point, we do not know how to understand the dynamics in the continuous
time setting. All we know is that the distribution of the process should only depend
upon the current state, and not the history. This does not yet tell us when the firings
will occur. �

Motivated by Example 6.1.1, our first question pertaining to continuous time
Markov chains, and one whose answer will eventually lead to a general construc-
tion/simulation method, is: how long will this process remain in a given state, say
x ∈ S? Explicitly, suppose X(0) = x and let Tx denote the time we transition away
from state x. To find the distribution of Tx, we let s, t ≥ 0 and consider

P{Tx > s+ t | Tx > s}
= P{X(r) = x for r ∈ [0, s+ t] | X(r) = x for r ∈ [0, s]}
= P{X(r) = x for r ∈ [s, s+ t] | X(r) = x for r ∈ [0, s]}
= P{X(r) = x for r ∈ [s, s+ t] | X(s) = x} (Markov property)

= P{X(r) = x for r ∈ [0, t] | X(0) = x} (time homogeneity)

= P{Tx > t}.

Therefore, Tx satisfies the loss of memory property, and is therefore exponentially
distributed (since the exponential random variable is the only continuous random
variable with this property). We denote the parameter of the exponential holding
time for state x as λ(x). We make the useful observation that

ETx =
1

λ(x)
.

Thus, the higher the rate λ(x), representing the rate out of state x, the smaller the
expected time for the transition to occur, which is intuitively pleasing.

Example 6.1.2. We return to Example 6.1.1, though now we assume the rate from
state 1 to state 2 is λ(1) > 0, and the rate from state 2 to state 1 is λ(2) > 0. We
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commonly incorporate these parameters into the model by placing them next to the
transition arrow in the graph:

1
λ(1)

�
λ(2)

2.

The dynamics of the model are now clear. Assuming X(0) = 1, the process will
remain in state 1 for an exponentially distributed amount of time, with parameter
λ(1), at which point it will transition to state 2, where it will remain for an exponen-
tially distributed amount of time, with parameter λ(2). This process then continuous
indefinitely. �

Example 6.1.2 is deceptively simple as it is clear that when the process transitions
out of state 1, it must go to state 2, and vice versa. However, consider the process
with states 1, 2, and 3 satisfying

1 � 2 � 3.

Even if you are told the holding time parameter for state 2, without further informa-
tion you can not figure out wether you transition to state 1 or state 3 after you leave
state 2. Therefore, we see we want to study the transition probabilities associated
with the process, which we do now.

Still letting Tx denote the amount of time the process stays in state x after entering
state x, and which we now know is exponentially distributed with a parameter of λ(x),
we define for y �= x

pxy
def
= P{X(Tx) = y | X(0) = x},

to be the probability that the process transitions to state y after leaving state x. It
can be shown that the time of the transition, Tx, and the value of the new state,
y, are independent random variables. Loosely, this follows since if the amount of
time the chain stays in state x affects the transition probabilities, then the Markov
property (6.1) is not satisfied as we would require to know both the current state
and the amount of time the chain has been there to know the probabilities associated
with ending up in the different states.

We next define
λ(x, y)

def
= λ(x)pxy.

Since Tx is exponential with parameter λ(x), we have that

P{Tx < h} = 1− e
−λ(x)h = λ(x)h+ o(h), as h → 0.

Combining the above, for y �= x and mild assumptions on the function λ,1 we have

P{X(h) = y | X(0) = x} = P{Tx < h,X(Tx) = y | X(0) = x}+ o(h)

= λ(x)hpxy + o(h)

= λ(x, y)h+ o(h),

(6.3)

1For example, we do not want to let λ(z) = ∞ for any z ∈ E
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as h → 0, where the o(h) in the first equality represents the probability of seeing
two or more jumps (each with an exponential distribution) in the time window [0, h].
Therefore, λ(x, y) yields the local rate, or intensity, of transitioning from state x to
state y. It is worth explicitly pointing out that for x ∈ S

�

y �=x

λ(x, y) =
�

y �=x

λ(x)pxy = λ(x).

Note that we also have

P{X(h) = x | X(0) = x} = 1−
�

y �=x

P{X(h) = y | X(0) = x}

= 1−
�

y �=x

λ(x, y)h+ o(h)

= 1− λ(x)h
�

y �=x

pxy + o(h)

= 1− λ(x)h+ o(h).

(6.4)

Similarly to our consideration of the Poisson process, it can be argued that any
time homogeneous process satisfying the local conditions (6.3) and (6.4) also satisfies
the Markov property (6.1). This is not surprising as the conditions (6.3)-(6.4) only
make use of the current state of the system and ignore the entire past. This leads
to a formal definition of a continuous time Markov chain that incorporates all the
relevant parameters of the model and is probably the most common definition in the
literature.

Definition 6.1.3. A time-homogeneous continuous time Markov chain with transi-
tion rates λ(x, y) is a stochastic process X(t) taking values in a finite or countably
infinite state space S satisfying

P{X(t+ h) = x | X(t) = x} = 1− λ(x)h+ o(h)

P{X(t+ h) = y | X(t) = x} = λ(x, y)h+ o(h),

where y �= x, and λ(x) =
�

y �=x λ(x, y).

When only the local rates λ(x, y) are given in the construction of the chain, then it
is important to recognize that the transition probabilities of the chain can be recovered
via the identity

pxy =
λ(x, y)

λ(x)
=

λ(x, y)�
y �=x λ(x, y)

.

Example 6.1.4. Let N be a Poisson process with intensity λ > 0. As N satisfies

P{N(t+ h) = j + 1 | N(t) = j} = λh+ o(h)

P{N(t+ h) = j | N(t) = j} = 1− λh+ o(h),

we see that it is a continuous time Markov chain. Note also that any Poisson process
is the continuous time version of the deterministically monotone chain from Chapter
3. �
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Example 6.1.5. Consider again the three state Markov chain

1
λ(1,2)

�
λ(2,1)

2
λ(2,3)

�
λ(3,2)

3,

where the local transition rates have been placed next to their respective arrows.
Note that the holding time in state two is an exponential random variable with a
parameter of

λ(2)
def
= λ(2, 1) + λ(2, 3),

and the probability that the chain enters state 1 after leaving state 2 is

p21
def
=

λ(2, 1)

λ(2, 1) + λ(2, 3)
,

whereas the probability that the chain enters state 3 after leaving state 2 is

p23
def
=

λ(2, 3)

λ(2, 1) + λ(2, 3)
.

This chain could then be simulated by sequentially computing holding times and
transitions. �

An algorithmic construction of a general continuous time Markov chain should
now be apparent, and will involve two building blocks. The first will be a stream
of unit exponential random variables used to construct our holding times, and the
second will be a discrete time Markov chain, denoted Xn, with transition probabilities
pxy that will be used to determine the sequence of states. Note that for this discrete
time chain we necessarily have that pxx = 0 for each x. We also explicitly note that
the discrete time chain, Xn, is different than the continuous time Markov chain, X(t),
and the reader should be certain to clarify this distinction. The discrete time chain
is often called the embedded chain associated with the process X(t).

Algorithm 1. (Algorithmic construction of continuous time Markov chain)
Input:

• Let Xn, n ≥ 0, be a discrete time Markov chain with transition matrix Q. Let
the initial distribution of this chain be denoted by α so that P{X0 = k} = αk.

• Let En, n ≥ 0, be a sequence of independent unit exponential random variables.

Algorithmic construction:

1. Select X(0) = X0 according to the initial distribution α.

2. Let T0 = 0 and defineW (0) = E0/λ(X(0)), which is exponential with parameter
λ(X(0)), to be the waiting time in state X(0).

3. Let T1 = T0 +W (0), and define X(t) = X(0) for all t ∈ [T0, T1).
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4. Let X1 be chosen according to the transition matrix Q, and define W (1) =
E1/λ(X1).

5. Let T2 = T1 +W (1) and define X(t) = X1 for all t ∈ [T1, T2).

6. Continue process.

Note that two random variables will be needed at each iteration of Algorithm
1, one to compute the holding time, and one to compute the next state of the dis-
crete time Markov chain. In the biology/chemistry context, the algorithm implicit in
the above construction is typically called the Gillespie algorithm, after Dan Gillespie.
However, it (and its natural variants) is also called, depending on the field, the stochas-
tic simulation algorithm, kinetic Monte Carlo, dynamic Monte Carlo, the residence-
time algorithm, the n-fold way, or the Bortz-Kalos-Liebowitz algorithm; needless to
say, this algorithm has been discovered many times and plays a critical role in many
branches of science.

As the future of the process constructed in Algorithm 1 only depends upon the
current state of the system, and the current holding time is exponentially distributed,
it satisfies the Markov property (6.1). Further, for y �= x we have

P{X(h) = y | X(0) = x} = P{X(T1) = y, T1 ≤ h | X(0) = h}+ o(h)

= λ(x)hpxy + o(h)

= λ(x, y)h,

showing we also get the correct local intensities. Therefore, the above construction
via a stream of exponentials and an embedded discrete time Markov chain could be
taken to be another alternative definition of a continuous time Markov chain.

One useful way to think about the construction in Algorithm 1 is in terms of alarm
clocks:

1. When the chain enters state x, independent “alarm clocks” are placed at each
state y, and the yth is programed to go off after an exponentially distributed
amount of time with parameter λ(x, y).

2. When the first alarm goes off, the chain moves to that state, all alarm clock are
discarded, and we repeat the process.

Note that to prove that this algorithm is, in fact, equivalent to the algorithmic con-
struction above, you need to recall that the minimum of exponential random variables
with parameters λ(x, y) is itself exponentially distributed with parameter

λ(x) =
�

y

λ(x, y),

and that it is the yth that went off with probability

λ(x, y)�
j �=x λ(x, j)

=
λ(x, y)

λ(x)
.
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See Propositions 2.3.18 and 2.3.19.
We close this section with three examples.

Example 6.1.6. We consider again a random walker on S = {0, 1, . . . }. We suppose
the transition intensities are

λ(i, i+ 1) = λ

λ(i, i− 1) = µ, if i > 0,

and λ(0,−1) = 0. Therefore, the probability of the embedded discrete time Markov
chain transitioning up if the current state is i �= 0, is λ/(λ+µ), whereas the probability
of transitioning down is µ/(λ + µ). When i �= 0, the holding times will always be
exponentially distributed with a parameter of λ+ µ.

Example 6.1.7. We generalize Example 6.1.6 by allowing the transition rates to
depend upon the current state of the system. As in the discrete time setting this
leads to a birth and death process. More explicitly, for i ∈ {0, 1, . . . , } we let

λ(i, i+ 1) = B(i)

λ(i, i− 1) = D(i),

where µ0 = 0. Note that the transition rates are now state dependent, and may even
be unbounded as i → ∞. Common choices for the rates include

B(i) = λi

D(i) = µi,

for some scalar λ, µ > 0. Another common model would be to assume a population
satisfies a logistical growth model,

B(i) = ri

D(i) =
r

K
i
2
.

where K is the carrying capacity.
Analogously to Example 5.2.18, if we let X(t) denote the state of the system at

time t, we have that X(t) solves the stochastic equation

X(t) = X(0) + Y1

�� t

0

B(X(s))ds

�
− Y2

�� t

0

D(X(s))ds

�
, (6.5)

where Y1 and Y2 are independent unit-rate Poisson processes. As in Example 5.2.18,
it is now an exercise to show that the solution to (6.5) satisfies the correct local
intensity relations of Definition 6.1.3. For example, denoting

A(t)
def
= Y1

�� t

0

B(X(s))ds

�
D(t)

def
= Y2

�� t

0

D(X(s))ds

�
,
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we see that

P{X(t+ h) = x+ 1 | X(t) = x}
= P{A(t+ h)− A(t) = 1, D(t+ h)−D(t) = 0 | X(t) = x}+ o(h)

= B(x)h(1−D(x)h) + o(h)

= B(x)h+ o(h).

�

Example 6.1.8. We will model the dynamical behavior of a single gene, the mRNA
molecules it produces, and finally the resulting proteins via a continuous time Markov
chain. It is an entirely reasonable question to ask whether it makes sense to model
the reaction times of such cellular processes via exponential random variables. The
answer is almost undoubtably “no,” however the model should be interpreted as an
approximation to reality and has been quite successful in elucidating cellular dynam-
ics. It is also a much more realistic model than a classical ODE approach, which
is itself a crude approximation to the continuous time Markov chain model (we will
discuss this fact later).

Consider a single gene that is producing mRNA (this process is called transcrip-
tion) at a constant rate of λ1, where the units of time are hours, say. Further, we
suppose the mRNA molecules are producing proteins (this process is called transla-
tion) at a rate of λ2 · (#mRNA), for some λ2 > 0. Next, we assume that the mRNA
molecules are being degraded at a rate of dm · (#mRNA), and proteins are being
degraded at a rate of dp · (#proteins). Graphically, we may represent this system via

G
λ(1)→ G+M

M
λ(2)→ M + P

M
dm→ ∅

P
dp→ ∅.

It is important to note that this is not the only way to write down these reactions.
For example, many in the biological communities would write M → P , as opposed
to M → M + P . However, we feel it is important to stress, through the notation
M → M + P , that the mRNA molecule is not lost during the course of the reaction.

As the number of genes in the model is assumed to be constant in time, the state
space should be taken to be Z2

≥0. Therefore, we let X(t) ∈ Z2
≥0 be the state of the

process at time t where the first component gives the number of mRNA molecules
and the second gives the number of proteins.

Now we ask: what are the possible transitions in the model, and what are the
rates? We see that the possible transitions are given by addition of the reaction
vectors

�
1
0

�
,

�
0
1

�
,

�
−1
0

�
,

�
0
−1

�
,
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with respective rates

λ1, λ2X1(t), dmX1(t), dpX2(t).

Note that the rate of reaction 3, respectively 4, will be zero when X1(t) = 0, respec-
tively X2(t) = 0. Therefore, non-negativity of the molecules is assured. �

6.2 Explosions

Now that we have a good idea of what a continuous time Markov chain is, we demon-
strate a behavior that is not possible in the discrete time setting: explosions. Recall
that in Algorithm 1, which constructs a continuous time Markov chain, the value
Tn represents the time of the nth transition of the chain. Therefore, the chain so
constructed is only defined up until the (random) time

T∞
def
= lim

n→∞
Tn.

If T∞ < ∞, then we say that an explosion has happened.

Definition 6.2.1. If

Pi{T∞ = ∞} def
= P{T∞ = ∞ | X(0) = i} = 1, for all i ∈ S,

than we will say the process is non-explosive. Otherwise we will say the process is
explosive.

Note that a process could be explosive even if

Pi{T∞ = ∞} = 1,

for some i ∈ S; see Example 6.2.4. It is not too difficult to construct an explosive
process. To do so, we will first need the following result pertaining to exponential
random variables.

Proposition 6.2.2. Suppose that {En}, n ≥ 1, are independent exponential random
variables with respective parameters λn. Then,

P

�
�

n

En < ∞
�

= 1 ⇐⇒
�

n

1

λn
< ∞.

Proof. We will prove one direction of the implication (the one we will use). For
the other direction, see [13, Section 5.1]. We suppose that

�
n

1
λn

< ∞. Because�
n En ≥ 0 and

E(
�

n

En) =
�

n

EEn =
�

n

1

λn
< ∞,

we may conclude that
�

n En < ∞ with probability one.
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Thus, we see that we can construct an explosive birth process by requiring that
the holding times satisfy

�
n 1/λ(Xn) < ∞.

Example 6.2.3. Consider a pure birth process in which the embedded discrete time
Markov chain is the deterministically monotone chain of Example 3.1.5. Suppose that
the holding time parameter in state i is λ(i). Finally, let X(t) denote the state of the
continuous time process at time t. Note that the stochastic equation satisfied by X

is

X(t) = X(0) +N

�� t

0

λ(X(s))ds

�
.

Suppose that λ(n) = λn2 for some λ > 0 and that X(0) = 1. Then the nth holding
time is determined by an exponential random variable with parameter λn2, which we
denote by En. Since �

n

1

λn2
< ∞,

we may conclude by Proposition 6.2.2 that

P

�
�

n

En < ∞
�

= 1,

and the process is explosive. The stochastic equation for this model is

X(t) = X(0) +N

�
λ

� t

0

X(s)2ds

�
,

and should be compared with the deterministic ordinary differential equation

x
�(t) = λx

2(t) ⇐⇒ x(t) = x(0) + λ

� t

0

x(s)2ds,

which also explodes in finite time. �

Example 6.2.4. Consider a continuous time Markov chain with state space {-2,-
1,0,1,2,. . . }. We suppose that the graph of the model is

−2
1
�
1
−1

2← 0
1→ 1

1→ 2
22→ 3

32→ · · · ,

where, in general, the intensity of n → n + 1, for n ≥ 1 is λ(n) = n2. From the
previous example, we know this process is explosive. However, if X(0) ∈ {−2,−1},
then the probability of explosion is zero2, whereas if X(0) = 0, the probability of
explosion is 1/3. �

The following proposition characterizes the most common ways in which a process
is non-explosive. A full proof can be found in [13].

2This is proven by the next proposition, but it should be clear
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Proposition 6.2.5. For any i ∈ S,

Pi{T∞ < ∞} = Pi

�
�

n

1

λ(Xn)
< ∞

�
,

and therefore, the continuous time Markov chain is non-explosive iff

�

n

1

λ(Xn)
= ∞,

Pi- almost surely for every i ∈ S. In particular,

(1) If λ(i) ≤ c for all i ∈ S for some c > 0, then the chain is non-explosive.

(2) If S is a finite set, then the chain is non-explosive.

(3) If T ⊂ S are the transient states of {Xn} and if

Pi{Xn ∈ T, ∀n} = 0,

for every i ∈ S, then the chain is non-explosive.

Proof. The equivalence of the probabilities is shown in [13, Section 5.2]. Will prove
the results 1,2,3. For (1), simply note that

�

n

1

λ(X(n))
≥

�

n

1

c
= ∞.

To show (2), we note that if the state space is finite, we may simply take c = max{λi},
and apply (1).

We will now show (3). If Pi{Xn ∈ T, ∀n} = 0, then entry into T c is assured. There
must, therefore, be a state i ∈ T c, which is hit infinitely often (note that this value
can be different for different realizations of the process). Let the infinite sequence of
times when Xn = i be denoted by {nj}. Then,

�

n

1/λ(Xn) ≥
�

j

1/λ(Xnj) =
�

j

1/λ(i) = ∞.

We will henceforth have a running assumption that unless otherwise explicitly
stated, all processes consider are non-explosive. However, we will return to explosive-
ness later and prove another useful condition that implies a process is non-explosive.
This condition will essentially be a linearity condition on the intensities. This con-
dition is sufficient to prove the non-explosiveness of most processes in the queueing
literature. Unfortunately, the wold of biology is not so easy and most processes of
interest are highly non-linear and it is, in general, quite a difficult (and open) problem
to characterize which systems are non-explosive.
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6.3 Forward Equation, Backward Equation, and
the Generator Matrix

We note that in each of the constructions of a continuous time Markov chain, we
are given only the local behavior of the model. Similarly to when we studied the
Poisson process, the question now becomes: how do these local behaviors determine
the global behavior? In particular, how can we find terms of the form

Pij(t) = P{X(t) = j | X(0) = i},

for i, j ∈ S, the state space, and t ≥ 0?
We begin to answer this question by first deriving the Kolmogorov forward equa-

tions, which are a system of ordinary differential equations governing the behaviors
of the probabilities Pij(t). We note that the forward equations are only valid if the
process is non-explosive as we will derive them by conditioning on the state of the
system “directly before” our time of interest. If that time is T∞ < ∞, then this
question does not really make sense, for what is the last jump before T∞?

Proceeding, we have

P
�
ij(t) = lim

h→0

Pij(t+ h)− Pij(t)

h

= lim
h→0

1

h
(P{X(t+ h) = j | X(0) = i} − P{X(t) = j | X(0) = i})

= lim
h→0

1

h

��

y∈S

P{X(t+ h) = j | X(t) = y,X(0) = i}P{X(t) = y | X(0) = i}

− P{X(t) = j | X(0) = i}
�
.

However,
�

y∈S

P{X(t+ h) = j | X(t) = y,X(0) = i}P{X(t) = y | X(0) = i}

= P{X(t+ h) = j | X(t) = j,X(0) = i}P{X(t) = j | X(0) = i}

+
�

y �=j

P{X(t+ h) = j | X(t) = y,X(0) = i}P{X(t) = y | X(0) = i} (6.6)

= (1− λ(j)h)Pij(t) +
�

y �=j

λ(y, j)hPiy(t) + o(h), (6.7)

and so

P
�
ij(t) = lim

h→0

1

h

�
(1− λ(j)h− 1)Pij(t) +

�

y �=j

λ(y, j)Piy(t)h+ o(h)

�

= −λ(j)Pij(t) +
�

y �=j

λ(y, j)Piy(t).
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Thus,
P

�
ij(t) = −λ(j)Pij(t) +

�

y �=j

Piy(t)λ(y, j). (6.8)

These are the Kolmogorov forward equations for the process. In the biology literature
this system of equations is termed the chemical master equation.

We point out that there was a small mathematical “slight of hand” in the above
calculation. To move from (6.6) to (6.7), we had to assume that

�

y

Piy(t)oy(h) = o(h),

where we write oy(h) to show that the size of the error can depend upon the state y.
This condition is satisfied for all systems we will consider.

Definition 6.3.1. Let X(t) be a continuous time Markov chain on some state space
S with transition intensities λ(i, j) ≥ 0. Recalling that

λ(i) =
�

j �=i

λ(i, j),

The matrix

Aij =

�
−λ(i), if i = j

λ(i, j), if i �= j
=

�
−
�

j λ(i, j), if i = j

λ(i, j), if i �= j

is called the generator, or infinitesimal generator, or generator matrix of the Markov
chain.

We see that the Kolmogorov forward equations (6.8) can be written as the matrix
differential equation

P
�(t) = P (t)A,

since

(P (t)A)ij =
�

y

Piy(t)Ayj = PijAjj +
�

y �=j

PiyAyj

= −λ(j)Pij(t) +
�

y �=j

Piyλ(y, j).

At least formally, this system can be solved

P (t) = P (0)etA = e
tA
,

where etA is the matrix exponential and we used that P (0) = I, the identity matrix.
recall that the matrix exponential is defined by

e
At def

=
∞�

k=0

tnAn

n!
.

This solution is always valid in the case that the state space is finite.
We make the following observations pertaining to the generator A:
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1. The elements on the main diagonal are all strictly negative.

2. The elements off the main diagonal are non-negative.

3. Each row sums to zero.

We also point out that given a state space S, the infinitesimal generator A completely
determines the Markov chain as it contains all the local information pertaining to the
transitions: λ(i, j). Thus, it is sufficient to characterize a chain by simply providing
a state space, S, and generator, A.

Example 6.3.2. A molecule transitions between states 0 and 1. The transition rates
are λ(0, 1) = 3 and λ(1, 0) = 1. The generator matrix is

A =

�
−3 3
1 −1

�
.

�
Example 6.3.3. Consider a mathematician wandering between three coffee shops
with graphical structure

A

µ1

�
λ1

B

µ2

�
λ2

C.

The infinitesimal generator of this process is

A =




−µ1 µ1 0
λ1 −(λ1 + µ2) µ2

0 λ2 −λ2



 ,

and the transition matrix for the embedded Markov chain is

P =




0 1 0

λ1/(λ1 + µ1) 0 µ2/(λ1 + µ1)
0 1 0



 .

�
Example 6.3.4. For a unit-rate Poisson process, we have

A =





−1 1 0 . . .

0 −1 1 0 . . .
0 0 −1 1
...

...
. . . . . .




.

�
If we are given an initial condition, α, then αP (t) is the vector with jth element

(αP (t))j =
�

i

αiPij =
�

i

P{X(t) = j | X(0) = i}P{X(0) = i} def
= Pα{X(t) = j},

giving the probability of being in state j at time t given and initial distribution of α.
Thus, we see that if α is given, we have

αP (t) = Pα(t) = αe
tA
. (6.9)
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Backward equation

Before attempting to solve a system using Kolmogorov’s forward equations, we in-
troduce another set of equations, called Kolmogorov’s backward equations, which are
valid for all continuous time Markov chains. The derivation below follows that of [13].

We begin by finding an integral equation satisfied by Pij(t). We will then differ-
entiate it to get the backward equations.

Proposition 6.3.5. For all i, j ∈ S and t ≥ 0, we have

Pij(t) = δije
−λ(i)t +

� t

0

λ(i)e−λ(i)s
�

k �=i

QikPkj(t− s)ds,

where, as usual,

δij =

�
1, if i = j

0, if i �= j

is the Kronecker delta function, and Q is the transition matrix of the embedded discrete
time Markov chain.

Proof. Conditioning on the first jump time of the chain, T1, we have

P{X(t) = j | X(0) = i}
= P{X(t) = j, T1 > t | X(0) = i}+ P{X(t) = j, T1 ≤ t | X(0) = i}.

We handle these terms separately. For the first term on the right hand side of the
above equation, a first transition has not been made. Thus, X(t) = j iff j = i and
does so with a probability of one. That is,

P{X(t) = j,T1 > t | X(0) = i}
= P{X(t) = j | T1 > t,X(0) = i}P{T1 > t | X(0) = i}
= δijPi{T1 > t}
= δije

−λ(i)t
.

For the second term, we will condition on the time of the first jump happening
in (s, s + ∆), for small ∆ (we will eventually take ∆ → 0). As the holding time is
exponential with parameter λ(i), this event has probability

� s+∆

s

λ(i)e−λ(i)r
dr = λ(i)e−λ(i)s∆+O(∆2).

160



We let sn = nt/N for some large N , denote ∆ = t/N , and see

P{X(t) = j,T1 ≤ t | X(0) = i} =
N−1�

n=0

P{X(t) = j, T1 ∈ (sn, sn+1) | X(0) = i}

=
N−1�

n=0

P{X(t) = j | X(0) = i, T1 ∈ (sn, sn+1)}P{T1 ∈ (sn, sn+1) | X(0) = i}

=
N−1�

n=0

P{X(t) = j | X(0) = i, T1 ∈ (sn, sn+1)}
�
λ(i)eλ(i)sn∆+O(∆2)

�

=
N−1�

n=0

λ(i)eλ(i)sn
�

k �=i

P{X(t) = j,X1 = k | X(0) = i, T1 ∈ (sn, sn+1)}∆+O(∆)

=
N−1�

n=0

λ(i)eλ(i)sn
�

k �=i

�
P{X(t) = j | X1 = k,X(0) = i, T1 ∈ (sn, sn+1)}

× P{X1 = k | X(0) = i, T1 ∈ (sn, sn+1)}
�
∆+O(∆)

≈
N−1�

n=0

λ(i)eλ(i)sn
�

k �=i

QikPkj(t− sn)∆ +O(∆)

→
� t

0

λ(i)eλ(i)s
�

k �=i

QikPkj(t− s)ds,

as ∆ → 0. Combining the above shows the result.

Proposition 6.3.6. For all i, j ∈ S, we have that Pij(t) is continuously differentiable
and

P
�(t) = AP (t), (6.10)

which in component form is

P
�
ij(t) =

�

k

AikPkj(t).

The system of equations (6.10) is called the Kolmogorov backwards equations. Note
that the difference with the forward equations is the order of the multiplication of
P (t) and A. However, the solution of the backwards equation is once again seen to
be

P (t) = e
tA
,

agreeing with previous results.
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Proof. Use the substitution u = t− s in the integral equation to find that

Pij(t) = δije
−λ(i)t +

� t

0

λ(i)e−λ(i)s
�

k �=i

QikPkj(t− s)ds

= δije
−λ(i)t +

� t

0

λ(i)e−λ(i)(t−u)
�

k �=i

QikPkj(u)ds

= e
−λ(i)t

�
δij +

� t

0

λ(i)eλ(i)u
�

k �=i

QikPkj(u)ds

�
.

Differentiating yields

P
�
ij(t) = −λ(i)e−λ(i)t

�
δij +

� t

0

λ(i)eλ(i)u
�

k �=i

QikPkj(u)ds

�

+ e
−λ(i)t · λ(i)eλ(i)t

�

k �=i

QikPkj(t)

= −λ(i)Pij(t) + λ(i)
�

k �=i

QikPkj(t)

=
�

k

(−λ(i)δikPkj(t)) +
�

k

λ(i)QikPkj(t)

=
�

k

(−λ(i)δik + λ(i)Qik)Pkj(t)

=
�

k

AikPkj(t).

Both the forward and backward equations can be used to solve for the associated
probabilities as the next example demonstrates.

Example 6.3.7. We consider a two state, {0, 1}, continuous time Markov chain with
generator matrix

A =

�
−λ λ

µ −µ

�
.

We will use both the forwards and backwards equations to solve for P (t).

Approach 1: Backward equation. While we want to compute Pij(t) for each pair
i, j ∈ {0, 1}, we know that

P00(t) + P01(t) = P10(t) + P11(t) = 1,

for all t ≥ 0, and so it is sufficient to solve just for P00(t) and P10(t).
The backwards equation is P �(t) = AP (t), yielding the equations

P
�
00(t) = λ[P10(t)− P00(t)]

P
�
10(t) = µ[P00(t)− P10(t)].
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We see that
µP

�
00(t) + λP

�
10(t) = 0 =⇒ µP00(t) + λP10(t) = c.

We know that P (0) = I, so we see that

µP00(0) + λP10(0) = c ⇐⇒ µ = c.

Thus,
µP00(t) + λP10(t) = µ =⇒ λP10(t) = µ− µP00(t).

Putting this back into our differential equations above we have that

P
�
00(t) = µ− µP00(t)− λP00(t) = µ− (µ+ λ)P00(t).

Solving, with P00(t) = 1 yields

P00(t) =
µ

µ+ λ
+

λ

µ+ λ
e
−(µ+λ)t

.

Of course, we also have that

P01(t) = 1− P00(t)

P10(t) =
µ

λ
− µ

λ

�
µ

µ+ λ
+

λ

µ+ λ
e
−(µ+λ)t

�
=

µ

µ+ λ
− µ

µ+ λ
e
−(µ+λ)t

.

Approach 1: Forward equation. This is easier. We want to solve

P
�(t) = P (t)A.

We now get

P
�
00(t) = −P00(t)λ+ P01(t)µ = −P00(t)λ+ (1− P00(t))µ = µ− (λ+ µ)P00(t)

P
�
10(t) = −λP10(t) + µP11(t) = −λP10(t) + µ(1− P10(t)) = µ− (λ+ µ)P00(t),

and the solutions above follow easily.
Note that, as in the discrete time setting, we have that

lim
t→∞

P (t) =
1

λ+ µ

�
µ λ

µ λ

�
,

yielding a common row vector which can be interpreted as a limiting distribution. �

There is a more straightforward way to make the above computations: simply
solve the matrix exponential.
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Example 6.3.8 (Computing matrix exponentials). Suppose that A is an n×n matrix
with n distinct eigenvectors. Then, letting D be a diagonal matrix consisting of the
eigenvalues of A, we can decompose A into

A = QDQ
−1
,

where Q consists of the eigenvectors of A (ordered similarly to the order of the eigen-
values in D). In this case, we get the very nice identity

e
At =

∞�

n=0

tn(QDQ−1)n

n!
= Q

� ∞�

n=0

tnDn

n!

�
Q

−1 = Qe
Dt
Q

−1
,

where eDt, because D is diagonal, is a diagonal matrix with diagonal elements eλit

where λi is the ith eigenvalue.

Example 6.3.9. We now solve the above problem using the matrix exponential.
Supposing, for concreteness, that λ = 3 and µ = 1, we have that the generator
matrix is

A =

�
−3 3
1 −1

�

It is easy to check that the eigenvalues are 0,−4 and the associated eigenvalues are
[1, 1]t and [−3, 1]t. Therefore,

Q =

�
1 −3
1 1

�
, Q

−1 =

�
1/4 3/4
−1/4 1/4

�
,

and

e
tA =

�
1/4 + (3/4)e−4t 3/4− (3/4)e−4t

1/4− (1/4)e−4t 3/4 + (1/4)e−4t

�
.

You should note that

lim
t→∞

e
tA =

�
1/4 3/4
1/4 3/4

�
,

which has a common row. Thus, for example, in the long run, the chain will be in
state zero with a probability of 1/4. �

6.4 Stationary Distributions

In this section we will parallel our treatment of stationary distributions for discrete
time Markov chains. We will aim for intuition, as opposed to attempting to prove
everything, and point the interested reader to [13] and [11] for the full details of the
proofs.
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6.4.1 Classification of states

We start by again classifying the states of our process. Viewing a continuous time
Markov chain as an embedded discrete time Markov chain with exponential holding
times makes the classification of states, analogous to Section 3.4 in the discrete time
setting, easy. We will again denote our state space as S.

Definition 6.4.1. The communication classes of the continuous time Markov chain
X(t) are the communication classes of the embedded Markov chain Xn. If there is
only one communication class, we say the chain is irreducible; otherwise it is said to
be reducible.

Noting thatX(t) will return to a state i infinitely often if and only if the embedded
discrete time chain does (even in the case of an explosion!) motivates the following.

Definition 6.4.2. State i ∈ S is called recurrent for X(t) if i is recurrent for the
embedded discrete time chain Xn. Otherwise, i is transient.

Definition 6.4.3. Let T1 denote the first jump time of the continuous time chain.
We define

τi
def
= inf{t ≥ T1 : X(t) = i},

and set mi = Eiτi. We say that state i is positive recurrent if mi < ∞.

Note that, perhaps surprisingly, we do not define i to be positive recurrent if i is
positive recurrent for the discrete time chain. In Example 6.4.10 we will demonstrate
that i may be positive recurrent for Xn, while not for X(t).

As in the discrete time setting, recurrence, transience, and positive recurrence are
class properties.

Note that the concept of periodicity no longer plays a role, or even makes sense
to define, as time is no longer discrete. In fact, if P (t) is the matrix with entries
Pij(t) = P{X(t) = j | X(0) = i} for an irreducible continuous time chain, then for
every t > 0, Pij(t) has strictly positive entries because there is necessarily a path
between i and j, and a non-zero probability of moving along that path in time t > 0.

6.4.2 Invariant measures

Recall that equation (6.9) states that if the initial distribution of the process is α,
then αP (t) is the vector whose ith component gives the probability that X(t) = i.
We therefore define an invariant measure in the following manner.

Definition 6.4.4. A measure η = {ηj, j ∈ S} on S is called invariant if for all t > 0

ηP (t) = η.

If this measure is a probability distribution (i.e. sums to one), then it is called a
stationary distribution.
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Note, therefore, that if the initial distribution is η, then Pη{X(t) = i} = ηi, for
all t ≥ 0, demonstrating why such a measure is called invariant.

The following theorem gives us a nice way to find stationary distributions of
continuous time Markov chains.

Theorem 6.4.5. Let X(t) be an irreducible and recurrent continuous time Markov
chain. Then the following statements are equivalent:

1. ηA = 0;

2. ηP (t) = η, for all t ≥ 0.

Proof. The proof of this fact is easy in the case of a finite state space, which is what
we will assume here. Recall Kolmogorov’s backward equation

P
�(t) = AP (t).

Assume that ηA = 0. Multiplying the backwards equation on the left by η shows

0 = ηAP (t) = ηP
�(t) =

d

dt
ηP (t).

Thus,
ηP (t) = ηP (0) = η,

for all t ≥ 0.
Now assume that ηP (t) = η for al t ≥ 0. Then, for all h > 0, we have

ηP (h) = η =⇒ η(P (h)− I) = 0 =⇒ η

h
(P (h)− I) = 0.

Taking h → 0 now shows that

0 = ηP
�(0) = ηA,

where we have used that P �(0) = A, which follows from either the forward or backward
equations.

The interchange above of differentiation with summation can not in general be
justified in the infinite dimensional setting, and different proof is needed and we refer
the reader to [11, Section 3.5].

Theorem 6.4.6. Suppose that X(t) is irreducible and recurrent. Then X(t) has an
invariant measure η, which is unique up to multiplicative factors. Moreover, for each
k ∈ S, we have

ηk = πk/λ(k),

where π is the unique invariant measure of the embedded discrete time Markov chain
Xn. Finally, η satisfies

0 < ηj < ∞, ∀j ∈ S,

and if
�

i ηi < ∞ then η can normalize by 1/
�

k ηk to give a stationary distribution.
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Proof. By Theorem 6.4.5, we must only show that there is a solution to ηA = 0,
satisfying all the desired results, if and only if there is an invariant measure to the
discrete time chain. We first recall that π was an invariant measure for a discrete
time Markov chain if and only if πQ = π, where Q is the transition matrix. By
Theorem 3.5.16, such a π exists, and is unique up to multiplicative constants, if Xn

is irreducible and recurrent.
Recall that if j �= k, then Ajk = λ(j)Qjk and that Ajj = −λ(j). We now simply

note that

η
�
A = 0 ⇐⇒

�

j

ηjAjk = 0, ∀k ⇐⇒
�

j �=k

ηjλ(j)Qjk − ηkλ(k) = 0.

However, this holds if and only if

�

j �=k

ηjλ(j)Qjk = ηkλ(k) ⇐⇒ πQ = π, where πk
def
= λ(k)ηk.

That is, the final equation (and hence all the others) holds if and only if π is invariant
for the Markov matrix Q. Such a π exists, and satisfies all the desired properties,
by Theorem 3.5.16. Further, we see the invariant measure of the continuous time
Process satisfies ηk = πk/λ(k), as desired.

Example 6.4.7. Consider the continuous time Markov chain with generator matrix

A =





−5 3 1 1

1 −1 0 0

2 1 −4 1

0 2 2 −4




.

The unique left eigenvector of A with eigenvalue 0, i.e. the solution to ηA = 0,
normalized to sum to one is

η =

�
14

83
,
58

83
,
6

83
,
5

83

�
.

Further, note that the transition matrix for the embedded discrete time Markov chain
is

P =





0 3/5 1/5 1/5

1 0 0 0

1/2 1/4 0 1/4

0 1/2 1/2 0




.

Solving for the stationary distribution of the embedded chain, i.e. solving πP = π,
yields

π =

�
35

86
,
29

86
,
6

43
,
5

43

�
.
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Finally, note that

[η1λ(1), η2λ(2), η(3)λ(3), η(4)λ(4)] =

�
5 · 14

83
,
58

83
, 4 · 6

83
, 4 · 5

83

�

=

�
70

83
,
58

83
,
24

83
,
20

83

�

=
172

83

�
35

86
,
29

86
,
6

43
,
5

43

�

=
172

83
π,

as predicted by the theory. �

We now consider the positive recurrent case. We recall that mi = Eiτi, the
expected first return time to state i. The following result should not be surprising at
this point. See [11] for a proof.

Theorem 6.4.8. Let A be the generator matrix for an irreducible continuous time
Markov chain. Then the following are equivalent

1. Every state is positive recurrent.

2. Some state is positive recurrent.

3. A is non-explosive and has an invariant distribution η.

Definition 6.4.9. We call the non-explosive continuous time Markov chain {X(t)}
ergodic if {Xn} is recurrent and irreducible and a stationary distribution exists.

Note, therefore, that X(t) is ergodic if and only if the chain is irreducible and
positive recurrent.

The following example shows that positive recurrence of Xn does not guarantee
existence of stationary distribution for X(t). That is, X(t) may not be positive
recurrent.

Example 6.4.10. We consider a continuous time Markov chain whose embedded
discrete time Markov chain has state space S = {0, 1, 2, . . . } and transition matrix

Q =





0 1 0 0 · · ·
q 0 p 0 · · ·
q 0 0 p

...
. . .




,

where p+ q = 1. This is the “success run chain” and we showed in Problem 2.11 that
the discrete time chain is positive recurrent. Let λ(i) be the holding time parameter
for state i of the associated continuous time Markov chain, and let Em, m ≥ 0,
denote a sequence of independent unit exponential random variables, which are also
independent of the embedded discrete time Markov chain. Finally, assuming that
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X0 = 0, let T1 denote the first return time to state 0 of the embedded chain. For
example, if T1 = 3, then X0 = 0, X1 = 1, X2 = 2, and X3 = 0. More generally,
we have X0 = 0, X1 = 1, . . . , XT1−1 = T1 − 1, and XT = 0. For m < T1, we let
W (m) = Em/λ(m) be the holding time in state m. We have

m0 = E0τ0 = E0

T1−1�

m=0

W (m)

= E
∞�

m=0

W (m)1{m<T1}

=
∞�

m=0

E[W (m)1{m<T1}].

However, we know that the holding times and the embedded chain are independent.
Thus, as 1{m<T1} is simply a statement pertaining to the embedded chain,

E[W (m)1{m<T1}] = [EW (m)][E1{m<T1}] =
1

λ(m)
P0{m < T1}.

Combining the above,

m0 =
∞�

m=0

1

λ(m)
P0{m < T1}

=
1

λ(0)
+

∞�

m=1

1

λ(m)
P0{m < T1}.

For m ≥ 1,

P{m < T1} =
∞�

n=m+1

P{T1 = n} =
∞�

n=m+1

p
n−2

q = qp
m−1

∞�

n=0

p
n = p

m−1
.

Thus,

m0 =
1

λ(0)
+

∞�

m=1

1

λ(m)
p
m−1

.

Of course, we have not chosen λ(m) yet. Taking λ(m) = pm, we see

m0 =
1

λ(0)
+

∞�

m=1

1

pm
p
m−1 = 1 +

∞�

m=1

1

p
= ∞.

So, {Xn} is positive recurrent, but X(t) is not. �

The following example, taken from [11], shows two things. First, it demonstrates
that a transient chain can have an invariant measure. Further, it even shows stranger
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behavior is possible: a transient chain can have an invariant distribution! Of course,
the previous theorems seem to suggest that this is not possible. However, there is a
catch: the chain could be explosive. In fact, if a transient chain is shown to have a
stationary distribution, then the chain must be explosive for otherwise Theorem 6.4.8
is violated.

Example 6.4.11. Consider a discrete time random walker on S = {0, 1, 2, . . . }.
Suppose that the probability of moving to the right is p > 0 and to the left is
q = 1− p. To convert this into a continuous time chain, we suppose that λ(i) is the
holding time parameter in state i. More specifically, we assume X(t) is a continuous
time Markov chain with generator matrix A satisfying

A =





−λ(0)p λ(0)p 0 0 0 · · ·
qλ(1) −λ(1) pλ(1) 0 0 · · ·
0 qλ(2) −λ(2) pλ(2) 0 · · ·
0 0 qλ(3) −λ(3) pλ(3)
...

. . . . . .





We know that this chain is transient if p > q since the discrete time chain is. We now
search for an invariant measure satisfying

ηA = 0,

which in component form is

−λ(0)pη0 + qλ(1)η1 = 0

λ(i− 1)pηi−1 − λ(i)ηi + λ(i+ 1)qηi+1 = 0 i > 0.

We will confirm that η satisfying

η(i) =
1

λ(i)

�
p

q

�i

,

is a solution. The case i = 0 is easy to verify

λ(0)pη0 = λ(0)p
1

λ(0)
= p = qλ(1)

1

λ(1)

p

q
= qλ(1)η1.

The i > 0 case follows similarly.
Therefore, there is always an invariant distribution, regardless of the values p and

q. Taking p > q and λ(i) = 1 for all i, we see that the resulting continuous time
Markov chain is transient, and has an invariant distribution

η(i) =

�
p

q

�i

,

which can not be normalized to provide an invariant distribution.
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Now, consider the case when p > q, with 1 < p/q < 2, and take λ(i) = 2i. Define

α
def
= p/q < 2. Then,

∞�

i=0

η(i) =
∞�

i=0

�
α

2

�i
=

1

1− α/2
=

2

2− α
< ∞,

Therefore, we can normalize to get a stationary distribution. Since we already know
this chain is transient, we have shown that it must, in fact, explode. �

6.4.3 Limiting distributions and convergence

We have found conditions for the existence of a unique stationary distribution to a
continuous time Markov chain: irreducibility and positive recurrence (i.e. ergodicity).
As in the discrete time case, there is still the question of convergence. The following
is proven in [11].

Theorem 6.4.12. Let X(t) be an ergodic continuous time Markov chain with unique
invariant distribution η. Then, for all i, j ∈ S,

lim
t→∞

Pij(t) = ηj.

Example 6.4.13. Let S = {0, 1} with transition rates λ(0, 1) = 3 and λ(1, 0) = 1.
Then the generator matrix is

A =

�
−3 3
1 −1

�
.

Solving directly for the left eigenvector of A with eigenvalue 0 yields

π = [1/4, 3/4],

which agrees with the result found in Example 6.3.9. �
As in the discrete time setting, we have an ergodic theorem, which we simply

state. For a proof, see [13, Section 5.5].

Theorem 6.4.14. Let X(t) be an irreducible, positive recurrent continuous time
Markov chain with unique stationary distribution η. Then, for any initial condition,
and any i ∈ S,

P

�
1

t

� t

0

1{X(s)=i}ds → ηi, as t → ∞
�

= 1.

Moreover, for any bounded function f : S → R we have

P

�
1

t

� t

0

f(X(s))ds → f̄ , as t → ∞
�

= 1,

where
f̄ =

�

j∈S

ηjf(j) = Eηf(X∞),

where X∞ has distribution η.
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Thus, as in the discrete time setting, we see that ηi gives the proportion of time
spent in state i over long periods of time. This gives us an algorithmic way to sample
from the stationary distribution: simulate a single long trajectory and average over
it.

6.5 The Generator, Revisited

Consider a function f : S → R. Noting that f is simply a mapping from S to R, and
that S is discrete, we can view f as a column vector whose ith component is equal
to f(i). For example, if S = {1, 2, 3} and f(1) = −2, f(2) = π, and f(3) = 100, then
we take

f =




−2
π

100



 .

As A is a matrix, it therefore makes sense to discuss the well defined object Af , which
is itself a column vector, and hence a function from S to R.

Next, we note that if the initial distribution for our Markov chain is α, then for
any f we have that

Eαf(X(t)) =
�

j∈S

Pα{X(t) = j}f(j)

=
�

j∈S

�
�

i∈S

P{X(t) = j | X(0) = i}P{X(0) = i}
�
f(j)

=
�

i∈S

αi

�
�

j∈S

Pij(t)f(j)

�

=
�

i∈S

αi(P (t)f)i

= αP (t)f.

(6.11)

Now recall that the forward equation stated that P �(t) = P (t)A. Integrating this
equation yields

P (t) = I +

� t

0

P (s)Ads,

and multiplication on the right by f gives

P (t)f = f +

� t

0

P (s)Afds. (6.12)

Multiplying (6.12) on the left by α yields

αP (t)f = αf +

� t

0

αP (s)(Af)ds,
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which combined with (6.11) gives

Eαf(X(t)) = Eαf(X(0)) +

� t

0

Eα (Af) (X(s)) ds

= Eαf(X(0)) + Eα

� t

0

(Af) (X(s)) ds.

This is a version of Dynkin’s formula. For a more formal derivation in the Markov
process setting, see [4, Section 1.1]. In the next section, we will use this formulation
to calculate the mean and variance of a linear birth and death model.

Example 6.5.1. We will re-derive the mean and variance of a Poisson process using
Dynkin’s formula. Let X(t) be a Poisson process with intensity λ > 0 defined on
S = {0, 1, 2, . . . }. Then, for any function f : S → R

(Af) =





−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ · · ·
...

. . . . . .









f(0)
f(1)
f(2)
...




=





−λf(0) + λf(1)
−λf(1) + λf(2)
−λf(2) + λf(3)

...




,

and so, for any i ≥ 0,
(Af)(i) = λ(f(i+ 1)− f(i)).

Letting f(i) = i, and taking X(0) = 0 with a probability of one, we therefore see that

Ef(X(t)) = EX(t) = 0 +

� t

0

E(Af)(X(s))ds

=

� t

0

Eλ
�
f(X(s) + 1)− f(X(s))

�
ds

= λ

� t

0

ds

= λt.

Next, letting g(i) = i2 (so as to find the second moment), we have

Eg(X(t)) = EX(t)2 = 0 +

� t

0

E(Af)(X(s))ds

=

� t

0

Eλ
�
g(X(s) + 1)− g(X(s))

�
ds

= λ

� t

0

E
�
X(s)2 + 2X(s) + 1−X(s)2

�
ds

= λ

� t

0

E
�
2X(s) + 1

�
ds

= λ

� t

0

(2λs+ 1)ds

= λ
2
t
2 + λt.
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Therefore, the variance is

Var(X(t)) = EX(t)2 − (EX(t))2 = λt.

�
Of course, both the mean and variance of a Poisson process are well known.

However, the above method is quite general and is useful in a myriad of applications.

Example 6.5.2. Consider a pure birth process with growth rate λ(i) = bi for some
b > 0. That is, the embedded chain is the deterministic monotone chain and the
holding time in state i is bi. For an arbitrary function f , we have that

(Af)(i) = bi
�
f(i+ 1)− f(i)

�
, (6.13)

for all i ≥ 0, where A is the generator for the continuous time chain. Assuming
X(0) = 1, we will derive the mean of the process.

For f(i) = i, we have that

Ef(X(t)) = EX(t) = 1 +

� t

0

E(Af)(X(s))ds

= 1 +

� t

0

EbX(s)
�
f(X(s) + 1)− f(X(s))

�
ds

= 1 + b

� t

0

EX(s)ds.

Therefore, defining g(t) = EX(t), we see that

g
�(t) = bg(t), g(0) = 1.

Thus,
g(t) = EX(t) = e

bt
.

This result should be compared with the solution to the ODE linear growth model
x�(t) = bx(t), which yields a similar solution. You will derive the variance for a
homework exercise. �

Now consider the (row) vector ei, with a one in the ith component, and zeros
everywhere else. Taking ei as an initial distribution, we see from (6.11) that for all
t ≥ 0

eiP (t)f = Eif(X(t)).

In words, the ith component of the vector P (t)f gives Eif(X(t)). Next, note that

(Af)(i) = ei(Af) = ei(P
�(0)f) = ei lim

h→0

1

h
(P (h)f − P (0)f)

= lim
h→0

1

h
(eiP (h)f − eif)

= lim
h→0

Eif(X(h))− f(i)

h
.
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Further, taking f(i) = 1{i=j} for some j, we see that

(Af)(i) = lim
h→0

Eif(X(h))− f(i)

h
, (6.14)

gives

Aij = lim
h→0

1

h
(P{X(h) = j | X(0) = i}) = λ(i, j),

when i �= j, and

Ajj = lim
h→0

1

h
(P{X(h) = j | X(0) = j} − 1) = −λ(j),

for the diagonal elements. Therefore, (6.14) could be taken as an alternative definition
of the generator for a Markov process, though one which views the generator as an
operator and not simply as a matrix that stores the transition intensities. In fact, in
many ways this definition is much more useful than that of simply the matrix with
transition rates.

Example 6.5.3. Consider a process with arrivals coming in at rate λ > 0 and
departures taking place at rate µX(t), where X(t) is the number of items at time t.
Then, for i ≥ 0 we have

(Af)(i) = lim
h→0

Eif(X(h))− f(i)

h

= lim
h→0

1

h

�
f(i+ 1)Pi{X(h) = i+ 1}+ f(i− 1)Pi{X(h) = i− 1}

+ f(i)Pi{X(h) = i} − f(i) + o(h)

�

= lim
h→0

1

h

�
f(i+ 1)λh+ f(i− 1)µih+ f(i)(1− λh− µih)− f(i) + o(h)

�

= λ(f(i+ 1)− f(i)) + µi(f(i− 1)− f(i)).

So, for example, taking f(y) = y to be the identity, and X(0) = x, we have that

Ef(X(t)) = EX(t) = EX(0) + E
� t

0

(Af)(X(s))ds

= x+ E
� t

0

�
λ(X(s) + 1−X(s))

�
+ µX(s)

�
X(s)− 1−X(s)

�
ds

= x+

� t

0

(λ− µEX(s))ds.

Setting g(t) = EX(t), we see that g(0) = x and g�(t) = λ− µg(t). Solving this initial
value problem yields the solution

EX(t) = xe
−µt +

λ

µ
(1− e

−µt).

The second moment, and hence the variance, of the process can be calculated in a
similar manner. �
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6.6 Continuous Time Birth and Death Processes

We again consider a Markovian birth and death process, though now in the continuous
time setting. As in Section 4.2, our state space is S = {0, 1, 2, . . . }. The transition
rates are

λ(n, n+ 1) = bn

λ(n, n− 1) = dn

λ(n, j) = 0, if |j − n| ≥ 2,

for some values bn, dn ≥ 0, and d0 = 0, yielding a tridiagonal generator matrix

A =





−b0 b1 0 0 0 · · ·
d1 −(b1 + d1) d1 0 0 · · ·
0 d2 −(b2 + d2) b2 0 · · ·
0 0 d3 −(b3 + d3) b3 · · ·
...

...
. . . . . . . . .





.

We begin with examples, many of which are analogous to those in the discrete
time setting.

Example 6.6.1. The Poisson process is a birth-death process with bn ≡ λ, for some
λ > 0, and dn ≡ 0. �

Example 6.6.2. A pure birth process with bn ≥ 0, and dn ≡ 0 is an example of a
birth and death process. �

Example 6.6.3 (Queueing Models). We suppose that arrivals of customers are oc-
curring at a constant rate of λ > 0. That is, we assume that bn ≡ λ. However,
departures occur when a customer has been served. There are a number of natural
choices for the model of the service times.

(a) (Single server) If there is a single server, and that person always serves the first
person in line, then we take dn = µ > 0, if n ≥ 1, and d0 = 0 (as there is no one
to serve).

(b) (k servers) If there are k ≥ 1 servers, and the first k people in line are always
being served, then for some µ > 0 we take

dn =

�
nµ, if n ≤ k

kµ, if n ≥ k
.

(c) (∞ servers) If we suppose that there are an infinite number of servers, then
dn = nµ for some µ > 0.

�
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Example 6.6.4 (Population Models). Suppose that X(t) represents the number of
individuals in a certain population at time t. Assuming the rates of both reproduction
and death are proportional to population size we have

bn = λn

dn = µn,

for some λ, µ > 0. �
Example 6.6.5 (Population with immigration). Consider the previous system except
bn = λn+ ν for some ν > 0, representing an inflow due to immigration. Now 0 is no
longer an absorbing state. �
Example 6.6.6 (Fast growing population). Consider a population that grows at a
rate equal to the square of the number of individuals. Assuming no deaths, we have
for some λ > 0 that

bn = λn
2
, and µn = 0.

We have seen that this population grows so fast that it reaches an infinite population
in finite time with a probability of one. �

Example 6.6.7 (Chemistry 1). Consider the chemical system A
k1
�
k2

B with A(0) +

B(0) = N and mass action kinetics. Then, A(t), giving the number of A molecules
at time t, is a birth and death process with state space {0, 1, . . . , N} and transition
rates

bn = k2(N − n), and dn = k1n.

�
Example 6.6.8 (Chemistry 2). Consider the chemical system

∅
λ
�
µ
A

and suppose X(t) tracks the number of A molecules. Then this model is a birth
and death process with the exact same transition rates as the infinite server queue of
Example 6.6.3. �

Returning to a general system, consider the embedded discrete time Markov chain
of a general continuous time birth and death process. The transition probabilities of
this chain are

pn,n+1 = pn
def
=

bn

bn + dn

qn,n−1 = qn
def
=

dn

bn + dn
.

Note that in this case we have pn + qn = 1 for all n ≥ 0. We will first consider when
these processes are recurrent and transient, and then consider positive recurrence.
The following proposition follows directly from Proposition 4.2.6.
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Proposition 6.6.9. A continuous time birth and death process is transient if and
only if

∞�

k=1

d1 · · · dk
b1 · · · bk

< ∞.

Proof. From Proposition 4.2.6, the embedded chain, and hence the continuous time
chain, is transient if and only if

∞�

k=1

q1 · · · qn
p1 · · · pk

< ∞.

Noting that

∞�

k=1

q1 · · · qn
p1 · · · pk

=
∞�

k=1

d1 · · · dk
b1 · · · bk

,

completes the proof.

Similarly to the discrete time case, we can now conclude that the single server
queue is transient if and only if µ < λ, and that the k server queue is transient if and
only if kµ < λ. For the infinite server queue, and the analogous chemistry example
in Example 6.6.8, we have

∞�

k=1

d1 · · · dk
p1 · · · pk

=
∞�

k=1

k!
�
µ

λ

�k
= ∞.

Thus, the infinite server queue is always recurrent.

We now turn to the question of positive recurrence and stationary distributions.
We know that a stationary distribution η must satisfy ηA = 0, which in component
form is

η0b0 = η1d1

(bk + dk)ηk = bk−1ηk−1 + dk+1ηk+1, for k ≥ 1.

Noting that these are the same equations as (4.5) and (4.6), we can conclude that
such an η exists and can be made into a probability vector if and only if

∞�

k=1

b0b1 · · · bk−1

d1 · · · dk
< ∞.

The following is analogous to Proposition 4.2.7.

Proposition 6.6.10. There exists a stationary distribution for a continuous time
birth and death chain if and only if

∞�

k=1

b0b1 · · · bk−1

d1 · · · dk
< ∞.
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In this case,

η0 =

� ∞�

k=0

b0b1 · · · bk−1

d1 · · · dk

�−1

,

where the k = 0 term in the above sum is taken to be equal to one, and for k ≥ 1,

ηk =
b0 · · · bk−1

d1 · · · dk
η0.

For example, for the single server queue we have

∞�

k=0

�
λ

µ

�k

=

�
1− λ

µ

�−1

,

provided λ < µ, and in this case

ηk =

�
1− λ

µ

��
λ

µ

�k

.

The expected length of the queue is

∞�

k=0

kηk = k

�
1− λ

µ

��
λ

µ

�k

=
λ

µ

�
1− λ

µ

�−1

=
λ

µ− λ
,

which grows to infinity as λ approaches µ.

For the infinite server queue and the chemistry model of Example 6.6.8, we have

∞�

k=0

b0 · · · bk−1

d1 · · · dk
=

∞�

k=0

1

k!

�
λ

µ

�k

= e
λ/µ

.

Therefore, a stationary distribution exists, and since we already know the chain is re-
current we may conclude it is positive recurrent. Note that the stationary distribution
is Poisson(λ/µ), and

ηk = e
−λ/µ (λ/µ)

k

k!
, for k ≥ 0.

In the next chapter, we will see why many models from chemistry and biology have
stationary distributions that are Poisson.

We close by considering the generator for a continuous time birth and death
process. It is straightforward to show that it satisfies

(Af)(i) = bi(f(i+ 1)− f(i)) + di(f(i− 1)− f(i)),

for all i ≥ 0. This fact can be used in the case of linear intensities to easily calculate
the time-dependent moments.
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Example 6.6.11. Consider linear birth and death process with transition rates

bi = λi

di = µi,

where λ, µ > 0. The generator of the process satisfies

(Af)(i) = λi(f(i+ 1)− f(i)) + µi(f(i− 1)− f(i)),

for all i ≥ 0. Taking f(i) = i to be the identity, and X(0) = x, we have that

Ef(X(t)) = EX(t) = EX(0) + E
� t

0

(Af)(X(s))ds

= x+ E
� t

0

�
λX(s)(X(s) + 1−X(s)) + µX(s)

�
X(s)− 1−X(s)

��
ds

= x+ (λ− µ)

� t

0

EX(s)ds.

Solving yields
EX(t) = xe

(λ−µ)t
, (6.15)

which, it is worth noting, is the solution to the ordinary differential equation x�(t) =
(λ− µ)x(t) that is the standard deterministic model for this system. �

6.6.1 A brief look at parameter inference

While not a topic covered in this course to any great depth, we turn briefly to the
question of parameter inference. We do so by considering the linear birth and death
process of Example 6.6.11. Specifically, we suppose that we believe our system can
be modeled as a linear birth and death system, however we do not know the key
parameters, λ or µ.

We first note that we have multiple options for how to model the dynamics of
the process with the two most common choices being (i) deterministic ODEs and (ii)
the stochastic model considered in Example 6.6.11. If we choose to model using ordi-
nary differential equations, then the time dependent solution to the process, equation
(6.15), only depends upon the parameter λ − µ, and not on the actual values of λ
and µ. Therefore, there will not be a way to recover λ and µ from data, only their
difference.

Perhaps surprisingly, more can be accomplished in the stochastic setting. While
the mean value of X(t) is a function of the single parameter λ− µ given in equation
6.15, we can also solve for the variance, which turns out to be (this is the subject of
a homework exercise)

Var(t) = X(0)

�
λ+ µ

λ− µ

��
e
2(λ−µ)t − e

(λ−µ)t
�
. (6.16)
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Note that this is a function of both the difference and the sum of λ and µ. Therefore,
we may use the mean and variance of any data to approximate both λ and µ. In this
way, we see that having noisy data actually helps us solve for parameters.

For example, suppose that we know that X(0) = 60 (perhaps because we begin
each experiment with 60 bacteria), and after a number of experiments we found
the mean of the process at time 1 is 22.108, and the variance is 67.692. Using the
equations for the mean and variance, equations (6.15) and (6.16) respectively, this
reduces to solving the system of equations

λ− µ = −.9984

λ+ µ = 4.8406,

yielding

λ = 1.9211 and µ = 2.9195.

For comparison sake, the data reported above was actually generated from 1,000
samples of a process with actual values of λ = 2 and µ = 3.

6.7 Exercises

1. Consider a continuous time Markov chain with state space {1, 2, 3, 4} and gen-
erator matrix

A =





−3 2 0 1

0 −2 1/2 3/2

1 1 −4 2

1 0 0 −1




.

Write a Matlab code that simulates a path of this chain. To do so, use the
construction provided in the notes (i.e. simulate the embedded chain and hold-
ing times sequentially). Using this code and assuming that X(0) = 1, estimate
EX(3) by averaging over 10,000 such paths. Note that you will need to make
sure you break your “for” or “while” loop after you see that the time will go
beyond T = 3, without updating the state for that step.

2. In Example 6.2.4, it was stated that if X(0) = 0, then the probability of an
explosion was 1/3. Why is that?

3. For Example 6.5.2, verify that the generator of the process satisfies equation
(6.13).

4. Using Dynkin’s formula, calculate Var(X(t)) of the linear birth process of Ex-
ample 6.5.2.

5. Using Dynkin’s formula, calculate Var(X(t)) of the linear birth and death pro-
cess of Example 6.6.11.
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6. Consider the linear birth and death process of Example 6.16. Suppose that
X(0) = 100, and at time T = 2 the mean of 100 experiments is 212, and the
variance is 1,100. Estimate the parameters λ and µ.

182


