
Lecture Notes on Stochastic Processes with
Applications in Biology

David F. Anderson

March 1, 2017
c©Copyright 2015, all rights reserved



Preface

This book has two main purposes. The first is to provide a basic introduction to some
of the most common stochastic models, such as discrete and continuous time Markov
chains, renewal processes and point processes. The second purpose is to provide an
introduction to the basic stochastic models utilized in cellular and molecular biology.
This introduction can be found in chapter 5. While there are a number of very good
textbooks that provide an introduction to Markov processes, renewal processes and
point processes, there are few that introduce the stochastic models used in cellular
and molecular biology, and it was this fact that motivated the writing of these notes.

Simulation methods are a core component of this book. It is my intention that
each homework assignment should have at least one exercise that requires numerical
simulation, and that these exercises should increase in complexity as the course pro-
gresses. These exercises begin in a gentle enough manner that no previous experience
with simulation should be required.

A student who has taken courses in calculus, linear algebra, and introductory
probability should find these notes accessible. Having taken a class in real analysis,
or any other proof based course, is also desirable. No knowledge of measure theory
will be assumed.

It is my hope that students with a mathematics background will gain an appre-
ciation for some of the mathematical challenges in biology, and that students with a
biological background will gain the basic mathematical tools necessary to study the
models that are arising in their field. It is also one of my strong desires that both
groups of students gain an appreciation for the other’s field.

Various portions of these notes were, of course, greatly influenced by a number of
other books on stochastic processes. The main such texts are Rick Durrett’s Essentials
of Stochastic Processes [10], Gregory Lawler’s Introduction to Stochastic Processes
[28], James Norris’s Markov chains [29], Sidney Resnick’s Adventures in Stochastic
Processes [31], Darren Wilkinson’s Stochastic Modelling for Systems Biology [36], and
Stochastic Analysis for Biochemical Systems by myself and Thomas Kurtz [3].

There are undoubtedly many typos throughout these notes. If you find any, please
email me at anderson@math.wisc.edu.

David Anderson
August 2015
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Chapter 1

Discrete Time Markov Chains

This chapter presents an introduction to discrete time Markov chains with a discrete
state space. Before proceeding to Markov chains, however, we begin with a quick
discussion of the overall subject of this book, stochastic processes.

1.1 Stochastic processes

A stochastic process is a collection of random variables indexed by time. They are used
to model the evolution of random processes in time. We begin with two examples,
one in which it is natural to model time discretely and one in which it is natural to
model time continuously.

Example 1.1. Repeatedly role a fair six-sided die and for k ∈ {1, 2, . . . } let Zk be
the outcome of the kth roll. Let

Xn = Z1 + · · ·+ Zn

be the accumulated total of the first n rolls. If Z1 = 3, then X1 = 3 and X2 ∈
{4, 5, 6, 7, 8, 9}, each with equal probability. Note that time, indexed here by n, is
discrete since we only update the process Xn after each roll of the die. 4
Example 1.2. Consider a frog who lives in a pond with k lily pads, which we have
labeled 1 through k. The frog starts the day by sitting on a randomly chosen pad. For
example, each lily pad may have an equal probability of being the first one chosen,
in which case

P (frog starts on lily pad i) = 1
k
, i ∈ {1, . . . , k}.

When the frog is sitting on a lily pad, it will jump to another lily pad after a random
amount of time. For the sake of concreteness, we assume that this random time is
modeled by a unit exponential random variable. When the frog jumps it chooses
the pad it goes to according to some probability distribution on the remaining pads.
Of course, this distribution may depend upon which lily pad the frog is currently
enjoying. We assume that the frog is very fast and the jump happens instantaneously.
Letting t = 0 denote the start of the day, we let X(t) ∈ {1, . . . , k} denote the lily pad
occupied by the frog at time t. In this example, time is naturally continuous. 4

1



CHAPTER 1. DISCRETE TIME MARKOV CHAINS 2

As is customary in the field of probability, we will denote stochastic processes with
upper case letters with the time index either in parenthesis, as in X(t) in Example
1.2, or as a subscript, as in Xn in Example 1.1. Most often, the time parameter will
be a subset of the nonnegative integers {0, 1, 2, . . . }, in which case it will most often
be denoted by n, or a subset of [0,∞), the nonnegative real numbers, in which case
it will most often be denote by t. When time is indexed by the nonnegative integers,
we say it is a discrete time process, whereas when time is indexed by the nonnegative
reals, we say it is a continuous time process. Each process will take values in a state
space, which can be discrete (finite or countably infinite) or continuous (for example,
the real line or Rd). The natural state space for Example 1.1 is {1, 2, . . . }, whereas
the state space for Example 1.2 is {1, . . . , k}.

When analyzing a stochastic process, we may be interested in computing proba-
bilities, such as

P (X0 = i0, X1 = i1, · · · , Xn = in), (1.1)

where n ∈ {0, 1, 2, . . . } and {i0, . . . , in} is some finite sequence of states in the state
space. We may also be interested in generating some realizations via simulation in
order to visualize the process and see some possible behaviors. In this text, we will
focus on both issues. That is, we will learn how to analytically compute probabilities
of the form (1.1), together with other interesting objects such as expectations, exit
probabilities, etc., and will also learn to simulate the processes in order to generate
realizations.

1.2 Discrete time Markov chains

We begin our study of stochastic processes with discrete time Markov chains. We will
focus on models with a discrete state space. Such models, while relatively straight-
forward to understand, have proven useful in many arenas, from biology, to ecology,
to engineering, to finance, etc.

Definition 1.3. A discrete time stochastic process Xn, n ≥ 0, is said to satisfy the
Markov property, and is called a discrete time Markov chain, if conditioned on Xn

(the present), the random variables {Xn+1, Xn+2, . . . } (the future), are independent
of the random variables {X0, . . . , Xn−1} (the past).

Definition 1.3 says that the probabilities associated with future states only depend
upon the current state, and not on the history of the process. For example, if Xn is
a discrete time Markov chain, then for any n ≥ 0 and any set of states i0, . . . , in, in+1

in the state space,

P (Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P (Xn+1 = in+1|Xn = in). (1.2)

We state without proof the following fact, which says that the seemingly weaker
condition given in (1.2) is actually equivalent to the Markov property given in Defi-
nition (1.3).
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Proposition 1.4. Let Xn, n ≥ 0, be a discrete time stochastic process with a dis-
crete state space that satisfies (1.2) for any choice of states i0, i1, . . . , in+1. Then Xn

satisfies the Markov property given in Definition 1.3.

It is often the case that it is easier to show that a process satisfies the property
(1.2) than Definition 1.3.

Example 1.5. Suppose that during each round of a game, a fair coin is tossed. If the
coin lands on heads, a six-sided die is rolled. If the coin lands on tails, a twenty-sided
die is rolled. We let Zn be the value of the roll during the nth iteration of this game,
and let Xn = Z1 + · · ·+ Zn. Then Xn, n ≥ 1, is a Markov chain.

Showing the general condition given in Definition 1.3 would be difficult. However,
by the independence of the rolls and coin flips, we have that (1.2) holds since Xn is
a function of Xn−1 plus a random variable, Zn, that is independent of all previous
random variables. 4

Example 1.6 (Example 1.1 continued). Recall Example 1.1, where we let Zk be the
outcome of the kth roll of a fair die and let Xn = Z1 + · · · + Zn. Assuming the rolls
are independent, Xn, n ≥ 1, is a Markov chain since Xn is a function of Xn−1 and a
random variable, Zn, independent from all previous random variables.

We can calculate any probability of the form (1.1) for Xn. For example,

P (X1 = 2, X2 = 4, X3 = 6) = P (X3 = 6|X1 = 2, X2 = 4)P (X1 = 2, X2 = 4)

= P (X3 = 6|X2 = 4)P (X2 = 4 | X1 = 2)P (X1 = 2)

= P (Z3 = 2)P (Z2 = 2)P (Z1 = 2)

=
(

1
6

)3
.

where the Markov property was used in the second equality. 4

Example 1.7 (Example 1.2 continued). Suppose a frog can jump between three lily
pads, labeled 1, 2, and 3. Suppose that if the frog is on lily pad number 1, it will
jump next to lily pad number 2 with a probability of one. Similarly, if the frog is on
lily pad number 3, it will next jump to lily pad number 2 with a probability of one.
However, when the frog is on lily pad number 2, it will next jump to lily pad number
1 with probability 1/4, and to lily pad number 3 with probability 3/4. We can depict
the state space and associated probabilities graphically via

1
1/4

�
1

2
1

�
3/4

3 .

Let Xn denote the position of the frog after the nth jump and assume that the
initial distribution is

P (X0 = 1) = 1
3
, P (X0 = 2) = 2

3
, and P (X0 = 3) = 0.
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Assuming that Xn, n ≥ 0, is a Markov chain we have

P (X0 = 1, X1 = 2, X2 = 3) = P (X2 = 3|X0 = 1, X1 = 2)P (X0 = 1, X1 = 2)

= P (X2 = 3|X1 = 2)P (X1 = 2|X0 = 1)P (X0 = 1)

= 3
4
× 1× 1

3
= 1

4
,

whereas P (X0 = 1, X1 = 3, X2 = 2) = 0. 4

It is useful to see at least one process that does not satisfy the Markov property.

Example 1.8. Suppose that Zn, n ≥ 1, are i.i.d. random variables for which P (Zn =
1) = P (Zn = −1) = 1

2
. For each n ≥ 1, let Wn = Z1 + · · ·+ Zn and let

Mn = max{Wk : 1 ≤ k ≤ n}.

Then the sequence Mn, n ≥ 1, does not satisfy the Markov property.
We will show

P (M4 = 2|M1 = 1,M2 = 1,M3 = 1) 6= P (M4 = 2|M1 = −1,M2 = 0,M3 = 1), (1.3)

demonstrating that (1.2) does not hold and the history of the process does influence
future probabilities. Starting with the right hand side of (1.3),

P (M4 = 2|M1 = −1,M2 = 0,M3 = 1) = P (Z3 = 1|Z1 = −1, Z2 = 1, Z3 = 1) = 1
2
.

Next, using that {M1 = 1,M2 = 1,M3 = 1} is equal to

{Z1 = 1, Z2 = −1, Z3 = −1} ∪ {Z1 = 1, Z2 = −1, Z3 = 1},

it is an exercise in the use of conditional probabilities to show

P (M4 = 2|M1 = 1,M2 = 1,M3 = 1) = 1
4
.

Hence, we have (1.3) and Mn, n ≥ 1, does not satisfy the Markov property. 4

We leave examples and return to the task of developing our mathematical ma-
chinery.

Definition 1.9. The one-step transition probability of a Markov chain from state i
to state j, denoted by pij(n), is

pij(n)
def
= P (Xn+1 = j | Xn = i).

If the transition probabilities do not depend upon n, in which case pij(n) = P (X1 =
j|X0 = i), then the processes is said to be time homogeneous, or simply homogeneous,
and we will use the notation pij as opposed to pij(n).
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Unless explicitly stated otherwise, all discrete time Markov chain models consid-
ered in these notes will be time homogeneous and the one step transition probabilities
will be denoted by pij or pi,j.

Throughout, we will denote initial probability distributions by α. That is, for a
discrete time Markov chain Xn we let

αj = P (X0 = j), j ∈ S.

Throughout, we will think of α as a row vector whose ith component is αi.
Returning to (1.1), for a discrete time Markov chain we have

P (X0 = i0, · · · , Xn = in)

= P (Xn = in | X0 = i0, · · · , Xn−1 = in−1)P (X0 = i0, · · · , Xn−1 = in−1)

= pin−1,inP (X0 = i0, · · · , Xn−1 = in−1)

...

= αi0pi0,i1 · · · pin−1,in ,

(1.4)

and under the Markov assumption the problem of computing probabilities has been
converted to one of multiplication. For example, returning to Example 1.7, we have

P (X0 = 1, X1 = 2, X2 = 3) = α1p12p23 = 1
3
× 1× 3

4
= 1

4
.

For processes with a finite state space, the one-step transition probabilities can
be conveniently expressed in matrix form.

Definition 1.10. The transition matrix P for a Markov chain with finte state space
S = {1, 2, . . . , N} and one-step transition probabilities pij is the N ×N matrix

P
def
=


p11 p12 · · · p1N

p21 p22 · · · p2N
...

...
. . .

...
pN1 pN2 · · · pNN

 .

Note that the matrix P satisfies

0 ≤ Pij ≤ 1, for all 1 ≤ i, j,≤ N, (1.5)

N∑
j=1

Pij = 1, for each 1 ≤ i ≤ N. (1.6)

Any square matrix satisfying the two conditions (1.5) and (1.6) is called a Markov
or stochastic matrix, and can be the transition matrix for a Markov chain. If P also
satisfies the condition

N∑
i=1

Pij = 1, for each 1 ≤ j ≤ N, (1.7)

so that the column sums are also equal to 1, then P is termed doubly stochastic.
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1.2.1 Examples of discrete time Markov chains

Having some basic definitions in hand, we turn to some examples that will be returned
to throughout these notes.

Example 1.11. This example, sometimes termed the deterministically monotone
Markov chain, is simple but will serve as a building block for an important model in
the continuous time setting (the Poisson process).

Consider a discrete time process Xn with state space {1, 2, . . . , } and transition
probabilities pi,i+1 = 1 for i ≥ 1:

1
1→ 2

1→ 3
1→ · · · .

If α is the initial distribution and α1 = 1, then the process simply starts at state 1
and proceeds deterministically up the integers towards positive infinity. 4

Example 1.12. Suppose that Xn, n ≥ 0, are independent and identically distributed
with

P (X0 = k) = pk, k = 1, . . . , N,

where pk ≥ 0 and
∑N

k=1 pk = 1. Then,

P (Xn+1 = in+1 | X0 = i0, . . . , Xn = in) = P (Xn+1 = in+1 | Xn = in) = pin+1 ,

since Xn+1 is independent of all previous random variables and takes the value in+1

with probability pin+1 . Hence, the process satisfies the Markov property. For this
example, the transition matrix takes a particularly simple form,

P =

 p1 · · · pN
...

. . .
...

p1 · · · pN

 .

4

Example 1.13 (2 state Markov chain). Consider a gene that can be repressed by
a protein. By Xn = 1, we mean the gene is free, or not repressed, at time n, and
by Xn = 2 we mean that the gene is repressed, or bound. We make the following
assumptions:

1. If the gene is free at time n, there is a probability of p ≥ 0 that it is repressed
at time n+ 1.

2. If the gene is repressed at time n, there is a probability of q ≥ 0 that it is free
at time n+ 1.

The process Xn can be modeled as a discrete time Markov chain with finite state
space S = {1, 2} and transition matrix

P =

(
1− p p
q 1− q

)
, (1.8)
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where the first row and first column are associated with state 1.
Note that any two state discrete time Markov chain has a transition matrix of the

form (1.8). We can graphically represent the state space and transition probabilities
for this chain via

(1− p)

	

1
q

�
p

2 � (1− q)

4.

Example 1.14 (Random walk on {0, 1, . . . , N}). For an integer N ≥ 1, let the state
space S of a discrete time Markov chain be {0, . . . , N}. We consider a walker who
can only move left (decrement by one) or right (increment by one) per time interval.
We may think of the walker as flipping a biased coin to decide whether or not to
move to the right or left during each time increment. That is, for some p > 0, at
each time-step the walker moves one step to the right with probability p (she flipped
a heads) and to the left with probability 1− p (she flipped a tails). If p = 1

2
, the walk

is termed symmetric or unbiased, whereas if p 6= 1
2
, the walk is biased. The one step

transition probabilities for i ∈ {1, . . . , N − 1} are,

pi,i+1 = p, pi,i−1 = 1− p, 0 < i < N,

though we must still give the transition probabilities at the boundaries.
One choice for the boundary conditions would be to assume that with probability

one, the walker transitions away from the boundary during the next time step. That
is, we could have

p0,1 = 1, pN,N−1 = 1.

We say such a process has reflecting boundaries. Note that Example 1.7 was a model
of a random walk on {1, 2, 3} with reflecting boundaries.

Another option for the boundary conditions is to assume there is absorption,
yielding the boundary conditions

p00 = 1, pNN = 1,

in which case the chain is often called the Gambler’s ruin (a terminology that can
be understood by assuming p < 1/2 and thinking of the state of the process as the
wealth of a gambler).

We are not limited to reflection and absorption and could have a partial reflection
such as

p00 = 1− p, p01 = p, pN,N−1 = 1− p, pNN = p.

Of course, we could also have any combination of the above conditions at the different
boundary points.

We can generalize the model to allow for the possibility of the walker choosing
to stay at a given site i ∈ {1, . . . , N − 1} during a time interval and by allowing the
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transition probabilities to be state dependent. In this general case, we let qi, pi and ri
be the probabilities that the walker moves to the left, right, and stays, respectively,
given that she is in state i. Assuming absorbing boundary conditions, the transition
matrix for this model is

P =



1 0 0 0 · · · 0 0
q1 r1 p1 0 · · · 0 0
0 q2 r2 p2 · · · 0 0
...

. . . . . .
...

...
0 · · · 0 0 qN−1 rN−1 pN−1

0 0 0 0 · · · 0 1


,

where it is understood that qi, pi, ri ≥ 0 and qi + pi + ri = 1 for i ∈ {1, . . . , N − 1}. 4

Example 1.15 (Axonal transport). One method of transport used in living cells is
axonal transport in which certain (motor) proteins carry cargo such as mitochondria,
other proteins, and other cell parts, on long microtubules. These microtubule can be
thought of as the “tracks” of the transportation mechanism, with the motor protein
as the transporter. One natural, and simple, mathematical model for such transport
would begin by breaking the microtubule into N equally sized intervals, and then
letting Xn be the position of the motor protein on the state space {1, . . . , N}. We
could then let the transition probabilities satisfy

pi,i+1 = pi, pi,i−1 = qi, pi,i = ri, i ∈ {2, . . . , N − 1},
where pi + qi + ri = 1 with pi, qi, ri ≥ 0, and with boundary conditions

p1,1 = r1, p1,2 = p1, pN,N = 1,

with r1 + p1 = 1. Taking the state N to be the end of the microtubule, it would be
natural to model pi > qi for each i. 4

Example 1.16 (Random walk on the integers). This Markov chain is like that of
Example 1.14, except now we assume that the state space is all of the integers S =
Z = {. . . ,−1, 0, 1, . . . }. Specifically, Xn is the position of a walker at time n, where
for some 0 < p < 1 the transition probabilities are given by

pi,i+1 = p, pi,i−1 = 1− p,
for all i ∈ Z. This model is one of the most studied stochastic processes and will be
returned to frequently as a canonical example. 4

Example 1.17 (Random walk on Zd). We let Zd be the d-dimensional integer lattice:

Zd = {(x1, . . . , xd) : xi ∈ Z}.
Note that for each x ∈ Zd there are exactly 2d values y with |x− y| = 1 (as there are
precisely d components that can be changed by a value of ±1). We may let

pxy =

{
1
2d

if |x− y| = 1

0 else
.

4
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1.2.2 Stopping times and the strong Markov property

We sometimes need a stronger property than the Markov property. Towards that
end, we introduce the concept of a stopping time.

Definition 1.18. A stopping time, τ , with respect to a discrete time stochastic pro-
cess Xn, n ≥ 0, is a random variable taking values in {0, 1, . . . } for which the occur-
rence or non-occurrence of {τ = n} can be determined by observation of the random
variables {X0, . . . , Xn}.

For our purposes, the most important examples of stopping times are the return
times and hitting times of a process to a state or set of states.

Example 1.19. Consider a stochastic process Xn, n ≥ 0, with discrete state space
S. For i ∈ S let

τi
def
= inf{n ≥ 1 : Xn = i} (1.9)

Hi
def
= inf{n ≥ 0 : Xn = i}, (1.10)

where we take τi =∞ and Hi =∞ if the chain never hits state i for n ≥ 1 and n ≥ 0,
respectively. Similarly, if A ⊂ S, then we define τA = inf{n ≥ 1 : Xn ∈ A} and
HA = inf{n ≥ 0 : Xn ∈ A}.

Both τi and Hi are stopping times (as are τA and HA for A ⊂ S). This follows
since if you have observed the random variables {X0, . . . , Xn}, then you can answer
whether or not n was the first time the chain entered state i. The stopping times τi
and Hi are often called the return time and hitting time of state i, respectively. 4

The term stopping time is best understood in the following manner. Think of Xn

as the wealth of a gambler after n plays of a game. Then any rule devised by the
gambler to determine when to stop playing leads to a stopping time. For example, the
rule could be: stop playing when I have either doubled my money, or lost everything.
The important point is that τ must be determinable from only the plays of the game
through the present. No knowledge of the future is permitted!1

The following is a generalization of the Markov property.

Definition 1.20. A discrete time stochastic process Xn is said to satisfy the strong
Markov property if for any stopping time τ the following holds: conditioned on both
Xn (the present) and τ = n, the random variables {Xn+1, Xn+2, . . . } (the future), are
independent of the random variables {X0, . . . , Xn−1} (the past).

Suppose that τ is a stopping time for a Markov chain Xn. Then, assuming τ <∞,

1Imagine how good a gambler would be if they could use the following rule: stop gambling the
round before my first loss.
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the one step transition probabilities still hold at τ :

P (Xτ+1 = j | Xτ = i, τ <∞) =
∞∑
n=0

P (Xn+1 = j, τ = n | Xτ = i, τ <∞)

=
∞∑
n=0

P (Xn+1 = j | τ = n,Xn = i)P (τ = n | Xτ = i, τ <∞)

=
∞∑
n=0

P (Xn+1 = j | Xn = i)P (τ = n | Xτ = i, τ <∞)

= pij,

where the second to last equality used the Markov property in that the distribution
of the random variable Xn+1 only depends upon Xn and not on any information
pertaining to the random variables {X0, . . . , Xn−1}.

The following result, which we do not prove, will be useful to us.

Theorem 1.21. A discrete time Markov chain satisfies the strong Markov property.

1.3 Simulation of discrete time Markov chains

We will present a straightforward method for the simulation of a single realization
of a discrete time Markov chain, Xn, n ≥ 0. Without loss of generality, we take the
state space of the Markov chain to be S = {1, 2, 3, . . . }, the positive integers. We
assume that we are provided with:

(i) an initial distribution α, satisfying αk = P (X0 = k), for k ∈ {1, 2, . . . }, and

(ii) the one step transition probabilities pij = P (X1 = j | X0 = i), for each pair
i, j ∈ {1, 2, . . . }.

The basic idea is the following. We will utilize a uniform[0, 1] random variable,
U0, and the transformation method of Theorem B.7, to generate the initial state of
the chain. We will then use a sequence of independent uniform[0, 1] random variables,
{Un}∞n=1, which are also independent of the initial random variable U0, together with
the transformation method of Theorem B.7, to generate each sequential state of the
chain. Specifically, we will use functions g and f so that

X0 = g(U0), and Xn = f(Xn−1, Un), for n ≥ 1,

where for u ∈ [0, 1] and i ∈ {1, 2, . . . },

g(u) = min

{
j ≥ 1

∣∣ j∑
m=1

αm ≥ u

}
and f(i, u) = min

{
j ≥ 1

∣∣ j∑
m=1

pi,m ≥ u

}
.

Here is the algorithm.
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Algorithm 1 (Simulation of discrete time Markov chains with state space {1, 2, . . . }).
Take as input an initial distribution α and transition rates {pij}. Let n = 1.

1. Generate a uniform[0, 1] random variable, U0. Find the smallest j ∈ {1, 2, . . . }
satisfying

j∑
m=1

αm ≥ U0,

and set X0 = j.

2. Generate a uniform[0, 1] random variable, Un, that is independent of all previous
random variables generated.

3. Find the smallest j ∈ {1, 2, . . . } satisfying

j∑
m=1

pXn−1,m ≥ Un,

and set Xn = j.

4. Set n← n+ 1, and return to step 2 or quit.

It is straightforward to verify that the process generated in Algorithm 1 is a
discrete time Markov chain with the desired transition probabilities.

First, by Theorem B.7 we have that X0 ∼ α. Next, we verify that the con-
structed process satisfies the Markov property with the correct one-step transition
probabilities. The important thing to note is that {X0, X1, . . . , Xn} is a function of
{U0, . . . , Un}. We have,

P (Xn+1 = j |X0 = i0, . . . ,Xn−1 = in−1, Xn = i)

= P (f(i, Un+1) = j |X0 = i0, . . . , Xn−1 = in−1, Xn = i)

= P (f(i, Un+1) = j)

= pij,

where the first equality follows by the construction in Algorithm 1, the second follows
from the independence of Un+1 and {U0, . . . , Un}, and the final step follows from
Theorem B.7.

Example 1.22. Consider a process with state space S = {1, 2, 3}, initial distribution
α = (1

3
, 1

3
, 1

3
), and transition matrix

P =

 0 1
3

2
3

1
2

1
2

0
1
4

1
2

1
4

 .

If the sequence of independent uniform[0, 1] random variables

(U0, U1, U2, U3, . . . ) = (0.814, 0.906, 0.127, 0.632, . . . )
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is utilized with Algorithm 1, then the following realization of the process is produced,

X0 = 3, X1 = 3, X2 = 1, X3 = 3, . . . .

On the other hand, if the sequence of independent uniform[0, 1] random variables

(U0, U1, U2, U3, . . . ) = (0.096, 0.278, 0.547, 0.958, . . . )

is utilized with Algorithm 1, then the realization

X0 = 1, X1 = 2, X2 = 2, X3 = 2, . . . .

is produced. 4

1.4 Higher Order Transition Probabilities

Consider again the frog in Example 1.7. Perhaps we would like to have some idea
as to where the frog will be at time n = 2, or even n = 200. We could simulate
the behavior of the frog multiple times using the method of the previous section,
but this seems uninspired and would not allow us to conclude anything with surety.
Something more is desired.

Leaving the example of the frog, we ask one of the most basic questions possible of
a discrete time Markov chain: given an initial distribution α, and a transition matrix
P , what is the probability that the Markov chain will be in state i ∈ S at time n ≥ 1?
This question leads naturally to the following definition.

Definition 1.23. The n-step transition probability, denoted p
(n)
ij , is the probability

of moving from state i to state j in n steps,

p
(n)
ij

def
= P (Xn = j | X0 = i).

Note that by time-homogeneity we also have p
(n)
ij = P (Xn+k = j | Xk = i) for any

k ≥ 0.
The n-step transition probabilities are intimately linked with powers of the tran-

sition matrix, P , of Definition 1.10. In the case of a finite state space we let P n
ij

denote the i, jth entry of the matrix P n. Likewise, if the state space is infinite, then
we define

P 2
ij =

∑
k∈S

pikpkj,

which converges since
∑

k pikpkj ≤
∑

k pik = 1. Similarly, for n ≥ 3 we define

P n
ij =

∑
k∈S

P n−1
ik pkj.

Proposition 1.24. Let Xn, n ≥ 0, be a discrete time Markov chain with one-step
transition probabilities pij. For all integers n ≥ 1 and all i, j ∈ S,

p
(n)
ij = P n

ij.



CHAPTER 1. DISCRETE TIME MARKOV CHAINS 13

Proof. We will show the result by induction on n. First, note that the case n = 1
follows by definition. Now assuming the result is true for a given n ≥ 1, we have

p
(n+1)
ij = P (Xn+1 = j | X0 = i) =

∑
k∈S

P (Xn+1 = j,Xn = k | X0 = i)

=
∑
k∈S

P (Xn+1 = j | Xn = k,X0 = i)P (Xn = k | X0 = i)

=
∑
k∈S

P (Xn+1 = j | Xn = k)P (Xn = k | X0 = i)

=
∑
k∈S

p
(n)
ik pkj =

∑
k∈S

P n
ikPkj,

where the third equality uses the Markov property and the final equality follows from
our inductive hypothesis.

A slight generalization of the above computation yields a very useful set of equa-
tions, called the Chapman-Kolmogorov equation. For all i, j ∈ S and all non-negative
integers m,n ≥ 0,

p
(m+n)
ij =

∑
k∈S

p
(m)
ik p

(n)
kj . (1.11)

The argument goes as follows,

p
(m+n)
ij = P (Xm+n = j | X0 = i) =

∑
k∈S

P (Xm+n = j,Xm = k | X0 = i)

=
∑
k∈S

P (Xm+n = j | Xm = k)P (Xm = k | X0 = i) =
∑
k∈S

p
(m)
ik p

(n)
kj .

The Chapman-Kolmogorov equation (1.11) has an intuitive interpretation: the chain
must be somewhere after m steps, and we are simply summing over the associated
probabilities. Note that in the case of a finite state space, Proposition 1.24 shows
that the Chapman-Kolmogorov equations are simply a reproduction of the matrix
identity

Pm+n = PmP n.

We may now answer our original question pertaining to the probability that the
Markov chain Xn with initial distribution α and transition matrix P will be in state
i ∈ S at time n ≥ 0. Writing Pα for the probabilities associated with a chain with
initial distribution α, we have

Pα(Xn = i) =
∑
k∈S

Pα(Xn = i,X0 = k) =
∑
k∈S

Pα(Xn = i | X0 = k)Pα(X0 = k)

=
∑
k∈S

αkP
n
ki = (αP n)i, (1.12)

where α is interpreted as a row vector in the last equality. Thus, the probability
vector αP n gives the probabilities associated at time n, and calculating higher order
transition probabilities is computationally equivalent to computing powers of the
transition matrix.
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Example 1.25. Consider again Example 1.13 pertaining to the gene that can be
repressed. Suppose that p = 1

3
and q = 1

8
and that the gene is unbound at time 0, in

which case

α =

(
1
0

)
.

Suppose we want to know the probability that the gene is unbound at time n = 4,
P (X4 = 1|X0 = 1) = P 4

11. Since

P =

(
2
3

1
3

1
8

7
8

)
, we have P 4 =

(
13907
41472

27565
41472

27565
110592

83027
110592

)
(1.13)

and
αP 4 =

(
13907
41472

, 27565
41472

)
.

Thus, the desired probability is 13907
41472

≈ 0.33533. 4

Two state Markov chains can be handled in a general fashion.

Example 1.26 (Two-state Markov chain). Consider a Markov chain with state space
S = {1, 2} and transition matrix

P =

(
1− p p
q 1− q

)
. (1.14)

Since P n+1 = P nP we have

p
(n+1)
11 = p

(n)
11 (1− p) + (1− p(n)

11 )q = q + p
(n)
11 (1− q − p),

where we utilized that p
(n)
12 = 1 − p(n)

11 . Together with the initial condition p
(0)
11 = 1,

this recurrence relation can be solved (see Exercise 1.1 and Appendix A.1) to yield

p
(n)
11 =

{
q
q+p

+ p
q+p

(1− q − p)n if p+ q > 0

1 if p+ q = 0,

which also yields p
(n)
12 = p

q+p
− p

q+p
(1 − q − p)n so long as p > 0. We may similarly

solve for the second row of P (n) yielding

P (n) =

 q
q+p

+ p
q+p

(1− q − p)n p
q+p
− p

q+p
(1− q − p)n

q
q+p
− q

q+p
(1− q − p)n p

q+p
+ q

q+p
(1− q − p)n

 , (1.15)

so long as p+ q > 0. 4

Example 1.27. Consider a Markov chain with state space S = {1, 2, 3} and transi-
tion matrix

P =


1
3

1
4

5
12

1
4

3
4

0
2
7

1
7

4
7

 . (1.16)
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Then, utilizing a computer,

P 5 ≈


0.285 0.417 0.298

0.281 0.481 0.238

0.286 0.402 0.312

 ,

and, for example,
P (X5 = 3|X0 = 1) = P 5

13 ≈ 0.298.

If α = [ 9
10
, 1

10
, 0], then

αP 5 ≈ (0.285, 0.423, 0.292) ,

and
Pα(X5 = 3) = 0.292.

4

A natural question, and the focus of Section 1.7, is the following: for large n,
what are the values Pα(Xn = i), where i ∈ S. By Proposition 1.24, we see that this
question, at least in the case of a finite state space, can be understood simply through
matrix multiplication.

For example, suppose that Xn is a two-state Markov chain with transition matrix
given in (1.13) above,

P =

(
2
3

1
3

1
8

7
8

)
.

It is easy to check with a computer, or linear algebra, that for very large n,

P n ≈

(
3
11

8
11

3
11

8
11

)
def
= Π.

Note that the rows of Π are identical and equal to π =
(

3
11
, 8

11

)
. Therefore, if α is an

initial distribution, we see
lim
n→∞

αP n = αΠ = π,

and for this example we may conclude that

lim
n→∞

P (Xn = 1) = 3
11
, and lim

n→∞
P (Xn = 2) = 8

11
,

no matter the initial distribution.
More generally, we see from (1.15) that for a two-state Markov chain with transi-

tion matrix (1.14)

lim
n→∞

P n =

 q
q+p

p
q+p

q
q+p

p
q+p

 ,

so long as q+ p > 0. Thus, for any initial distribution α, the probability distribution

of the chain limits to π =
(

q
q+p

, p
q+p

)
.
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Such a vector π will eventually be termed a stationary, or invariant, distribution
of the process, and is often of great interest to anyone wishing to understand the
underlying model. Natural questions now include: does every discrete time Markov
chain have such a stationary distribution? If so, is it unique? Can we quantify how
long it takes to converge to a stationary distribution? To answer these questions2 we
need more terminology and mathematical machinery that will be developed in the
next section. We will return to these questions in Section 1.7.

1.5 Reducibility, periodicity, and recurrence

We introduce the concepts of reducibility, periodicity, and recurrence. These notions
play an important role throughout our study of Markov chains, both in discrete and
continuous time.

1.5.1 Reducibility

While Definition 1.30 below gives the formal definition of when a chain is reducible
or irreducible, the concept is quite intuitive and can be stated as follows: a Markov
chain is irreducible if for any states i and j, there is a sequence of possible transitions
(which depend upon i and j) that take you from i to j. Otherwise, the chain is said
to be reducible.

For example, suppose that Xn is a Markov chain with state space S = {1, 2, 3, 4}
and transition matrix

P =


1
2

1
2

0 0
1
3

2
3

0 0

0 0 1
3

2
3

0 0 3
4

1
4

 . (1.17)

The state space and transitions probabilities can be represented via

1
2

	

1

1
3

�
1
2

2 � 23
1
3

	

3

3
4

�
2
3

4 � 14 .

If the chain starts in either state 1 or 2, then it will remain in {1, 2} for all time,
whereas if the chain starts in state 3 or 4, it will remain in {3, 4} for all time. It seems
natural to study this chain by analyzing separately the reduced chains consisting of
state spaces S1 = {1, 2} and S2 = {3, 4}, and transition matrices

P1 =

(
1
2

1
2

1
3

2
3

)
, P2 =

(
1
3

2
3

3
4

1
4

)
,

respectfully. This is an example of a reducible Markov chain.

2The answers are: no, sometimes, yes.
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If instead of (1.17) the transition matrix for the chain is

P =


1
2

1
2

0 0
1
3

1
3

1
3

0

0 0 1
3

2
3

0 0 3
4

1
4

 , (1.18)

which can be visualized via

1
2

	

1

1
3

�
1
2

1
3 �

2
1
3→

1
3 �

3

3
4

�
2
3

4 � 14 ,

then it should be intuitively clear that even if X0 ∈ {1, 2}, the chain will eventually
transition into the set of states {3, 4}. However, there is no way for the chain to
transition from the set of states {3, 4} to the set of state {1, 2}. Thus, this is also an
example of a reducible Markov chain.

Finally, suppose the transition matrix for the chain is

P =


1
2

1
2

0 0
1
3

1
3

1
3

0

0 1
9

2
9

1
3

0 0 3
4

1
4

 , (1.19)

which can be visualized via

1
2

	

1

1
3

�
1
2

1
3 �

2

1
9

�
1
3

2
9 �

3

3
4

�
1
3

4 � 14 .

There is way to get from every state to every other state (possibly through a sequence
of steps, and not just one), and so the chain is irreducible.

The following definitions will allow us to be precise.

Definition 1.28. The state j ∈ S is accessible from the state i ∈ S, and we write
i→ j, if there is an n ≥ 0 for which

p
(n)
ij > 0.

Thus, state j is accessible from state i if there is a positive probability of the chain
ever hitting state j if it starts in state i. Note that we allow n = 0 in the definition
above, so that state i is always accessible from itself.

For example, for the chain with transition matrix (1.17) we have the relations
1→ 2, 2→ 1, 3→ 4, and 4→ 3, together with all the relations i→ i. However, for
the chain with transition matrix (1.18), we have all the relations i→ i and
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• 1→ 2, 1→ 3, 1→ 4,

• 2→ 1, 2→ 3, 2→ 4,

• 3→ 4,

• 4→ 3,

which can be seen from

P 4 =


19
72

5
18

5
18

13
72

10
27

97
216

1
8

1
18

0 0 107
216

109
216

0 0 109
192

83
192

 ,

combined with the fact that the bottom left 2×2 sub-matrix of P n will always consist
entirely of zeros. For the chain with transition matrix (1.19), we have i → j for all
pairs of states i, j.

Definition 1.29. States i, j ∈ S of a Markov chain communicate with each other,
and we write i↔ j, if i→ j and j → i.

It is straightforward to verify that the relation ↔ is

1. Reflexive: i↔ i.

2. Symmetric: i↔ j implies j ↔ i.

3. Transitive: i↔ j and j ↔ k implies i↔ k.

The first two conditions follow directly from the definitions above. In order to
verify the third condition, we utilize the Chapman-Kolmogorov equations (1.11).

Verification of transitivity of ↔:
We will show that if i→ j and j → k, then i→ k.
Since i→ j, there is an n ≥ 0 for which p

(n)
ij > 0. Since j → k, there is an m ≥ 0

for which p
(m)
jk > 0. Therefore, by the Chapman-Klomogorov equations (1.11)

p
(n+m)
ik =

∑
`∈S

p
(n)
i` p

(m)
`k ≥ p

(n)
ij p

(m)
jk > 0,

and i→ k. �

Because ↔ is reflexive, symmetric, and transitive, it is an equivalence relation
and we may decompose the state space using the relation↔ into disjoint equivalence
classes called communication classes . For example, the Markov chain with transition
matrix (1.17) has two communication classes: {1, 2} and {3, 4}. The Markov chain
with transition matrix (1.18) has the same communication classes: {1, 2} and {3, 4}.
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The Markov chain with transition matrix (1.19) has the single communication class
{1, 2, 3, 4}.

For the deterministically monotone chain of Example 1.11, each singleton {i},
i ≥ 0, is its own communication class (remember that n = 0 is allowed in Definition
1.28).

For the symmetric random walk of Example 1.14 with absorbing boundaries (the
Gambler’s Ruin problem) the communication classes are {0}, {N}, and {1, . . . , N−1},
whereas for the symmetric random walk with reflecting boundaries the only commu-
nication class is the entire state space {0, . . . , N}.

For the random walk on the integer lattice Zd described in Example 1.17, the only
communication class is all of Zd.

Definition 1.30. A discrete time Markov chain is irreducible if there is only one
communication class. That is, if i↔ j for all i, j ∈ S. Otherwise, the chain is called
reducible.

Having the notion of irreducibility in hand, we turn to a related concept, that of
a closed subset of the state space. Consider again the Markov chains with transition
matrices (1.17) and (1.18), each of which have communication classes {1, 2} and
{3, 4}. For both chains, the set of states {1, 2} is a communication class. However,
it should be clear that the behavior of the chains on {1, 2} are quite different as the
chain with transition matrix (1.18) will eventually leave those states (assuming it
starts there), never to return.

Definition 1.31. A subset of the state space C ⊂ S, is said to be closed if pij = 0
when i ∈ C and j /∈ C. We say that the state j is absorbing if {j} is closed.

Thus C ⊂ S is closed if it is impossible to reach any state outside of C from any
state inside C via one-step transitions. Note that j is an absorbing state if and only
if pjj = 1.

The set {1, 2} is closed for the chain with transition matrix (1.17), whereas it
is not for the chain with transition matrix (1.18). The set {3, 4} is closed for both
chains.

For the deterministically monotone system of Example 1.11, the subset {n, n +
1, n+ 2, . . . } is closed for any n ≥ 0.

For the Gambler’s ruin problem in Example 1.14, which is a random walk on
{0, . . . , N} with absorbing boundary conditions, only {0} and {N} are closed, and
hence the states 0 and N are absorbing.

It is important to note that if C ⊂ S is closed, then the matrix with elements pij
for i, j ∈ C (i.e. the transition matrix restricted to C) is also a stochastic matrix.
This fact follows because for any i ∈ C,∑

j∈C

pij = 1, and
∑
j∈Cc

pij = 0.

Therefore, if we restrict our attention to any closed subset of the state space, we can
treat the resulting model as a discrete time Markov chain itself.
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1.5.2 Periodicity

As a canonical example of a periodic Markov chain, consider a random walker with
state space S = {0, 1, 2, 3, 4} and reflecting boundary conditions: p01 = p43 = 1.
Suppose that the chain starts in an even state. Then the chain must be in an even
state for every even n and an odd state for every odd n. We will see below that this
is a chain with a period of two.

For another example, consider the Markov chain on {0, 1, 2} with

p01 = p12 = p20 = 1.

Thus, the chain deterministically moves from state 0 to state 1, then to state 2, then
back to 0, etc. Here, if the chain starts in state i, it can (and will) only return to
state i at times that are multiples of 3. This chain will be seen to have a period of
three.

On the other hand, consider the random walk on S = {0, 1, 2, 3, 4} with boundary
conditions

p00 =
1

2
, p01 =

1

2
, and p43 = 1.

In this case, if the chain starts at state 0, there is no condition similar to those above
on the times that the chain can return to state 0. This chain will be said to be
aperiodic.

With the intuition of these examples in hand, we turn to formal definitions in
order to make these concepts precise.

Definition 1.32. The period of state i ∈ S is

d(i) = gcd{n ≥ 1 : p
(n)
ii > 0},

where gcd stands for greatest common divisor. If {n ≥ 1 : p
(n)
ii > 0} = ∅,3 we take

d(i) = 1. If d(i) = 1, we say that i is aperiodic, and if d(i) > 1, we say that i is
periodic with a period of d(i).

The following is often useful.

Proposition 1.33. If pii > 0, then the state i ∈ S is aperiodic.

Proof. If pii > 0, then for all n ≥ 1 we have p
(n)
ii ≥ (pii)

n > 0, and the greatest
common divisor is 1.

The proof of the following theorem can be found in either [28, Chapter 1] or [31,
Chapter 2].

Theorem 1.34. Let Xn, n ≥ 0, be a Markov chain with state space S. If i, j ∈ S
are in the same communication class, then d(i) = d(j). That is, they have the same
period.

3This happens, for example, for the deterministically monotone chain of Example 1.11.
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Therefore, we may speak of the period of a communication class, and if the chain is
irreducible, we may speak of the period of the Markov chain itself. Any property which
necessarily holds for all states in a communication class is called a class property .
Periodicity is, therefore, the first class property we have seen, though recurrence and
transience, which are discussed in the next section, are also important class properties.

Periodicity is often obvious when powers of the transition matrix are taken.

Example 1.35. Consider a random walk on {0, 1, 2, 3} with reflecting boundary
conditions. This chain is periodic with a period of two. Further, we have

P =


0 1 0 0

1
2

0 1
2

0

0 1
2

0 1
2

0 0 1 0

 ,

and for any n ≥ 1,

P 2n =


∗ 0 ∗ 0

0 ∗ 0 ∗

∗ 0 ∗ 0

0 ∗ 0 ∗

 , and P 2n+1 =


0 ∗ 0 ∗

∗ 0 ∗ 0

0 ∗ 0 ∗

∗ 0 ∗ 0

 ,

where ∗ is a generic placeholder for a positive number. 4

Example 1.36. Consider the random walk on S = {0, 1, 2, 3, 4} with boundary
conditions

p00 =
1

2
, p01 =

1

2
, and p43 = 1.

The transition matrix is

P =



1
2

1
2

0 0 0

1
2

0 1
2

0 0

0 1
2

0 1
2

0

0 0 1
2

0 1
2

0 0 0 1 0


,

and

P 8 =



71
256

57
256

1
4

9
64

7
64

57
256

39
128

29
256

21
64

1
32

1
4

29
256

49
128

9
256

7
32

9
64

21
64

9
256

63
128

1
256

7
32

1
16

7
16

1
128

35
128


,

showing that d(i) = 1 for each i ∈ S. 4
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In the previous example, we used the basic fact that if each element of P n is
positive for some n ≥ 1, then P n+k has strictly positive elements for all k ≥ 0. This
follows because (i) each element of P is nonnegative, (ii) the rows of P sum to one,
and (iii) P n+k = PP n+k−1.

1.5.3 Recurrence and transience

A state i ∈ S of a Markov chain is called recurrent if, with a probability of one,
after every visit to state i the chain will eventually return for another visit to state i.
Otherwise, we will call the state transient.

More formally, we begin by recalling the definition for the first return time to
state i (Definition 1.9):

τi
def
= min{n ≥ 1 : Xn = i}.

Also, for i ∈ S, we define the probability measure Pi by

Pi(A)
def
= P (A|X0 = i),

where A is any event of interest. For example, we would write

Pi(X2 = i2, X1 = i1) = P (X2 = i2, X1 = i1 | X0 = i).

Note that we have changed notation slightly in that we should write Pei for the above
probability measure, where ei is the vector with a one in the ith component and zeros
elsewhere. We let Ei be the expected value associated with the probability measure
Pi.

Definition 1.37. The state i ∈ S is recurrent if

Pi(τi <∞) = 1,

and transient if Pi(τi < ∞) < 1. Note that an equivalent formulation for transience
is that Pi(τi =∞) > 0.

To begin our study of the difference between a recurrent and transient state we
let

R =
∞∑
n=0

1{Xn=i}

denote the random variable giving the total number of times the chain visits state i.
Computing the expectation of R under the assumption that X0 = i, we see that

Ei[R] =
∞∑
n=0

Pi(Xn = i) =
∞∑
n=0

p
(n)
ii ,

where we made use of the fact that the expectation of an indicator function is the
probability of the event being indicated upon.
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We begin by supposing that the chain is transient. We let

p
def
= Pi(τi <∞) < 1.

Note that p is simply the probability that, given the chain starts in state i, the chain
returns to state i at least once. Since R simply counts the number of times the chain
visits state i (including time n = 0), the strong Markov property implies that the
random variable R is geometric with parameter 1− p > 0. That is, for k ≥ 1

Pi(R = k) = pk−1(1− p).

Therefore,

Ei[R] =
1

1− p
<∞. (1.20)

Note that equation (1.20) also allows us to conclude that for a transient chain we
have

Pi(R =∞) = 0,

for otherwise we would have Ei[R] =∞. Hence, we may conclude that there is, with
a probability of one, a last time the chain visits the site i. Similarly, if state i is
recurrent, then Pi(R = ∞) = 1 and Ei[R] = ∞. Combining the above yields the
following.

Theorem 1.38. A state i ∈ S is transient if and only if the expected number of
returns to that state is finite, which occurs if and only if

∑∞
n=0 p

(n)
ii <∞. Further, if

i is recurrent, then with a probability of one, Xn returns to i infinitely often, whereas
if i is transient, there is a last time a visit occurs.

The following theorem shows that recurrence, and hence transience, is a class
property. Thus, when the chain is irreducible and each state is recurrent, we may say
that the chain itself is recurrent.

Theorem 1.39. Suppose that i ↔ j. Then state i is recurrent if and only if state j
is recurrent.

Proof. The following argument is the intuition needed to understand the result (which
is also the basis of the proof): because state i is recurrent, we return to it an infinite
number of times with a probability of one. We also know that there is an n > 0 for
which p

(n)
ij > 0. Thus, every time we are in state i, which happens an infinite number

of times, there is a positive probability that we get to state j in n steps. Thus, we
must enter state j an infinite number of times. The formal proof, based upon this
intuition, is below.

Suppose that state i is recurrent. We must show that state j is recurrent. Because
i↔ j, there are nonnegative integers n and m that satisfy p

(n)
ij , p

(m)
ji > 0. Let k be a

non-negative integer. By the Chapman-Kolmogorov equations

p
(m+n+k)
jj ≥ p

(m)
ji p

(k)
ii p

(n)
ij ,
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which says that one way to get from state j to state j in precisely m+ n+ k steps is
to first go to i in m steps, then return to i in k steps, then transition to j in n steps.
Using this observation, we have

∞∑
k=0

p
(k)
jj ≥

∞∑
k=0

p
(m+n+k)
jj ≥

∞∑
k=0

p
(m)
ji p

(k)
ii p

(n)
ij

= p
(m)
ji p

(n)
ij

∞∑
k=0

p
(k)
ii .

Because i is recurrent, Theorem 1.38 says that the sum
∑∞

k=0 p
(k)
ii is infinite. Thus,∑∞

k=0 p
(k)
jj is infinite and, again by Theorem 1.38, state j is recurrent.

Corollary 1.40. Let i and j be transient states in the same communication class.
Then, limn→∞ p

(n)
ij = 0.

Proof. Suppose, in order to find a contradiction, that limn→∞ p
(n)
ij 6= 0. Then there

is a sequence of integers {nk}∞k=1 and a c > 0 for which p
(nk)
ij ≥ c for all k. By

irreducibility, there is an m for which p
(m)
ji > 0. Since i is transient, we may apply

Theorem 1.38 to conclude that
∑∞

n=0 p
(n)
ii <∞. Hence, we conclude

∞ >
∞∑
n=0

p
(n)
ii ≥

∞∑
k=1

p
(nk+m)
ii ≥

∞∑
k=1

p
(nk)
ij p

(m)
ji ≥ c · p(m)

ji

∞∑
k=1

1 =∞,

a contradiction. Thus, we may conclude that limn→∞ p
(n)
ij = 0.

Note that Theorems 1.38 and 1.39 together guarantee the following:

Fact: All states of an irreducible, finite state space Markov chain are recurrent.

The above fact holds by the following logic: if the states were not recurrent, they
are each transient. Hence, there is a last time, call it Ti, that a particular realization
of the chain visits state i. Therefore, maxi{Ti} is the last time the realization visits
any state, which can not be. Things are significantly less clear in the infinite state
space setting as the next few examples demonstrate.

Example 1.41 (Example 1.16 continued). Consider a one dimensional random walk
on the integer lattice S = Z = {. . . ,−1, 0, 1, . . . } where for some 0 < p < 1 we have

pi,i+1 = p, pi,i−1 = q, with q
def
= 1− p, for i ∈ Z.

This chain is irreducible and has a period of 2. We will show that this chain is
recurrent if p = 1

2
and transient if p 6= 1

2
. To do so, we will use Theorem 1.38 to

determine wether state zero is recurrent or transient. We will then use Theorem 1.39
to extend the result to the entire state space.
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Begin by noticing that the periodicity of the system implies p
(2n+1)
00 = 0, for all

n ≥ 0. Therefore,
∞∑
n=0

p
(n)
00 =

∞∑
n=0

p
(2n)
00 .

Thus we restrict our attention to the chain at even times.
Next, notice that if for some n ≥ 1 we have that X0 = X2n = 0, then within the

first 2n steps of the chain, it must have moved to the right exactly n times and to the
left exactly n times. Each such sequence of steps has a probability of pnqn. Because
there are exactly

(
2n
n

)
such paths, we see

p
(2n)
00 =

(
2n

n

)
(pq)n =

(2n)!

n!n!
(pq)n.

Thus, we may conclude that

∞∑
n=0

p
(2n)
00 =

∞∑
n=0

(2n)!

n!n!
(pq)n.

Recall that Stirling’s formula states that for m� 1,

m! ∼ mme−m
√

2πm,

where by f(m) ∼ g(m) we mean

lim
m→∞

f(m)

g(m)
= 1.

Verification of Stirling’s formula can be found in a number of places, for example in
[13]. Stirling’s formula yields

p
(2n)
00 =

(2n)!

n!n!
(pq)n ∼

√
4πn(2n)2ne−2n

2π nn2n e−2n
(pq)n =

1√
πn

(4pq)n.

Therefore, we may conclude that there is an N > 0 such that n ≥ N implies

1

2
√
πn

(4pq)n < p
(2n)
00 <

2√
πn

(4pq)n.

The function 4pq = 4p(1 − p) is strictly less than one for all p ∈ [0, 1] with p 6= 1/2.
However, when p = 1

2
, we have that 4p(1− p) = 1. Thus, in the case p = 1

2
we have

∞∑
n=0

p
(2n)
00 >

∞∑
n=N

p
(2n)
00 >

∞∑
n=N

1

2
√
πn

=∞,

and the chain is recurrent by Theorem 1.38. When p 6= 1/2, let ρ = 4pq < 1. We
have

∞∑
n=0

p
(2n)
00 < N +

∞∑
n=N

2√
πn

ρn <∞,

and the chain is transient by Theorem 1.38. 4
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Example 1.42 (Example 1.17 continued). Consider symmetric random walk on the
integer lattice Zd, which has transition probabilities

pij =

{
1
2d

if |i− j| = 1

0 else
.

We again consider starting the walk at the origin ~0 = (0, 0, . . . , 0). The chain has a

period of 2, and so as in the one dimensional setting, p
(2n+1)
~0,~0

= 0 for all n ≥ 0. Thus,

to apply Theorem 1.38 we only need an expression for p
(2n)
~0,~0

. The derivation of an

asymptotic formula for p
(2n)
~0,~0

is beyond the scope of this book. However, it can be

shown that

p
(2n)
~0,~0
∼ Cd

(
1

n

)d/2
,

for some Cd > 0, which depends upon the dimension d. Recalling that
∑∞

n=1 n
−a <∞

if and only if a > 1, we see that
∑∞

n=0 p
(2n)
~0,~0

=∞ if d is 1 or 2, and
∑∞

n=0 p
(2n)
~0,~0

<∞ if

d ≥ 3.
Thus, simple random walk in Zd is recurrent if d = 1 or 2 and is transient if

d ≥ 3. This points out the general phenomenon that dynamics, in general, are quite
different in dimensions greater than or equal to three than in dimensions one and
two. Essentially, a path restricted to a line or a plane is much more restricted than
one in space.4 4

The following result should, at this point, be intuitive.

Theorem 1.43. Every recurrent class of a Markov chain is a closed set.

Proof. Suppose, in order to find a contradiction, that C is a recurrent class that is
not closed. Then, there exists i ∈ C and j /∈ C such that pij > 0, but it is impossible
to return to state i (otherwise, i↔ j). Therefore, the probability of starting in i and
never returning is at least pij > 0, a contradiction with the class, and hence state i,
being recurrent.

Example 1.44. Consider the Markov chain with state space {1, 2, 3, 4} and transition
matrix (1.18)

P =


1
2

1
2

0 0
1
3

1
3

1
3

0

0 0 1
3

2
3

0 0 3
4

1
4

 ,

which can be visualized via

1
2

	

1

1
3

�
1
2

1
3 �

2
1
3→

1
3 �

3

3
4

�
2
3

4 � 14 .

4The video game “Tron” points this out well. Imagine how the game would play in three dimen-
sions.
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The communication class {1, 2} is not closed and so by Theorem 1.43 the states 1
and 2 are transient. 4

Note that the converse of Theorem 1.43 is, in general, false. For example, for the
deterministic monotone chain, each set {n, n + 1, . . . } is closed, though no state is
recurrent.

1.6 Absorption probabilities

Let Xn, n ≥ 0, be a Markov chain with a finite state space and let t be a transient
state. Let {Ck} be the recurrent communication classes of the chain. Conditioned on
X0 = t, what is the probability the chain is absorbed into the communication class
Ck?

We begin with an example, and then find the general answer to this, and related,
questions. The following example should serve as a cautionary tale to anyone who
steps foot in a casino.

Example 1.45 (Gambler’s ruin, Example 1.14, continued). Consider a gambler who
repeatedly plays a game. Suppose he bets $1 per game, and that his probability
of winning any round is 0 < p < 1. Of course, we assume that the outcomes of
successive rounds of the game are independent. Denote the wealth of the gambler at
time n ≥ 0 by Xn. Then Xn is a discrete time Markov chain on the integers with
transition probabilities pi,i+1 = p and pi,i−1 = 1− p.

Let A and B be nonnegative integers and let τ = inf{n ≥ 0 : Xn ∈ {−B,A}}.
We are interested in computing P0(Xτ = A) = P (Xτ = A | X0 = 0). Hence, we are
computing the probability that the gambler goes home a winner.

The random variable τ is a stopping time (recall Definition 1.18) and Xτ denotes
the value of the process at time τ ≥ 0. Note that by even writing Xτ we are implicitly
assuming that τ <∞ with a probability of one. We can prove that P0(τ <∞) in the
following manner. Consider the chain with the same transition probabilities except
states A and −B are absorbing. Then the states {−B + 1, . . . , A− 1} are transient,
and by Theorem 1.38, with a probability of one there is a last time they are visited.
Hence, τ is finite with a probability of one.

Returning to the problem of computing P0(Xτ = A), the method of argument
employed to solve the problem, first step analysis, is quite useful and will be used
repeatedly in these notes. For each k ∈ {−B, . . . , A} define

gk = Pk(Xτ = A) = P (Xτ = A|X0 = k).

Note that g−B = 0 and gA = 1. Next, for k ∈ {−B + 1, . . . , A − 1}, the Markov



CHAPTER 1. DISCRETE TIME MARKOV CHAINS 28

p 0.49 0.48 0.47 0.45 0.40
P0(Xτ = 50) 0.119 0.018 0.0025 4.4× 10−5 1.6× 10−9

Table 1.1: Probabilities associated with winning $50 before losing $50 for various
values of p < 1

2
.

property as given in Definition 1.3, implies

gk = P (Xτ = A,X1 = k + 1|X0 = k) + P (Xτ = A,X1 = k − 1|X0 = k)

= P (Xτ = A|X1 = k + 1, X0 = k) · pk,k+1

+ P (Xτ = A|X1 = k − 1, X0 = k) · pk,k−1

= P (Xτ = A|X1 = k + 1) · p+ P (Xτ = A|X1 = k − 1) · (1− p)

= p · gk+1 + (1− p) · gk−1. (1.21)

If p = 1
2
, these equations have a simple solution satisfying (see Section A.1),

gk = c1 + c2k, g−B = 0, gA = 1,

which yields gk = B
A+B

+ 1
A+B

k. Thus, when p = 1
2
,

P0(Xτ = A) = g0 = B
A+B

.

When p 6= 1
2
, the general solution to the difference equation (1.21) is (see Section

A.1),

gk = c1 + c2

(
1− p
p

)k
,

where c1 and c2 need to be determined from the boundary conditions g−B = 0 and
gA = 1. Solving yields

gk =
(1−p

p
)k+B − 1

(1−p
p

)A+B − 1
,

and, in particular,

P0(Xτ = A) = g0 =
(1−p

p
)B − 1

(1−p
p

)A+B − 1
. (1.22)

It is hard to gain intuition from (1.22), so we choose some concrete numbers. First
suppose that A = B = 50. Since it is the usual case that p < 1

2
, Table 1.1 gives the

associated probabilities for p = 0.49, 0.48, 0.47, 0.45, and 0.40. When A = B = 100,
the numbers are even worse. See Table 1.2. 4

We now turn to a more general setting and ask the following.

Question 1. If X0 = ti is a transient state of a Markov chain with finite state space,
and the recurrent classes are denoted C1, C2, . . . , C`, what is the probability that the
chain eventually ends up in recurrent class Ck, for k ∈ {1, . . . , `}?
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p 0.49 0.48 0.47 0.45 0.40
P0(Xτ = 100) 0.018 0.00033 6.1× 10−6 1.9× 10−9 2.4× 10−18

Table 1.2: Probabilities associated with winning $100 before losing $100 for various
values of p < 1

2
.

To begin, note that we can assume each recurrent class consists of a single point
as we can just group the states of each recurrent class together. Therefore, we denote
the recurrent classes as r1, r2, . . . , rk, with pri,ri = 1. We let t1, t2, . . . denote the
transient states.

We now follow Example 1.45 and use a first step analysis. Let τ = min{n ≥ 0 :
Xn = rk for some k} and note that by Theorem 1.38 the stopping time τ is finite
with a probability of one. For any transient state ti and recurrent class k, we define

gk(ti)
def
= P (Xτ = rk | X0 = ti).

For recurrent states rk, ri we define

gk(ri) =

{
1 k = i

0 k 6= i
.

For transient state ti, a first step analysis yields

gk(ti) =
∑
j∈S

pti,j · P (Xτ = rk | X1 = j) =
∑
j∈S

pti,jgk(j)

=
∑
rj

pti,rjgk(rj) +
∑
tj

pti,tjgk(tj) (1.23)

= pti,rk +
∑
tj

pti,tjgk(tj),

where the first sum of (1.23) is over the recurrent states and the second sum is over
the transient states.

Equation (1.23) looks daunting, but there is actually a nice way to solve it using
linear algebra when the state space is finite. The key is to note that we may write
the transition matrix as

P =

(
I 0
U Q

)
,

where we put the recurrent (absorbing) states first, Q is the matrix giving the transi-
tion probabilities from transient states to transient states, and U is the matrix giving
the transition probabilities from transient states to recurrent states. Note that by
raising P to the power n ≥ 1 shows that for transient states i, j, we have p

(n)
ij = Qn

ij.

If G is the matrix whose i, kth entry is gk(ti), then (1.23) can be written in matrix
form,

G = U +QG.
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Assuming (I −Q)−1 exists, the solution is

G = (I −Q)−1U. (1.24)

The following proposition shows that the eigenvalues of Q all have absolute value
strictly less than one. Because of this, the equation (I − Q)v = 0 has no solutions
and I −Q is invertible. Further, we have

(I −Q)−1 = I +Q+Q2 + · · · , (1.25)

where the second equality follows from the identity

(I +Q+Q2 + · · · )(I −Q) = I.

Proposition 1.46. The eigenvalues of Q all have absolute values strictly less than
one.

Proof. Let i and j be transient states. By Corollary 1.40

Qn
ij = p

(n)
ij → 0, as n→∞.

This implies the result: if there were a λ and v with |λ| ≥ 1 and vQ = λv, then
|vQn| = |λ|n|v| would not converge to zero.

Example 1.47 (Example 1.45 continued). We look at a special case of the Gam-
bler’s ruin problem. Consider unbiased random walk on {0, 1, 2, 3, 4} with absorbing
boundaries. We order the states S = {0, 4, 1, 2, 3, } and have

P =


1 0 0 0 0
0 1 0 0 0
1
2

0 0 1
2

0

0 0 1
2

0 1
2

0 1
2

0 1
2

0

 .

Then,

U =


1
2

0

0 0

0 1
2

 , (I −Q)−1 =


3
2

1 1
2

1 2 1
1
2

1 3
2

 , and (I −Q)−1U =


3
4

1
4

1
2

1
2

1
4

3
4

 .

For example, starting at state 1, the probability that the walk is eventually absorbed
at state 0 is 3

4
. Note that this result agrees with that of Example 1.45 by taking

B = 0, A = 4, and p = 1
2
. 4

The next logical question is the following.

Question 2. Given that X0 = i is a transient state, how many steps do we expect
the chain to make before being absorbed by a recurrent class?
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To answer this question, we let j be a transient state (which may or may not be
state i) and define Rj to be the total number of visits to state j,

Rj =
∞∑
n=0

1{Xn=j},

where we explicitly note that if the chain starts in state j, then we count that as one
visit. Note Rj <∞ with a probability of one by Theorem 1.38.

We have

Ei[Rj] =
∞∑
n=0

P (Xn = j | X0 = i) =
∞∑
n=0

p
(n)
ij .

Therefore, Ei[Rj] is the i, jth entry of

I + P + P 2 + · · · ,

which, because both i and j are transient, is the same as the i, jth entry of

I +Q+Q2 + · · · = (I −Q)−1,

where, as above, Q is the matrix containing the transition probabilities from transient
states to transient states. Therefore, we conclude that the expected number of visits
to the transient state j, given that the chain starts in state i, is (I−Q)−1

ij . Moreover,
the expected time until absorption into some recurrent class, τ , satisfies

Ei[τ ] = Ei

[∑
j

Rj

]
=
∑
j

(I −Q)−1
ij ,

where the sum is over all the transient states.
We have shown the following.

Proposition 1.48. Consider a Markov chain with finite state space. Let Q be the
matrix containing the transition probabilities from transient states to transient states.
Let i and j be transient states and let Rj the total number of times the chain visits
state j. Then, Ei[Rj] = (I −Q)−1

ij .
Moreover, if τ is the first time the chain enters a recurrent class, then Ei[τ ] =∑
tj

(I −Q)−1
i,tj

, where the sum is over the transient states.

Example 1.49. Consider the the Markov chain with state space {1, 2, 3, 4} and
transition matrix given by (1.18),

P =

1

2

3

4


1
2

1
2

0 0
1
3

1
3

1
3

0

0 0 1
3

2
3

0 0 3
4

1
4

 .
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Note that states 1 and 2 are transient. After reordering the elements of the state
space as {3, 4, 1, 2} the new transition matrix is

3

4

1

2


1
3

2
3

0 0
3
4

1
4

0 0

0 0 1
3

2
3

1
3

0 1
3

1
3

 , (1.26)

and for this example

Q =

(
1
3

2
3

1
3

1
3

)
.

Thus,

(I −Q)−1 =

(
2
3
−2

3

−1
3

2
3

)−1

=

(
3 3
3
2

3

)
.

We see that starting in state 1 the expected number of visits to state 2 before being
absorbed to the recurrent states is equal to (I − Q)−1

12 = 3. Starting in state 2, the
expected number of visits to state 1 is (I −Q)−1

21 = 3
2
.

Let τ = min{n ≥ 0 : Xn ∈ {3, 4}}. Then, for example,

E2[τ ] = E2[R1] + E2[R2] = (I −Q)−1
21 + (I −Q)−1

22 = 4.5.

4

We tackle one final question, which is now quite simple to answer.

Question 3. For given states i, j ∈ S of an irreducible chain with a finite state space,
what is the expected number of steps needed to go from state i to state j?

We begin by reordering the state space so that j is the first element. Hence, the
transition matrix is

P =

(
pjj K
U Q

)
,

where the row vector K has the transition probabilities pjk, k 6= j. Now simply note
that the answer to the question is unchanged if we make j an absorbing state. Thus,
we can consider the problem on the system with transition matrix

P̃ =

(
1 0
U Q

)
,

However, this is now exactly the same problem solved above and we see the answer
is the ith component of the vector (I −Q)−1~1, where ~1 is the vector of all ones.
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Example 1.50. Suppose that P is the transition matrix for a random walk on
{0, . . . , 5} with reflecting boundary:

P =

0
1
2
3
4
5


0 1 0 0 0 0
1
2

0 1
2

0 0 0
0 1

2
0 1

2
0 0

0 0 1
2

0 1
2

0
0 0 0 1

2
0 1

2

0 0 0 0 1 0

 .

What is the expected number of steps to reach state j = 0 if the chain starts at state
i ≥ 1?

In this case, we have

Q =


0 1

2
0 0 0

1
2

0 1
2

0 0
0 1

2
0 1

2
0

0 0 1
2

0 1
2

0 0 0 1 0

 , and (I −Q)−1 =



2 2 2 2 1

2 4 4 4 2

2 4 6 6 3

2 4 6 8 4

2 4 6 8 5


.

Thus,
(I −Q)−1~1 = (9, 16, 21, 24, 25)T .

For example, the expected number of steps needed to get from state 3 to state 0 is
21. 4
Example 1.51. Consider the Jukes-Cantor model of DNA mutation, which tracks
the state of a nucleotide. This model has state space S = {1, 2, 3, 4} (or {A,G,C,T}),
and will be studied more extensively in Section 2.1.3.

For now, it is sufficient to know that the transition matrix for this model is

P =


1− ρ ρ/3 ρ/3 ρ/3
ρ/3 1− ρ ρ/3 ρ/3
ρ/3 ρ/3 1− ρ ρ/3
ρ/3 ρ/3 ρ/3 1− ρ

 ,

where ρ < 1 is some parameter. If at time zero the nucleotide is in state 1, how many
steps do we expect to take place before it enters states 3 or 4?

Recalling that the different states are A, G, C, and T, we note that A (adenine)
and G (guanine) are purines and that C (cytosine) and T (thymine) are pyrimidines.
Thus, this question is asking for the expected time until a given purine converts to a
pyrimidine.

We make {3, 4} absorbing states, reorder the state space as {3, 4, 1, 2}, and find
the new transition matrix 

1 0 0 0
0 1 0 0
ρ/3 ρ/3 1− ρ ρ/3
ρ/3 ρ/3 ρ/3 1− ρ

 ,
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with Q and (I −Q)−1 given via

Q =

(
1− ρ ρ/3
ρ/3 1− ρ

)
, and (I −Q)−1 =

(
9
8ρ

3
8ρ

3
8ρ

9
8ρ

)
.

Therefore, the expected number of transitions needed to go from state 1 (A) to states
3 or 4 (C or T) is

(I −Q)−1
11 + (I −Q)−1

12 =
9

8ρ
+

3

8ρ
=

3

2ρ
.

Note that this value goes to ∞ as ρ→ 0, which is reasonable. 4

1.7 Stationary distributions and the long time be-

havior of Markov chains

In the previous section, we showed how to compute limiting probabilities for systems
with absorbing states. As we will see in this section, it is often possible to find
limiting probabilities when the state space is irreducible. These limiting probabilities
are given by a stationary distribution.

Definition 1.52. Consider a Markov chain with transition matrix P . A non-negative
vector π is said to be an invariant measure if for all i ∈ S

πi =
∑
j∈S

πjpji. (1.27)

Written in vector notation, the condition is

πP = π. (1.28)

If π also satisfies
∑

k πk = 1, then π is called a stationary distribution for the chain.
Equilibrium distribution and steady state distribution are other commonly used terms
for π.

Thus, a stationary distribution is a probability vector that is also a left eigenvector
of the transition matrix with associated eigenvalue equal to one.

A stationary distribution can be interpreted as a fixed point for the distribution
of the Markov chain: if the initial distribution of the chain is π, then the distribution
at all times n ≥ 1 is also π,

πP n = πPP n−1 = πP n−1 = · · · = π,

where we are using equation (1.12). Some questions immediately come to mind:

1. Under what conditions on a Markov chain will a stationary distribution exist?
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2. When is a stationary distribution unique?

3. Under what conditions can we guarantee convergence to a unique stationary
distribution? That is, when is there a stationary distribution π for which
limn→∞ αP

n = π for all initial distributions α?

We note that we have already seen some examples in which all of the above
questions where answered. Recall that in Section 1.4, we showed that if a two-state
Markov chain has transition matrix

P =

(
2
3

1
3

1
8

7
8

)
, (1.29)

then,

lim
n→∞

P n =

(
3
11

8
11

3
11

8
11

)
= Π.

The important point was that the rows of Π are identical and equal to π = ( 3
11
, 8

11
).

Thus, if α is an arbitrary initial distribution

lim
n→∞

αP n = αΠ = π,

and
lim
n→∞

Pα(Xn = 1) = 3
11
, and lim

n→∞
Pα(Xn = 2) = 8

11
.

It is straightforward to check that ( 3
11
, 8

11
) is the unique left eigenvector of P with an

eigenvalue of 1, (
3
11
, 8

11

)( 2
3

1
3

1
8

7
8

)
=
(

3
11
, 8

11

)
.

We have also studied the general two-state Markov chain.

Example 1.53 (Example 1.26 revisited). If a two state Markov chain has transition
matrix given by (1.14),

P =

(
1− p p
q 1− q

)
,

then P (n) is given by (1.15),

P n =

 q
q+p

+ p
q+p

(1− q − p)n p
q+p
− p

q+p
(1− q − p)n

q
q+p
− q

q+p
(1− q − p)n p

q+p
+ q

q+p
(1− q − p)n

 ,

and the limiting distribution is π = ( q
p+q

, p
p+q

). It is straightforward to check that
πP = π. 4

Let us consider at least one more example before proceeding with theory.
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Example 1.54. Suppose that Xn is a three state Markov chain with transition matrix

P =


2
3

1
3

0
1
12

5
8

7
24

0 1
8

7
8

 . (1.30)

Then, for large n

P n ≈


3
43

12
43

28
43

3
43

12
43

28
43

3
43

12
43

28
43

 = Π,

where we again note that each row of Π is identical. Therefore, regardless of the
initial distribution α we have

lim
n→∞

Pα(Xn = 1) = 3
43
, lim

n→∞
Pα(Xn = 2) = 12

43
, and lim

n→∞
Pα(Xn = 3) = 28

43
.

We again note that it is straightforward to check that ( 3
43
, 12

43
, 28

43
) is the unique left

eigenvalue of P with an eigenvalue of 1. 4

We will answer the three questions posed above first in the finite state space
setting, where many of the technical details can be reduced to linear algebra. We
then extend all the results to the infinite state space setting.

1.7.1 Markov chains with a finite state space

Consider a discrete time Markov chain with finite state space S and transition matrix
P . We wish to understand P n for large n and, relatedly, to find conditions that
guarantee a unique limiting stationary distribution exists. However, and in order to
gain intuition on what can go wrong, we first provide a few examples showing when
such a unique limiting stationary distribution does not exist.

Example 1.55. Consider simple random walk on {0, 1, 2} with reflecting boundaries.
In this case we have

P =

 0 1 0
1
2

0 1
2

0 1 0

 .

Note that for all n ≥ 1,

P 2n =

 1
2

0 1
2

0 1 0
1
2

0 1
2

 , and P 2n−1 =

 0 1 0
1
2

0 1
2

0 1 0

 .

Therefore, P n does not converge as n→∞ and there is no hope of finding a limiting
distribution. On the other hand, it is easy to verify that the probability vector
(1

4
, 1

2
, 1

4
) is a unique stationary distribution for the chain. Thus, we see that stationary

distributions do not have to be limiting distributions of the form limn→∞ αP
n. 4
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Example 1.56. Consider simple random walk on {0, 1, 2, 3} with absorbing bound-
aries. That is

P =


1 0 0 0
1
2

0 1
2

0
0 1

2
0 1

2

0 0 0 1

 .

This model has communication classes {0}, {3}, and {1, 2}, and is therefore reducible.
Note that each of the vectors α1 = (1, 0, 0, 0) and α2 = (0, 0, 0, 1) is a stationary
distribution for the process, and so is any vector of the form ρα1 + (1 − ρ)α2, for
0 ≤ ρ ≤ 1. Thus, there is not a unique stationary distribution. Further, for n large
we have

P n ≈


1 0 0 0
2
3

0 0 1
3

1
3

0 0 2
3

0 0 0 1

 ,

and we also see that there is no unique limiting distribution. For example, we have
limn→∞ α1P

n = (1, 0, 0, 0), limn→∞ α2P
n = (0, 0, 0, 1), and limn→∞(0, 0, 1, 0)P n =

(1
3
, 0, 0, 2

3
). 4

The following theorem shows that so long as the Markov chain is irreducible and
aperiodic, there is a stationary distribution and, moreover, the stationary distribution
is the unique limiting distribution no matter the initial distribution.

Theorem 1.57. Consider a Markov chain with finite state space S, and transition
matrix P . Suppose that the Markov chain is (i) irreducible and (ii) aperiodic. Then,
there is a unique stationary distribution π,

πP = π,

for which πi > 0 for each i. Further, limn→∞ P
n is the matrix with rows identically

equal to π. In particular, if α is any probability vector, then

lim
n→∞

αP n = π.

The remainder of this sub-section consists of verifying Theorem 1.57. We begin
with the following proposition, which connects stationary distributions with limiting
distributions in the finite state space setting.

Proposition 1.58. Let P be the transition matrix for a Markov chain with finite
state space S. Suppose that for each i ∈ S,

lim
n→∞

p
(n)
ij = π

(i)
j , for all j ∈ S,

Then π(i) is a stationary distribution for the chain. If π(i) = π for each i ∈ S, then π
is the unique stationary distribution of the chain.
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Note that proposition 1.58 shows that in order to prove Theorem 1.57, we must
only demonstrate that an irreducible, aperiodic Markov chain with a finite state space
has a unique limiting distribution.

Proof of Proposition 1.58. We begin by showing that π(i) is necessarily a probability
vector: ∑

j∈S

π
(i)
j =

∑
j∈S

lim
n→∞

p
(n)
ij = lim

n→∞

∑
j∈S

p
(n)
ij = 1, (1.31)

where the finiteness of the state space was used to change the limit with the summa-
tion.

Next, for each j ∈ S, we apply the Chapman-Kolmogorov equations (1.11) to
conclude

π
(i)
j = lim

n→∞
p

(n)
ij = lim

n→∞

∑
k∈S

p
(n−1)
ik pkj =

∑
k∈S

[
lim
n→∞

p
(n−1)
ik

]
pkj =

∑
k∈S

π
(i)
k pkj,

where the finiteness of the state space was again used to interchange the limit with
the summation. Thus, π is a stationary distribution for the process.

Now suppose that π(i) = π for all i ∈ S and suppose that ν is a stationary
distribution of the chain. We must show that π = ν. This is now straightforward,

ν = lim
n→∞

νP n = π,

where the first equality follows from the fact that νP n = ν for all n, and the second
follows because π is assumed to be a unique limiting distribution.

It remains to be shown that all irreducible, aperiodic Markov chains with a finite
state space admit a unique limiting distribution. Before proving this fact, we attempt
to gain intuition by reexamining some examples.

Example 1.59. Consider the Markov chain with transition matrix P given in (1.29):

P =

(
2
3

1
3

1
8

7
8

)
.

It is simple to compute the eigenvalues of P ,

λ1 = 1 and λ2 = 13
24
< 1.

Let π(1) and π(2) denote the left eigenvectors associated with λ1 and λ2, respectively,
and let α be an arbitrary probability vector. Because π(1) and π(2) are necessarily
linearly independent, there are constants c1 and c2 for which α = c1π

(1) + c2π
(2).

Hence,

αP n = (c1π
(1)P n + c2π

(2)P n) = c1π1 + c2(13
24

)nπ2 → c1π
(1), as n→∞.

Note that since αP n is necessarily a probability vector, c1π
(1) is also a probability

vector (as in the argument (1.31)). Taking π = c1π
(1) shows that π is the unique
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limiting distribution for the chain. By Proposition 1.58, it must also be the unique
stationary distribution.

Note that we have concluded that the properly normalized eigenvector associated
with the eigenvalue of 1 is the unique limiting distribution of the chain without even
calculating the vector, and without resorting to raising P to higher and higher powers.
Of course calculating π as the left eigenvector with an eigenvalue of 1 is simple and
yields π = ( 3

11
, 8

11
), as already demonstrated. 4

We will consider one more example before proceeding with the theory.

Example 1.60 (Example 1.54 continued). Let

P =


2
3

1
3

0
1
12

5
8

7
24

0 1
8

7
8


be the transition matrix for a three-state Markov chain. The eigenvalues of P are
λ1 = 1 and λ2, λ3 = 14±

√
14

24
. Thus, |λi| < 1 for i ∈ {2, 3}, and λ1 = 1 is again

the dominant eigenvalue. Let π(i) be the eigenvector associated with λi for each of
i ∈ {1, 2, 3}. Let α be a probability vector and let c1, c2, and c3 be chosen so that
α = c1π

(1) + c2π
(2) + c3π

(3). Then, as in Example 1.59,

αP n = (c1π
(1) + c2π

(2) + c3π
(3))P n

= (c1π
(1) + c2(14+

√
14

24
)nπ(2) + c3(14−

√
14

24
)nπ(3))→ c1π

(1), as n→∞.

Thus, π = c1π
(1) = ( 3

43
, 12

43
, 28

43
) is shown to be the unique limiting distribution of the

chain. 4

The above examples shed light on a method of proof for Theorem 1.57. We
will demonstrate that the transition matrix of an irreducible, aperiodic discrete time
Markov chain has an eigenvalue of 1, and that all other eigenvalues satisfy |λi| < 1.
The following proposition, which loosely says that there is a time N at which the
chain can be found in any state, is instrumental in showing this.

Proposition 1.61. Suppose that P is the transition matrix for an aperiodic, irre-
ducible Markov chain with finite state space S. Then, there is an N ≥ 1 for which
PN has strictly positive entries.

Proof. We take the following fact for granted, which follows from a result in number
theory: if the chain is aperiodic, then for each state i ∈ S, there is an N(i) for which

p
(n)
ii > 0 for all n ≥ N(i) (see Exercise 1.9).

To prove the proposition, we must demonstrate that there is an N > 0 so that if
n ≥ N , then P n has strictly positive entries. Let i, j ∈ S. By the irreducibility of the
chain, there is an n(i, j) for which

p
(n(i,j))
ij > 0.
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Thus, for all n ≥ N(i), the Chapman-Kolmogorov equations (1.11) allow us to con-
clude

p
(n+n(i,j))
ij =

∑
k∈S

p
(n)
ik p

(n(i,j))
kj ≥ p

(n)
ii p

(n(i,j))
ij > 0.

The proposition is therefore shown by letting N be the maximum over N(i) +n(i, j),
which exists since the state space is finite.

We have all the building blocks necessary for the proof of Theorem 1.57.

Proof of Theorem 1.57. In light of Proposition 1.61, the Perron-Frobenius theorem
applies to PN , where N is given in the statement of the proposition. We may conclude
the following:

1. 1 is a simple eigenvalue of PN .

2. There are no other eigenvalues of PN with a modulus of 1 (since PN is aperi-
odic).

3. The left eigenvector of PN with an eigenvalue of 1 can be chosen to have strictly
positive components.

4. All other eigenvalues of PN have a modulus less than 1. That is, |λi| < 1.

We may now draw some conclusions about the transition matrix P .
Since P~1 = ~1, where ~1 is the vector with all ones, P has an eigenvalue of 1. Let π

be the left eigenvector of P associated with this eigenvalue. Since πPN = πPPN−1 =
πPN−1 = · · · = π, we see that π is the eigenvector of PN with an eigenvalue of one,
and therefore can be chosen to have strictly positive components. We choose π so
that it is a probability vector.

If P has a full set of linearly independent eigenvectors, the proof now follows
similarly to the examples above. We let π(i) and λi, for i ∈ {2, . . . , d}, where d is
the size of the state space, be the other eigenvalues and eigenvectors. Then, for any
probability vector α, there are c, c2, . . . , cd ∈ R for which

α = cπ +
d∑
i=2

ciπ
(i),

and, since |λi| < 1 for all i ∈ {2, . . . , d},

lim
n→∞

αP n = lim
n→∞

(
cπ +

d∑
i=2

ciπ
(i)

)
P n = lim

n→∞

(
cπ +

d∑
i=2

ciλ
n
i π

(i)

)
= cπ.

Since π is a probability vector, we see that c = 1, and the proof is complete.
If P does not have a full set of linearly independent eigenvectors then slightly

more care is required. In this case, we use a Jordan decomposition to conclude that

J = Q−1PQ,
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where J is in Jordan canonical form, Q−1 has a first row consisting of the probability
vector π, and Q has a first column that contains all ones. Further, because all
eigenvalues except 1 have modulus less than 1, we know that J is of the form

J =


1 0 · · · 0
0
... A
0

 ,

where An → 0, as n→∞. Thus,

lim
n→∞

αP n = lim
n→∞

αQJnQ−1 = αQ


1 0 · · · 0
0
... 0
0

Q−1 = α

 π
...
π

 = π.

Thus, Theorem 1.57 is proven in general.

We see that if we wish to understand the large time probabilities associated with
an irreducible, aperiodic Markov chain with a finite state space, then it is sufficient
to calculate the unique left eigenvector of the transition matrix with eigenvalue equal
to one. Such computations can be carried out by hand for small examples, but are
usually performed with software for larger systems.

Example 1.62. Consider a Markov chain with state space {0, 1, 2, 3} and transition
matrix

P =


0 1

5
3
5

1
5

1
4

1
4

1
4

1
4

1 0 0 0

0 1
2

1
2

0

 .

Find limn→∞ Pα(Xn = 2), where α is an arbitrary initial distribution.
The graph associated with the Markov chain is strongly connected, and so the

chain is irreducible. Moreover, p11 = 1
4
, and so the chain is aperiodic. Thus, Theorem

1.57 applies. The eigenvector of P (normalized to be a probability distribution)
associated with the eigenvalue 1 is

π =
(

25
67
, 12

67
, 22

67
, 8

67

)
.

Thus, regardless of α, limn→∞ Pα(Xn = 2) = 12
67
. 4

In the next subsection we will consider what changes to the theory when we drop
the irreducibility, but not the aperiodicity, assumption. We will consider the periodic
case when we turn to infinite state space Markov chains in Section 1.7.2.
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Reducible chains with aperiodic, recurrent communication classes

In order to gain intuition, we begin with a number of examples.

Example 1.63 (Examples 1.14 and 1.45 continued). Consider a random walk on
{0, 1, . . . , N} with transition probabilities

pi,i+1 = pi,i−1 = pi,i = 1
3
, for i ∈ {1, . . . , N − 1},

and absorbing boundary conditions: p0,0 = pN,N = 1. For some 0 ≤ ρ ≤ 1, let

πρ = (ρ, 0, . . . , 0, 1− ρ).

It is straightforward to show that πρP = πρ, where P is the transition matrix for
the model, and that all stationary distributions are of the form πρ. Thus, there are
uncountably many stationary distributions for this example. However, note that each
such distribution is a linear combination of the two distributions π(0) = (1, 0, . . . , 0)
and π(N) = (0, . . . , 0, 1). Observe that Example 1.56 is a special case of this example,
with N = 3.

Let τ = min{n ≥ 0 : Xn ∈ {0, N}} and for each i ∈ {0, 1, . . . , N} let

g0(i) = P (Xτ = 0 | X0 = i), and gN(i) = P (Xτ = N | X0 = i).

We showed how to compute g0(i) and gN(i) in Section 1.6. We see that for i ∈
{0, 1, . . . , N},

lim
n→∞

p
(n)
ij =


g0(i), j = 0

1− g0(i), j = N

0, j ∈ {1, . . . , N − 1}
.

That is, the limiting probability vector is πg0(i) = g0(i)π(0) + (1 − g0(i))π(N), which
explicitly depends upon the initial state i. 4

Example 1.64. Consider the Markov chain with transition matrix (1.17),

P =


1
2

1
2

0 0
1
3

2
3

0 0

0 0 1
3

2
3

0 0 3
4

1
4

 ,

which can be visualized via

1
2

	

1

1
3

�
1
2

2 � 23
1
3

	

3

3
4

�
2
3

4 � 14 .

This chain is reducible, with communication classes C1 = {1, 2} and C2 = {3, 4}.
Viewed separately, these communication classes are irreducible, aperiodic Markov
chains with transition matrices

P1 =

(
1
2

1
2

1
3

2
3

)
and P2 =

(
1
3

2
3

3
4

1
4

)
.



CHAPTER 1. DISCRETE TIME MARKOV CHAINS 43

The unique limiting stationary distribution for the Markov chain with state space
C1 and transition matrix P1 is π(1) = (2

5
, 3

5
), whereas the unique limiting stationary

distribution for the chain with state space C2 and transition matrix P2 is π(2) =
( 9

17
, 8

17
). Finally, for any 0 ≤ ρ ≤ 1, a vector of the form

πρ = ρ
(

2
5
, 3

5
, 0, 0

)
+ (1− ρ)

(
0, 0, 9

17
, 8

17

)
,

is a stationary distribution for the chain with transition matrix P . Moreover, these
vectors account for all possible stationary distributions of the chain.

The limiting distributions again depend upon the initial state. For i ∈ C1,

lim
n→∞

p
(n)
ij =

{
π

(1)
j j ∈ C1

0 j ∈ C2

whereas for i ∈ C2,

lim
n→∞

p
(n)
ij =

{
0 j ∈ C1

π
(2)
j j ∈ C2

.

In particular, for an initial distribution of α,

lim
n→∞

Pα(Xn = j) = lim
n→∞

4∑
i=1

Pα(Xn = j,X0 = i) =
4∑
i=1

[
lim
n→∞

p
(n)
ij

]
αi

=


(α1 + α2)2

5
j = 1

(α1 + α2)3
5

j = 2

(α3 + α4) 9
17

j = 3

(α3 + α4) 8
17

j = 4

,

and the limiting distribution is

πα1+α2 = (α1 + α2)[2
5
, 3

5
, 0, 0] + (α3 + α3)[0, 0, 9

17
, 8

17
].

4

Example 1.65. Sometimes reducible Markov chains can have a unique, limiting
stationary distribution. Consider the Markov chain with state space S = {1, 2, 3, 4}
and transition matrix (1.18),

P =


1
2

1
2

0 0
1
3

1
3

1
3

0

0 0 1
3

2
3

0 0 3
4

1
4

 , (1.32)

which can be visualized via

1
2

	

1

1
3

�
1
2

1
3 �

2
1
3→

1
3 �

3

3
4

�
2
3

4 � 14 ,
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The chain is reducible, with communication classes T1 = {1, 2} and C1 = {3, 4}. By
Theorem 1.43 the states 1 and 2 are transient. Viewed in isolation, the communication
class C1 has transition matrix

P1 =

(
1
3

2
3

3
4

1
4

)
,

which has a unique stationary distribution of π(1) = ( 9
17
, 8

17
). The unique stationary

distribution of the full chain with transition matrix P is

π =
(
0, 0, 9

17
, 8

17

)
.

Finally, since the states 1 and 2 are transient and because there is a unique recurrent
communication class, we see that

lim
n→∞

p
(n)
ij =


0 j = 1

0 j = 2
9
17

j = 3
8
17

j = 4

,

and π is the unique limiting stationary distribution. 4
The examples above show how to proceed. We begin with some notation. We

will consider a discrete time Markov chain, Xn, with finite state space S. We denote
the recurrent communication classes by C1, . . . , Cr. We assume each recurrent com-
munication class is aperiodic, in which case Theorem 1.57 guarantees that a unique
limiting stationary distribution, π(k), exists for the kth recurrent class. Denote by
π̄(k) the vector of size |S| for which

π̄
(k)
j =

{
π

(k)
j , if j ∈ Ck

0, if j /∈ Ck
.

Let τ = min{n ≥ 0 | Xn ∈ Ck for some k}. For each i ∈ S we let

gk(i) = P (Xτ ∈ Ck | X0 = i). (1.33)

We saw how to calculate the {gk(i)} of (1.33) in Section 1.6.
We may conclude that for any i, j ∈ S,

lim
n→∞

p
(n)
ij = lim

n→∞
P (Xn = j|X0 = i)

= lim
n→∞

r∑
k=1

P (Xn = j,Xτ ∈ Ck|X0 = i)

=
r∑

k=1

[
lim
n→∞

P (Xn = j|Xτ ∈ Ck, X0 = i)
]
gk(i)

=
r∑

k=1

[
lim
n→∞

P (Xn = j|X0 ∈ Ck)
]
gk(i)

=
r∑

k=1

π̄
(k)
j gk(i),
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where we have applied Theorem 1.57 to each recurrent class. By Proposition 1.58 the
vectors

r∑
k=1

gk(i)π̄
(k)

are stationary distributions of the chain. See Exercise 1.10, where it is shown that all
stationary distributions can be written in such a manner.

1.7.2 Markov chains with a countably infinite state space

We now extend the results of the previous section to discrete time Markov chains
with countably infinite state spaces. We do not prove every result in this section,
though we point to the relevant proofs in the literature. Finally, we note that every
result stated in this section also holds in the finite state space case.

In order to gain some intuition, we begin with an example demonstrating a be-
havior that is not possible in the finite state space setting.

Example 1.66 (Example 1.16 continued). Consider symmetric random walk on the
integers. That is, suppose the state space of the chain is S = Z = {. . . ,−1, 0, 1, . . . }
and the transition probabilities satisfy

pi,i+1 = pi,i−1 = 1
2
, for all integers i ∈ {. . . ,−1, 0, 1, . . . }.

From Example 1.41, we know that this chain is recurrent. Is there a stationary
distribution?

Any invariant measure must satisfy two conditions: πj ≥ 0 and

πj =
∞∑

k=−∞

πkpkj = πj−1pj−1,j + πj+1pj+1,j =
1

2
(πj−1 + πj+1),

for all j ∈ Z. These conditions can be satisfied by taking πj ≡ c, where c is a
nonnegative constant.

We will see in Theorem 1.72 that all irreducible, recurrent chains admit a unique
(up to multiplication by a constant) invariant measure. Since the measure with πj ≡ c
can not be normalized to give a probability vector, we conclude that no stationary
distribution exists for this chain. 4

The above example demonstrates that in the infinite state space setting, we need
a stronger condition than recurrence to guarantee the existence of a stationary dis-
tribution. Recall the definition of τi in (1.9):

τi = min{n ≥ 1 : Xn = i},

with τi =∞ if the chain never hits state i for n ≥ 1. It is useful to subdivide the set
of recurrent states further.

Definition 1.67. The value µi = Ei[τi] is called the mean recurrence time or mean
first return time for state i. We say that a recurrent state i is positive recurrent if
Ei[τi] <∞, and otherwise say it is null recurrent.
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Note that we trivially have µi = ∞ if i is a transient state since in this case
Pi(τi =∞) > 0.

The following is stated without proof. See [31, Chapter 3] for a proof utilizing
renewal theory.

Theorem 1.68. Consider a recurrent, irreducible, aperiodic Markov chain. For any
i, j ∈ S

lim
n→∞

p
(n)
ji =

1

µi
.

If µi =∞, then we interpret the right hand side of the above equation as zero.

A similar theorem for periodic chains is the following.

Theorem 1.69. Consider a recurrent, irreducible, d-periodic Markov chain. For any
i ∈ S

lim
n→∞

p
(nd)
ii =

d

µi
.

If µi =∞, then we interpret the right hand side of the above equation as zero.

In Theorem 1.39, we showed that recurrence is a class property. The following
shows that positive recurrence is also a class property.

Theorem 1.70. Suppose that i↔ j and that state i is positive recurrent. Then state
j is positive recurrent.

Proof. We assume the chain is aperiodic. The proof in the periodic case is similar
and is left as Exercise 1.15. Consider only the irreducible component of the state
space containing states i and j. Theorem 1.68 implies

lim
n→∞

p
(n)
ij =

1

µj
, (1.34)

By (1.34), we may conclude that µj <∞ if we demonstrate that limn→∞ p
(n)
ij > 0.

Since i↔ j, there is an m > 0 for which p
(m)
ij > 0. Therefore,

lim
n→∞

p
(n)
ij = lim

n→∞
p

(n+m)
ij ≥ lim

n→∞
p

(n)
ii p

(m)
ij = p

(m)
ij lim

n→∞
p

(n)
ii = p

(m)
ij

1

µi
> 0,

where the final equality holds from Theorem 1.68 applied to state i.

Therefore, we can speak of positive recurrent or null recurrent communication
classes. Further, if the Markov chain is irreducible we may call the chain itself positive
or null recurrent.

Example 1.71 (Example 1.16 continued). Consider again the symmetric (p = 1
2
)

random walk on the integer lattice. In Example 1.41, we showed that the chain is
recurrent and that

p
(2n)
00 ∼ 1√

πn
.

Therefore, limn→∞ p
(n)
00 = 0 and by Theorem 1.69 we have that µ0 = ∞. Thus, the

symmetric random walk on the integers is null recurrent. 4
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Following our results from the finite state space setting, it seems reasonable to
suspect that for positive recurrent chains the limiting distribution provided in Theo-
rem 1.68 is also a stationary distribution. We direct the reader to [31, Chapter 2.12]
for a proof of the following theorem.

Theorem 1.72. If a Markov chain is irreducible and recurrent, then there is an
invariant measure π, unique up to multiplicative constants, that satisfies 0 < πj <∞
for all j ∈ S. Further, if the Markov chain is positive recurrent then

πi =
1

µi
, (1.35)

where µi is the mean recurrence time of state i,
∑

i πi = 1, and π is a stationary

distribution of the Markov chain. If the Markov chain is also aperiodic, then p
(n)
ji → πi,

as n→∞, for all i, j ∈ S.

Note that Theorem 1.72 guarantees the existence of a stationary distribution even
if the chain is periodic. Note also that Theorem 1.72 provide an effective algorithm
for computing mean return times: compute the invariant distribution using

π = πP,

and invert the component of interest.

Example 1.73. Consider reflecting random walk on {1, 2, 3, 4}. That is, the Markov
chain with transition matrix

P =


0 1 0 0
1
2

0 1
2

0
0 1

2
0 1

2

0 0 1 0

 .

This chain has period two, and for large n we have

P 2n ≈


1
3

0 2
3

0

0 2
3

0 1
3

1
3

0 2
3

0

0 2
3

0 1
3

 , P 2n+1 ≈


0 2

3
0 1

3

1
3

0 2
3

0

0 2
3

0 1
3

1
3

0 2
3

0

 .

The unique stationary distribution of the chain guaranteed to exist by Theorem 1.72
is π = (1

6
, 1

3
, 1

3
, 1

6
). While π does not, in this case, give the long run probabilities of the

associated chain, we will see in Theorem 1.78 a useful interpretation of π as giving
the average amount of time spent in each state. 4

A question still remains: can the invariant measure of a null recurrent chain ever
be normalized to give a stationary distribution? The answer, given in the following
theorem, is no. We refer to [29], Theorem 1.7.7, for a proof.
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Theorem 1.74. Suppose a Markov chain is irreducible and that a stationary distri-
bution π exists:

π = πP,
∑
j∈S

πj = 1, πj ≥ 0.

Then, the Markov chain is positive recurrent.

Thus, a necessary and sufficient condition for determining positive recurrence is
simply demonstrating the existence or non-existence of a stationary distribution.

Example 1.75 (Random walk with partially reflecting boundaries). Consider a ran-
dom walker on S = {0, 1, 2, . . . } with transition probabilities

pj,j+1 = p, pj,j−1 = 1− p, if j ≥ 1,

p01 = p, p00 = 1− p,

where 0 < p < 1. This Markov chain is irreducible and aperiodic (since p00 > 0). We
want to determine when this model will have a limiting stationary distribution, and,
hence, when it is positive recurrent.

A stationary distribution for this system must satisfy

πj = πj+1 · (1− p) + πj−1 · p, for j > 0 (1.36)

π0 = π1 · (1− p) + π0 · (1− p), (1.37)

with the condition that πj ≥ 0 and
∑∞

j=0 πj = 1. We may solve the difference
equations (see Section A) and the general solution to equation (1.36) is

πj =

{
c1 + c2

(
p

1−p

)j
, p 6= 1

2

c1 + c2j, p = 1
2

, (1.38)

where c1 and c2 are unknown. Rearranging equation (1.37) yields

π0 =
1− p
p
· π1. (1.39)

Plugging (1.38) with j = 0 and j = 1 into (1.39) shows c1 = 0 in the p 6= 1
2

case, and
that c2 = 0 in the p = 1

2
case. Therefore,

πj =

{
c2

(
p

1−p

)j
, p 6= 1

2

c1, p = 1
2

.

We need
∑∞

j=0 πj = 1 for π to be a stationary distribution. However, if p = 1
2
, no

choice of c1 could satisfy this condition. Thus, there is no stationary distribution in
the case p = 1

2
.

Now just consider the case p 6= 1
2
. We obviously require that c2 > 0. If p > 1

2
,

then p/(1− p) > 1 and the sum

∞∑
j=0

c2

(
p

1− p

)j
=∞.
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If, on the other hand, p < 1
2
, then

∞∑
j=0

c2

(
p

1− p

)j
= c2

1− p
1− 2p

.

Therefore, taking c2 = (1− 2p)/(1− p) yields a stationary distribution of

πj =
1− 2p

1− p

(
p

1− p

)j
.

Thus, the chain is positive recurrent when p < 1
2
, which is hopefully intuitive. We

also know that the chain is either null recurrent or transient if p ≥ 1
2
. 4

We want mathematical machinery that allows us to figure out when the chain of
the previous example is either null recurrent or transient. The following theorem,
which we will also make use of in Section 2.2, is helpful.

Theorem 1.76. Let Xn, n ≥ 0, be an irreducible Markov chain with state space S
and let i ∈ S. Then Xn is transient if and only if there is a nonzero vector y satisfying
the following: yi = 0, 0 ≤ yj ≤ 1 for all j, and

yj =
∑
k 6=i

pjkyk, for j 6= i. (1.40)

Proof. Suppose first that Xn is transient. We will produce the vector y. Let Hi =
inf{n ≥ 0 : Xn = i} be the hitting time of state i, and let yj = P (Hi =∞|X0 = j) be
the probability the chain never hits state i if it starts in state j. Clearly yi = 0 and
0 ≤ yj ≤ 1 for all j. Also, since the chain is transient, yj > 0 for some j (otherwise
the chain would return to state i with a probability of one whenever it transitioned
from state i). Using a first-step analysis, we see that for j 6= i,

yj = P (Hi =∞|X0 = j) =
∑
k 6=i

P (Hi =∞, X1 = k|X0 = j)

=
∑
k 6=i

P (Hi =∞|X0 = k)pjk =
∑
k 6=i

pjkyk,

where we utilized the Markov property in the second to last equality. Thus, this
direction is shown.

Conversely, suppose that there is such a vector y. Since y is nonzero, there is a j
with yj > 0 and so by repeatedly using the relation (1.40)

0 < yj =
∑
k1 6=i

pj,k1yk1 =
∑

k1,k2 6=i

pj,k1pk1,k2yk2 = · · ·

=
∑

k1,k2,...,km 6=i

pj,k1pk1,k2 · · · pkm−1,kmykm

≤
∑

k1,k2,...,km 6=i

pj,k1pk1,k2 · · · pkm−1,km = Pj(Hi > m).

Letting m → ∞ yields Pj(Hi = ∞) > 0, and by exercise 1.20 the chain is transient.
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Example 1.77. We return to Example 1.75 in order to determine the values of p for
which the chain is transient. Recall that we already know that when p < 1

2
, the chain

is positive recurrent. We will apply Theorem 1.76 with i = 0.
Equation (1.40) is

yj = (1− p)yj−1 + pyj+1,

for j ≥ 1. The general solution to this difference equation is

yj =

{
c1 + c2

(
1−p
p

)j
, if p 6= 1/2

c1 + c2j, if p = 1/2
,

which is valid for j ≥ 0, and where c1 and c2 are unknown (see Appendix A.1). It is
already clear that no matter what we choose for the constants c1 and c2, the formula
yj = c1 + c2j can not give a nonzero solution satisfying y0 = 0 and 0 ≤ yj ≤ 1 for all
j. Thus, we conclude that when p = 1

2
, the chain is not transient. Since it can not

be positive recurrent (by Example 1.75), it must be null recurrent.
We turn to the p 6= 1

2
case. Since y0 = 0, the above formula becomes

yj = c1 − c1

(
1− p
p

)j
.

If p < 1/2, then 1 − p > p and there is no solution. Hence, in this case the chain is
recurrent from Theorem 1.76. (Of course, we knew this already because we showed
it was positive recurrent in this case!)

For the case p > 1/2, we have that 1 − p < p, and a solution can be found by
setting c1 = 1, in which case

yj = 1−
(

1− p
p

)j
,

is a solution. Thus, when p > 1/2, the chain is transient. 4

We end this section with an important theorem stating that stationary distribu-
tions characterize how much time a positive recurrent chain spends in a given state.
Importantly, the theorem holds for both periodic and aperiodic chains. For a proof,
we point the interested reader to [31, Chapter 2.12].

Theorem 1.78. Let Xn, n ≥ 0, be an irreducible, positive recurrent Markov chain
with state space S and unique stationary distribution π. For i ∈ S, let

Ni(n) =
n−1∑
k=0

1{Xk=i},

denote the number of visits to state i before time n. Then

P

(
Ni(n)

n
→ πi, as n→∞

)
= 1.
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Moreover, for any bounded function f : S → R,

P

(
1

n

n−1∑
k=0

f(Xk)→
∑
i∈S

f(i)πi, as n→∞

)
= 1. (1.41)

The theorem says that the time averages of a single realization of the Markov chain
will converge (with probability one) to the “space averages” obtained by simply taking
expectations with respect to the stationary distribution π. For example, suppose a
random variable X∞ has probability mass function P (X∞ = i) = πi. Then, by
definition, ∑

i∈S

f(i)πi = Eπ[f(X∞)].

Now another way to write (1.41) is

P

(
1

n

n−1∑
k=0

f(Xk)→ Eπ[f(X∞)], as n→∞

)
= 1.

Example 1.79. Consider the Markov chain with state space {1, 2, 3} and transition
matrix

P =


1
3

2
3

0
1
4

1
2

1
4

1 0 0

 . (1.42)

It is simply to check that the unique stationary distribution of this chain is π =
(3

8
, 1

2
, 1

8
). Therefore, for example, limn→∞ P (Xn = 3) = 1

8
. However, we can also

approximate this value using Theorem 1.78. Let N3(n) =
∑n−1

k=0 1{Xk=3}. Figure 1.1
plots 1

n
N3(n) versus n for one realization of the chain. Note that 1

n
N3(n) appears to

be converging to 1
8
. 4

Example 1.80 (Example 1.73 continued). Consider the periodic chain with state
space {1, 2, 3, 4} and transition matrix

P =


0 1 0 0
1
2

0 1
2

0
0 1

2
0 1

2

0 0 1 0

 .

The unique stationary distribution for the chain is π = (1
6
, 1

3
, 1

3
, 1

6
). Hence,

lim
n→∞

1

n

n−1∑
k=0

1{Xn=1} = 1
6
,

and the chain spends, on average, one sixth of its time in state 1. 4
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Figure 1.1: A single realization of the running average, 1
n

∑n−1
k=0 1{Xk=3} = 1

n
N3(n),

for the amount of time spent in state 3 for the Markov chain with transition matrix
(1.42). A line of height 1

8
= 0.125 has been added for reference.

1.8 Exercises

Exercise 1.1. Suppose that p
(n)
11 satisfies the recurrence relation

p
(n+1)
11 = q + p

(n)
11 (1− q − p),

where 0 ≤ p, q ≤ 1, together with the initial condition p
(0)
11 = 1. Show that for n ≥ 0

p
(n)
11 =

{
q
q+p

+ p
q+p

(1− q − p)n if p+ q > 0

1 if p+ q = 0.

Hint: start by assuming that p
(n)
11 = a+ brn for unknown a, b, and r. Plug this ansatz

into the system and solve for the unknowns.

Exercise 1.2. Suppose there are two white and two green balls in two urns distributed
so that each urn contains two balls. We say the system is in state i, i = 0, 1, 2, if
there are i white balls in urn one. At each stage one ball is drawn at random from
each urn and interchanged. Let Xn denote the state of the system after the nth draw.

(a) Argue that Xn is a Markov chain and give its transition matrix.

(b) Find P (X4 = 2 | X0 = i) for each of i ∈ {0, 1, 2}.

Exercise 1.3. (Success run chain.) Suppose that Jake is shooting baskets in the
school gym and is interested in the number of baskets he is able to make in a row.
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Suppose that every shot will go in with a probability of p ∈ (0, 1), and the success
or failure of each shot is independent of all other shots. Let Xn be the number of
shots he has currently made in a row after n shots (so, for example, X0 = 0 and
X1 ∈ {0, 1}, depending upon whether or not he hit the first shot).

(a) Argue that Xn is a Markov chain. What is the state space of the chain?

(b) What are the one step transition probabilities of the chain?

Exercise 1.4. (Jukes-Cantor model of DNA mutations) Consider a single nucleotide
on a strand of DNA. We are interested in modeling possible mutations to this single
nucleotide. We say that Xn is in state 1, 2, 3, or 4, if the nucleotide is the base A, G,
C, or T, respectively. We assume that there is a probability, ρ ∈ (0, 1), that between
one time period and the next, we will observe a change in this base. If the base does
change, we make the simple assumption that each of the other three bases are equally
likely.

(a) What is the transition matrix for this Markov chain?

(b) If ρ = 0.01, what are (approximately): p
(10)
13 , p

(100)
13 , p

(1,000)
13 , p

(10,000)
13 ? (You should

use a computer for this problem.)

Exercise 1.5. Suppose that whether or not it rains tomorrow depends on previous
weather conditions only through whether or not it is raining today. Assume that the
probability it will rain tomorrow given it rains today is α and the probability it will
rain tomorrow given it is not raining today is β. Supposing that the state space is
S = {0, 1}, where state 0 means it rains and state 1 means it does not rain on a given
day, what is the transition matrix when we model this situation with a Markov chain.
If we assume there is a 40% chance of rain today, what is the probability it will rain
three days from now if α = 6/10 and β = 3/10.

Exercise 1.6. (a) Show that the product of two stochastic matrices is stochastic.

(b) Show that for stochastic matrix P , and any row vector π, we have ‖πP‖1 ≤ ‖π‖1,
where ‖v‖1 =

∑
i |vi|. Deduce that all eigenvalues, λ, of P must satisfy |λ| ≤ 1.

Hint: For the first part of (b) just write out each side and manipulate the expres-
sions as needed. For the second part, just use the definition of a left-eigenvector
and follow your nose.

Exercise 1.7. Let Xn denote a discrete time Markov chain with state space S =
{1, 2, 3, 4}, transition Matrix

P =


1
4

0 1
5

11
20

0 0 0 1
1
6

1
7

0 29
42

1
4

1
4

1
2

0

 ,

and initial distribution is α =
(

1
4
, 0, 1

4
, 1

2

)
.
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(a) Suppose that

(ω0,ω1, ω2, . . . , ω10)

= (0.421, 0.794, 0.311, 0.528, 0.165, 0.602, 0.263, 0.654, 0.689, 0.748, 0.450)

is a sequence of 11 independent uniform(0, 1) random variables. Using these
random variables (in the order presented above) and the construction of Section
1.3, what are Xn, n ∈ {0, 1, . . . , 10}? Note, you are supposed to do this problem
by hand (without the aid of a computer).

(b) Using Matlab, simulate a path of Xn up to time n =100 using the construction
of Section 1.3. A helpful sample Matlab code has been provided on the course
website that is intended to get you started (make sure you read my comments
in the code). Play around with your script. Try different values of n and see
the behavior of the chain. Turn in your MATLAB code along with a plot of a
realization of your chain.

Exercise 1.8. Consider a chain with state space {0, 1, 2, 3, 4, 5} and transition matrix

P =



1
2

0 0 0 1
2

0

0 3
4

1
4

0 0 0

0 1
8

7
8

0 0 0
1
2

1
4

1
4

0 0 0
1
3

0 0 0 2
3

0

0 0 0 1
2

0 1
2


.

What are the communication classes? Which classes are closed? Which classes are
recurrent and which are transient?

Exercise 1.9. Suppose that P is the transition matrix for an aperiodic Markov chain
with finite state space S. Then for each state i ∈ S, there is an N(i) for which p

(n)
ii > 0

for all n ≥ N(i).

Exercise 1.10. Consider a Markov chain with a finite state space S and transition
matrix P . Suppose that the recurrent communication classes are C1, C2, . . . , Cr, and
that each Ck is irreducible and aperiodic. Let π(k) be the unique limiting stationary
distribution for the Markov chain restricted to Ck (which is guaranteed to exist by
Theorem 1.57) and let π̄(k) be the vector whose ith element is zero if i /∈ Ck and is

π
(k)
i otherwise. Prove both the following.

(a) Let ai ≥ 0 and
∑r

i=1 ai = 1. Then the linear combination

a1π̄
(1) + · · ·+ arπ̄

(r)

is a stationary distribution for the full Markov chain with transition matrix P .
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(b) All stationary distributions for the full Markov chain with transition matrix P
can be written as a linear combination of the above form.

Exercise 1.11. Consider the Markov chain described in Problem 1.4 above. What
is the stationary distribution for this Markov chain. Interpret this result in terms of
the probabilities of the nucleotide being the different possible values for large times.
Does this result make sense intuitively?

Exercise 1.12. Show that the success run chain of Problem 1.3 above is positive
recurrent. What is the stationary distribution of this chain? Using the stationary
distribution, what is the expected number of shots Jake will hit in a row.

Exercise 1.13. Let the transition matrix for a discrete time Markov chain be dou-
bly stochastic (recall (1.7)). Show that the uniform distribution is the stationary
distribution for the chain.

Exercise 1.14. Let Xn be the number of customers in line for some service at time
n. During each time interval, we assume that there is a probability of p that a
new customer arrives. Also, with probability q, the service for the first customer is
completed and that customer leaves the queue. Assuming at most one arrival and at
most one departure can happen per time interval, the transition probabilities are

pi,i−1 = q(1− p), pi,i+1 = p(1− q)

pii = 1− q(1− p)− p(1− q), i > 0

p00 = 1− p, p01 = p.

(a) Argue why the above transition probabilities are the correct ones for this model.

(b) For which values of p and q is the chain null recurrent, positive recurrent, tran-
sient?

(c) For the positive recurrent case, give the limiting probability distribution π.
Hint: note that the equation for π0 and π1 are both different than the general
nth term.

(d) Again in the positive recurrent case, using the stationary distribution you just cal-
culated, what is the expected length of the queue in equilibrium? What happens
to this average length as p→ q. Does this make sense?

Exercise 1.15. Prove Theorem 1.70 when the chain has a period of d.

Exercise 1.16. This problem has you redo the computation of Example 1.79, though
with a different Markov chain. Suppose our state space is {1, 2, 3, 4} and the transition
matrix is

P =


1
4

0 1
5

11
20

0 0 0 1
1
6

1
7

0 29
42

1
4

1
4

1
2

0

 ,
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which was the transition matrix of problem 1.7 above. Using Theorem 1.78, and
MATLAB, estimate limn→∞ P (Xn = 2). Make sure you choose a long enough path,
and that you plot your output (to turn in). Compare your solution with the actual
answer computed via the left eigenvector with an eigenvalue of one.

Exercise 1.17. You flip a fair coin until you flip four consecutive heads. Let τ be
the total number of flips you perform. Find E[τ ].

Exercise 1.18. You will need software for this problem to deal with the matrix
manipulations. Consider a Markov chain Xn with state space {0, 1, 2, 3, 4, 5} and
transition matrix

P =



1
2

0 0 0 1
2

0

0 3
4

1
4

0 0 0

0 1
8

7
8

0 0 0
1
2

1
4

1
4

0 0 0
1
3

0 0 0 1
3

1
3

0 0 1
4

1
4

0 1
2


.

Here the only recurrent class is {1, 2}. Suppose that X0 = 0 and let

T = inf{n : Xn ∈ {1, 2}}.

(a) What is E[T ]?

(b) What is P0(XT = 1)? P0(XT = 2)? (Note that this is asking for the probabilities
that when the chain enters the recurrent class, it enters into state 1 or 2.)

Exercise 1.19. (Taken from Lawler, [28]) You will need software for this problem to
deal with the matrix manipulations. Let Xn and Yn be independent Markov chains
with state space {0, 1, 2} and transition matrix

P =


1
2

1
4

1
4

1
4

1
4

1
2

0 1
2

1
2

 .

Suppose that X0 = 0 and Y0 = 2 and let

T = inf{n : Xn = Yn}.

A hint for all parts of this problem: consider the nine-state Markov chain Zn =
(Xn, Yn).

(a) Find E(T ).

(b) What is P (XT = 2)?

(c) In the long run, what percentage of the time are both chains in the same state?
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Exercise 1.20. Let Xn, n ≥ 0, be a discrete time Markov chain with discrete state
space. Suppose that i ↔ j. Let Hi = inf{n ≥ 0 : Xn = i} and suppose that
Pj(Hi =∞) > 0. Show that i and j are transient.

Exercise 1.21. Suppose that Xn ∈ {1, 2, 3} is a thee state Markov chain with tran-
sition matrix

P =


1
3

1
2

1
6

0 3
4

1
4

1
7

2
7

4
7

 .

Suppose that the initial distribution is α = (1
2
, 1

2
, 0). What is P (X0 = 1, X1 = 3, X2 =

2, X3 = 2)?

Exercise 1.22. Consider a Markov chain with state space S = {0, 1, 2, 3, 4, 5} and
transition matrix

0 1 2 3 4 5

P =

0
1
2
3
4
5


.5 .5 0 0 0 0
.3 .7 0 0 0 0
0 0 .1 0 .9 0
.25 .25 0 0 .25 .25
0 0 .7 0 .3 0
0 .2 0 .2 .2 .4


(a) What are the communication classes? Which ones are recurrent and which are

transient?

(b) Suppose the system starts in state 0. What is the probability that it will be in
state 0 at some time far into the future?

Exercise 1.23. Consider a Markov chain with state space S = {0, 1, 2, . . . } and
transition probabilities

pi,i+1 = 2
3
; pi,0 = 1

3
for each of i ∈ {0, 1, 2, 3, . . . }.

(a) Show that the chain is positive recurrent and give the stationary distribution, π.
Specifically, find πn for each n.

(b) Find the expected return times to state 0 and state 2. That is, give E0[τ0] and
E2[τ2], where τi = min{n ≥ 1 | Xn = i}.

(c) Find the distribution of τ0. That is, find P (τ0 = k) for each k > 1.

Exercise 1.24. Suppose a person is walking between three coffee shops and we let
Xn ∈ {1, 2, 3} give which coffee shop she is in at time n. We believe the motion of
this walker can be described by a discrete time Markov chain with transition matrix

P =

 0 1
4

3
4

1
3

1
3

1
3

1
10

7
10

2
10

 .
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Suppose that X0 = 1. In order to simulate this Markov chain, I generated the
following uniform random variables:

U1 = 0.4505, U2 = 0.0838, U3 = 0.2290, U4 = 0.9133, U5 = 0.1524.

Using these uniform random variables together with Algorithm 1, find X1, X2, . . . , X5.

Exercise 1.25. A particular students’ performance in school is highly dependent
upon how they performed in the previous class (due to confidence issues). We are
supposing that this student takes only one class at a time. Supposing the only grades
possible are A, B, C, D, and F, we let Xn ∈ {A,B,C,D, F} be the state of the
Markov chain giving the grade of the nth class and assume the transition matrix is

P =

A
B
C
D
F


1/2 1/4 1/4 0 0
1/4 1/2 1/4 0 0
0 1/4 1/2 1/4 0
0 0 1/4 1/2 1/4
0 0 0 0 1

 .

Note that F is a recurrent state and the student flunks out of school. Supposing
school is ongoing for this student and that the student came to school as an “A”
student, what is the expected amount of time before this student flunks out?

Exercise 1.26. A doctor has two drugs she uses to control nasal congestion, drug A
and drug B. If a medicine works well on one patient, she automatically prescribes it
for her next patient. (Assume she can tell immediately if the drug works well.) If it
does not work well, she switches to the other drug for her next patient. Suppose that
for any patient drug A works well with probability 1/2 and drug B works well with
probability 3/4.

(a) Formulate a Markov chain model for this situation. That is, (i) describe the state
space, (ii) specify clearly the interpretation of the random variables involved, and
(iii) give the transition matrix.

(b) In the long run, what is the fraction of patients that receive drug A?

Exercise 1.27. A polymer is a string-like molecule composed of many repeated sub-
units, known as monomers. Polymers grow and shrink in length by having monomers
either attach to the end of the polymer (which grows the polymer by one unit) or
detach from the end of the polymer (which shrinks the polymer by one unit). We
suppose that each polymer has a unique base monomer, from which the polymer is
growing. We will call both the attachment of a monomer, and the detachment of
a monomer an event. Let Ln denote the length of a given polymer after n events
have occurred. That is, Ln is equal to the number of monomers connected to the
base monomer plus one (for the base). We may model the length of the polymer as a
discrete time Markov chain and we suppose that the probability that the next event
is an attachment is always p ∈ (0, 1) so long as Ln > 1. We can not lose the base
monomer, so if Ln = 1 the next event is surely an attachment.
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(a) Under what condition on p will Ln be transient? Prove that it is transient under
this condition.

(b) Under what condition on p will Ln be positive recurrent? Prove that it is positive
recurrent under this condition.

(c) Under what condition on p will the DTMC be null recurrent? Argue why it is
null recurrent under this condition.

Exercise 1.28. A coffee loving mathematician will spend the day in four different
coffee shops. Every hour the mathematician will transition to a new coffeeshop ac-
cording to the following transition matrix

P =


0 1

3
1
2

1
6

1
2

0 1
2

0
2
3

1
4

0 1
12

1 0 0 0

 .

Suppose that the mathematician always starts the day in coffeeshop number 1. What
is the probability the mathematician will be in coffee shop number 3 after the 9th
transition. Use a computer to help you solve this problem.

Exercise 1.29. Give a state space and transition matrix for a Markov chain with
period four. The chain should be “nontrivial” in that not all transition probabilities
should be identically equal to one. Adding a diagram would be helpful.

Exercise 1.30. A student listens to music while studying and after each song will
determine whether or not he wants to switch the station. This student transitions
among three types of radio stations, 80s rock, 90s grunge, and Irish Folk, and does
so according to the following transition matrix

P =
80s rock

90s grunge
Irish Folk

 0.2 0.3 0.5
0.8 0.05 0.15
0.3 0.1 0.6

 .

What is the long run probability of listening to each type of music?

Exercise 1.31. There are two yards that a squirrel can choose to live in. Each yard
has a single tree. The behavior of the squirrel is different in the two yards.

Behavior in yard one. When the squirrel is on the ground in yard #1, there is a
probability of 1/2 that it will get scared in the next 1 minute (our time-unit), and
run up a tree. If the squirrel is in the tree in yard #1, there is a probability of 1/3
that the squirrel will become brave and move to the ground in the next minute.

Behavior in yard two. When the squirrel is on the ground in yard #2, there is a
probability of 1/4 that it will get scared in the next 1 minute, and run up the tree.
If the squirrel is in the tree in yard #2, there is a probability of 2/3 that the squirrel
will become brave and move to the ground in the next minute.
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(a) The squirrel picks a yard to live in, each with equal probability. The squirrel then
remains in that yard forever. What is the long run probability that the squirrel
is on the ground? What is the long run probability that the squirrel is in a tree?
Note that you must answer this question without knowing which yard the squirrel
will enter with surety.

(b) Suppose that if the squirrel is on the ground in yard #1 and makes a sudden
dash for the tree, then there is a probability of 1/10 that the squirrel will catch
the eye of a bird of prey and be caught. Let τ1 be the time the squirrel is caught.
Assuming that the squirrel lives in yard #1, and begins the day on the ground,
find E[τ1].

(c) Suppose that if the squirrel is on the ground in yard #2 and makes a sudden
dash for the tree, then there is a probability of 1/2 that the squirrel will catch
the eye of a bird of prey and be caught. Let τ2 be the time the squirrel is caught.
Assuming that the squirrel lives in yard #2, and begins the day on the ground,
find E[τ2].



Chapter 2

Discrete Time Markov Chains in
the Life Sciences

In this Chapter, we review some basic discrete time Markov chain models used in
the life sciences. In Section 2.1 we discuss models of genetic inheritance, in Section
2.2 we discuss discrete time birth and death models, and in Section 2.3 we discuss
branching processes. Both birth and death models and branching processes have
many applications outside the life sciences.

2.1 Genetic Models

2.1.1 Mendelian inheritance

In the mid-19th century, an Augustinian friar named Gregor Mendel performed a
number of experiments on pea plants that paved the way for our understanding of
genetic inheritance. He is now known as the “father of modern genetics.”

To explain and understand Mendel’s experiments, some terminology is required.
A cell with two sets of chromosomes, with one set coming from each parent, is called
diploid. Chromosomes are long strands of organized DNA, and a gene is a region
of DNA that encodes a functional RNA or protein product. Each gene can come
in multiple different alleles , and different possible observable traits of the cell (or
organism) depend upon which different types of alleles are present. For example, in
his work on pea plants Mendel predicted that there were alleles for, among other
things: tall and dwarf plants, round and wrinkled seeds, and yellow and green seeds.

To come to his conclusions, Mendel made a series of experiments and observations,
which will be described here in the setting of tall and dwarf pea plants. First, Mendel
observed that if he took tall plants that had been bred from a line of only tall plants,
and cross-bred them with dwarf plants that had been bred from a line of only dwarf
plants, then the resulting plants were all tall. Call this new generation of plants
generation one. Next, he bred plants from generation one and produced a second
generation of plants. In this second generation, roughly a quarter of the plants were
now dwarfs, even though none of the plants from the first generation were dwarfs.

61
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Mendel observed the above behavior of one trait dominating another in the first
generation, followed by a 3:1 ratio in the second generation for all traits he had under
consideration.

From these observations we can make the following conclusions, which still form
the basic understanding we have today. Each pea plant has two genes, one from each
parent, that determines each observable trait. Each gene can come in one of two
alleles, call them A and a, with one being dominant, such as “tall” in the example
above. Thus, when the gene pair is either AA or Aa (which is equivalent to aA, order
does not matter), the dominant trait is observed, and only when the gene sequence
is aa does the recessive trait emerge. The combination of alleles, AA, Aa, and aa are
called genotypes. The observable traits are often called phenotypes.

We will use this knowledge to study a well known model of genetic inbreeding
(see also [1] and [13]). Consider two randomly chosen individuals, who we will call
the zeroth generation, that are mated to yield a first generation. Next, two offspring
of opposite sex are randomly selected from this first generation and are mated. This
gives rise to a second generation. Two individuals of opposite sex are randomly
selected from this second generation and are used to produce a third generation.
This processes then continues indefinitely.

We formulate a discrete time Markov chain in the following way. Let X0 give the
genotypes of the original individuals in the zeroth generation and for n ≥ 1 let Xn

give the genotypes of the randomly chosen pair from the nth generation. Note that
the pair with genotype Xn are the parents of the entire (n + 1)st generation. There
are six possible values for Xn,

Xn Genotypes Xn Genotypes
1 AA× AA 4 Aa× aa
2 AA× Aa 5 AA× aa
3 Aa× Aa 6 aa× aa

,

where we note that order of the genotypes of the individuals does not matter. That
is, AA × Aa is the same as Aa × AA. We must now find the associated transition
probabilities for the chain.

First, note that if the genotype pair of a couple is AA×AA, that is if both parents
have genotype AA, then all of their offspring necessarily have genotype AA, and so
p11 = 1. Similarly, we have p66 = 1.

Now consider the possibility that the genotype pairing is of type 2, that is AA×Aa.
Consider a specific offspring of this pairing and let Z1 ∈ {A, a} be the allele passed
down to the offspring from the parent with genotype AA, and let Z2 ∈ {A, a} be the
allele passed down to the offspring from the parent with genotype Aa. Finally, let Y
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be the genotype of a randomly selected offspring. We then have

P (Y = AA) = P (Z1 = A,Z2 = A) = P (Z1 = A)P (Z2 = A) = 1× 1
2

= 1
2

P (Y = Aa) = P (Z1 = A,Z2 = a) + P (Z1 = a, Z2 = A)

= P (Z1 = A)P (Z2 = a) + P (Z1 = a)P (Z2 = A)

= 1× 1
2

+ 0

= 1
2

P (Y = aa) = P (Z1 = a, Z2 = a) = P (Z1 = a)P (Z2 = a) = 0.

Thus, letting Y1 and Y2 be the genotypes of two randomly chosen offspring, we have
that

P (Y1 × Y2 = AA× AA) = P (Y1 = AA)P (Y2 = AA) = 1
4

P (Y1 × Y2 = AA× Aa) = P (Y1 = AA)P (Y2 = Aa) = 1
4

P (Y1 × Y2 = Aa× AA) = P (Y1 = Aa)P (Y2 = AA) = 1
4

P (Y1 × Y2 = Aa× Aa) = P (Y1 = Aa)P (Y2 = Aa) = 1
4
.

Thus, recalling that AA× Aa = Aa× AA, we have that

p21 = 1
4
, p22 = 1

2
, and p23 = 1

4
.

Continuing in this manner, the transition matrix for this six state Markov chain is

P =

1

2

3

4

5

6



1 0 0 0 0 0
1
4

1
2

1
4

0 0 0
1
16

1
4

1
4

1
4

1
8

1
16

0 0 1
4

1
2

0 1
4

0 0 1 0 0 0

0 0 0 0 0 1


, (2.1)

where the states have been listed to the left of the transition matrix for reference.
Note that the communication classes are {1}, {6}, and {2, 3, 4, 5} with only classes
{1} and {6} begin recurrent (since states 1 and 6 are absorbing).

We wish to calculate the relevant transition probabilities discussed in Section 1.6.
Therefore, we reorder the states to be 1, 6, 2, 3, 4, 5, yielding the transition matrix

P̃ =

1
6

2

3

4

5



1 0 0 0 0 0
0 1 0 0 0 0
1
4

0 1
2

1
4

0 0
1
16

1
16

1
4

1
4

1
4

1
8

0 1
4

0 1
4

1
2

0

0 0 0 1 0 0


.
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Therefore, using the notation of Section 1.6,

Q =


1
2

1
4

0 0
1
4

1
4

1
4

1
8

0 1
4

1
2

0

0 1 0 0

 , (I −Q)−1 =


8
3

4
3

2
3

1
6

4
3

8
3

4
3

1
3

2
3

4
3

8
3

1
6

4
3

8
3

4
3

4
3

 , U =


1
4

0
1
16

1
16

0 1
4

0 0

 ,

and

(I −Q)−1U =


3
4

1
4

1
2

1
2

1
4

3
4

1
2

1
2

 .

Note also that

(I −Q)−1~1 =


29
6

17
3

29
6

20
3

 .

We may now make the following conclusions.

1. If X0 = 2, i.e. genotype AA× Aa, then the probability of eventual absorption
into state 1, AA × AA, is 3/4 and the probability of absorption into state 6,
aa× aa, is 1/4. This is seen in the first row of the matrix (I −Q)−1U .

2. If X0 ∈ {3, 5}, that is if the initial genotype pairing is of type Aa × Aa or
AA × aa, then there are equal probabilities of absorption in states 1 and 6.
This should be intuitive via symmetry of the alleles A and a.

However, the expected number of steps to achieve such absorption is not the
same. For X0 = 3, the expected number of steps to absorption is 17

3
= 5.666 . . . ,

whereas if X0 = 5 the expected number of steps is 20
3

= 6.666 . . . . Note that
the difference of 1 in the expected number of steps until absorption can be
understood by observing that if the initial genotype is AA×aa, then all offspring
of the original pairing will have genotype Aa.

2.1.2 The Wright-Fisher Model

We consider another model from population genetics, which was first developed by
Ronald Fisher, and later extended by Sewall Wright. In this model we assume the
existence of N diploid (two copies of each gene) individuals. Thus, there are a total
of 2N genes in the gene pool. We make the following assumptions:

1. The number of individuals remains constant, at N , from generation to genera-
tion.
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2. The genes for any individual in the (n+ 1)st generation are randomly selected
(with replacement) from the pool of genes in the nth generation.

Note that the last assumption allows us to disregard the individuals, and only consider
the gene pool itself.

We suppose we have two alleles of the gene in question, which we denote by A and
a. We let Xn ∈ {0, 1, . . . , 2N} denote the number of alleles of type A in the entire gene
pool. Oftentimes A is assumed to be a mutant that has entered the population. We
are interested in the probabilities associated with fixation, meaning when the system
becomes homogeneous in A, which occurs when Xn = 2N and A has overtaken the
population, or in a, which occurs when Xn = 0 and the mutant has been erased from
the population.

We build our Markov model by finding the transition probabilities. Supposing
that Xn = i, for some i ≥ 0, what is the probability that Xn+1 = j? Because of our
simplifying assumptions, we see that, conditioned on Xn = i, the value of Xn+1 is a
binomial(n, p) random variable with parameters n = 2N and p = i/(2N). Therefore,

pij =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j

for i, j ∈ {0, . . . , 2N}. (2.2)

Let g0(j) denote the probability that the chain is eventually absorbed by state 0,
given that it started in state j. That is, g0(j) is the probability that the allele A is
eventually erased from the population, given an initial abundance of j. We recall that
we have methods, from Section 1.6, for the calculation of such probabilities. However,
it is not clear how to use those methods here. Trying a first step analysis, we are led
to the system of equations,

g0(j) = 1 · pj,0 + g0(1)pj,1 + · · ·+ g0(2N − 1)pj,2N−1, j ∈ {1, 2, . . . , 2N − 1}.

These equations do not look very promising. A different method is required to solve
this problem elegantly.

We begin by noting that for each i ∈ {0, 1, . . . , 2N} we have

E
[
Xn+1

∣∣∣ Xn = i
]

= i,

in which case E[Xn+1|Xn] = Xn. Taking expectations of both sides yields

E[Xn+1] = E[Xn],

which is valid for all n ≥ 0. Therefore, if X0 = j we have

Ej[Xn+1] = Ej[Xn] = · · · = Ej[X1] = Ej[X0] = j,

for all n ≥ 0. In particular, we now trivially have

lim
n→∞

Ej[Xn] = j.

On the other hand, assuming that X0 = j, the limit limn→∞Xn exists and is
either state 0 with probability g0(j), or state 2N with probability g2N(j). We may
use the following theorem, which we state without proof. (See [9] or Exercise 2.16 for
a proof in our case.)
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Theorem 2.1 (Bounded convergence theorem). Suppose that Xn is a sequence of
random variables for which |Xn| ≤M for some M > 0, and limn→∞Xn exists with a
probability of one. Then,

lim
n→∞

E[Xn] = E
[

lim
n→∞

Xn

]
.

Since in our case each Xn is bounded by 2N the theorem applies and we may
conclude that

j = lim
n→∞

E[Xn] = E
[

lim
n→∞

Xn

]
= 0 · g0(j) + 2N · (1− g0(j)).

Solving yields

g0(j) =
2N − j

2N
and so g2N(j) =

j

2N
.

2.1.3 Phylogenetic Distance and the Jukes-Cantor Model

We present a simple model for the phylogenetic distance between two strands of DNA,
the Jukes-Cantor model. The basic question is the following: given two strands of
DNA, how many mutations have taken place to get from one to the other? Answering
this type of question allows for the construction of a tree of life, showing which species
are more, or less, related to others. In Exercise 2.18 we present another model for the
phylogenetic distance between two strands of DNA, the Kimura two-paramter model.

We start by considering a single strand of DNA, which is molecule carrying most
of the genetic instructions used in living cells. Each strand of DNA is a long sequence
of just four nucleotides: adenine, guanine, cytosine, and thymine (A, G, C, and T).1

We will consider the evolutionary history of a single strand of DNA as it is passed
down through generations.

Instead of modeling the entire DNA strand, we begin by considering a single
nucleotide on this strand of DNA and will let Xn give the state of the nucleotide in
generation n ∈ {0, 1, 2, . . . }. Specifically, we say Xn is in state 1, 2, 3, or 4, if the
nucleotide is the base A, G, C, or T, respectively. We assume that Xn is Markovian
and that there is a probability, ρ ∈ (0, 1), that between one generation and the next a
change in the base takes place. Further, if the base does change, we assume that each
of the other three bases are equally likely to be the next state. These assumptions
lead to the following transition matrix for Xn,

P =


1− ρ ρ/3 ρ/3 ρ/3
ρ/3 1− ρ ρ/3 ρ/3
ρ/3 ρ/3 1− ρ ρ/3
ρ/3 ρ/3 ρ/3 1− ρ

 .

Our first question is the following: after n generations, what is the probability
that this nucleotide is the same value as it was in generation zero. That is, we want

1For example, a human cell is made of billions of nucleotides.
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p
(n)
ii for i ∈ {1, 2, 3, 4}. Note that, by symmetry, this probability will be the same

regardless of the initial state, and so we may simply find p
(n)
11 .

Note that the first component of e1P
n, where e1 = (1, 0, 0, 0), gives the desired

probability. The matrix P is doubly stochastic and so the left eigenvector of P with
eigenvalue 1 is

(1
4
, 1

4
, 1

4
, 1

4
).

The only other eigenvalue of P is 1−(4/3)ρ, which has the three linearly independent
left eigenvectors,

(1
4
, 0, 0, −1

4
), (1

4
, 0, −1

4
, 0) and (1

4
, −1

4
, 0, 0).

Therefore, we may write

e1 = (1
4
, 1

4
, 1

4
, 1

4
) + (1

4
, 0, 0, −1

4
) + (1

4
, 0, −1

4
, 0) + (1

4
, −1

4
, 0, 0),

and conclude

e1P
n = (1

4
, 1

4
, 1

4
, 1

4
) +

(
1− 4

3
ρ
)n · (3

4
, −1

4
, −1

4
, −1

4

)
.

Therefore,
p

(n)
11 = 1

4
+ 3

4

(
1− 4

3
ρ
)n
.

Note also that the probability that this particular nucleotide is not the same after n
generations is

1− p(n)
11 = 3

4
− 3

4

(
1− 4

3
ρ
)n
. (2.3)

Now we reconsider the two strands of DNA. Suppose we observe that the fraction
of nucleotides that are different is γ ∈ [0, 1]. Assuming that the mutations of the nu-
cleotides occur independently from one antother, the expected fraction of nucleotides
that are different after n generations is given by (2.3). Therefore, we set

γ = 3
4
− 3

4

(
1− 4

3
ρ
)n
,

and solve for n

n =
ln(1− (4/3)γ)

ln(1− (4/3)ρ)
,

which yields n as a function of γ, which is observable, and ρ. If we somehow know ρ,
perhaps through other records, then we can figure out n. However, if ρ is unknown,
then we obviously can not find n.

Note that according to our model, the number of mutations, per site, over n
generations is a binomial random variable with parameters n and ρ. Hence, nρ gives
the expected number of mutations that have taken place. Assuming that ρ is small,
we may use a Taylor expansion of ln(1 + x) to conclude

ln(1− (4/3)ρ) = −(4/3)ρ+O(ρ2),

which yields

nρ =
ln(1− (4/3)γ)

ln(1− (4/3)ρ)
ρ ≈ ln(1− (4/3)γ)

−(4/3)ρ
ρ = −3

4
ln

(
1− 4

3
γ

)
.

The Jukes-Cantor phylogenetic distance is therefore defined as dJC = −3
4

ln(1− 3
4
γ).
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Example 2.2. Suppose that two strands of DNA have been found, one from the
distant past and one in the present. Suppose further that the strands differ in 22.3%
of the nucleotide sites. Then, the Jukes-Cantor distance for the two strands is

dJC = −3
4

ln
(
1− 4

3
× 0.223

)
= 0.26465.

Note that this value, giving the expected number of substitutions per site over the
time period of interest, is higher than the observed 22.3% differences. This should
be intuitive since dJC takes into account mutations that have taken place, and then
changed back. That is, it could be that the nucleotide changed from A to G and then
back to A at different points in time.

If we also somehow know that the mutation rate is ρ = .002/generation, then the
difference, in generations, between the strands can be estimated to be

n = dJC
1

ρ
≈ 0.26465

.002
≈ 132 generations.

4

2.2 Discrete Time Birth and Death models

In this section, we consider random walks on {0, 1, 2, . . . } that can only undergo one
of three transition types: increase by one, decrease by one, or stay the same. These
Markov chains are useful in a variety of applications and are often used in modeling
the size of some population. They are often called birth and death models for obvious
reasons. We have seen similar Markov chains in Examples 1.14, 1.15, 1.16 and 1.45,
and will revisit birth and death processes in the continuous time setting in Section
4.6.

More formally, we will consider a discrete time Markov chain on S = {0, 1, 2, . . . }
with transition probabilities

pij =


pi, if j = i+ 1
qi, if j = i− 1

1− pi − qi, if j = i,
0, else

,

where pi, qi ≥ 0, pi+ qi ≤ 1, and q0 = 0, which ensures that 0 is a lower bound for the
chain. The values pi and qi are often called the birth rate and death rate, respectively.
Note that the transition probabilities are allowed to be state dependent.

Example 2.3. The deterministically monotone chain of Example 1.11 is a birth
process with pi = 1 for all i ≥ 0. 4

Example 2.4. The Gambler’s ruin of Example 1.45, which is random walk on
{0, 1, . . . , N} with absorbing boundaries, is a birth and death process with pi = p
and qi = 1− p for all 1 ≤ i ≤ N − 1, and p0 = q0 = pN = qN = 0. 4
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Example 2.5 (Population size). We develop a simple model for a population that
can change due to single births and deaths. Let N > 0 be a positive integer and let
λ, µ > 0 satisfy λN + µN ≤ 1. We assume transition rates

pi =

{
λi 0 ≤ i ≤ N − 1

0 else
, and qi =

{
µi 0 ≤ i ≤ N

0 else
.

The parameter N can be thought of as the carrying capacity for the system. Note that
because pN = 0, the natural state space for the model is the irreducible component
{0, 1, . . . , N}. 4

Example 2.6 (Queueing Models). Suppose that Xn represents the number of people
in line for some service at time n. We suppose that people are arriving at a rate of λ,
so that pi = λ for i ≥ 0. Customers may also leave the line because they have been
served. We can choose how to model the service times in a number of ways.

(a) (Single server) If there is a single server, and that person always serves the first
person in line, then we take qi = µ > 0 if i ≥ 1, and q0 = 0. We require that
λ+ µ ≤ 1.

(b) (K servers) If there are K ≥ 1 servers then the first K people in line are being
served. Hence, for some µ > 0 satisfying λ+Kµ ≤ 1 we take

qi =

{
iµ, if i ≤ K
Kµ, if i ≥ K

.

There are other options for choosing how the people in line can be served, but we
delay that discussion until later. 4

Recurrence, transience, and stationary distributions

We begin by searching for a condition on the values pi and qi that will allow us to
determine when a discrete time chain is recurrent, and when it is transient. Our tool
will be Theorem 1.76. We restrict our attention to chains satisfying the following
conditions, which guarantee {0, 1, . . . } is irreducible: (i) pi > 0 for all i ≥ 0, and (ii)
qi > 0 for all i ≥ 1. The analysis carried out here will also be helpful in the study of
continuous time birth and death models in Section 4.6.

Following Theorem 1.76, we set i = 0 as our reference state and look for a nonzero
vector y satisfying

yn = pnyn+1 + qnyn−1 + (1− pn − qn)yn, n ≥ 1,

y0 = 0, and 0 ≤ yn ≤ 1 for all n. Rearranging the above relation yields

yn − yn+1 =
qn
pn

(yn−1 − yn). (2.4)
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Iterating (2.4) gives

yn − yn+1 =
q1 · · · qn
p1 · · · pn

(y0 − y1) = − q1 · · · qn
p1 · · · pn

y1,

which is valid for n ≥ 1 and where the final equality holds since y0 = 0. Therefore,
for n ≥ 1,

yn+1 = yn+1 − y0 =
n∑
k=0

(yk+1 − yk) = y1

n∑
k=0

q1 · · · qk
p1 · · · pk

, (2.5)

where the k = 0 term in the sum is taken to be equal to 1. We can therefore find a
solution, y, satisfying all the requirements of Theorem 1.76 if and only if the series
in (2.5) converges, in which case we define

Z =
∞∑
k=0

q1 · · · qk
p1 · · · pk

<∞, (2.6)

where the k = 0 term in the sum is equal to one. We have shown the following.

Proposition 2.7. An irreducible birth and death chain with birth rates {pi} and death
rates {qi} is transient if and only if

∞∑
k=1

q1 · · · qk
p1 · · · pk

<∞.

Example 2.8 (Example 2.6 continued). Let λ, µ > 0 satisfy λ+ µ ≤ 1 and consider
the single server queue with birth rates pi = λ, for i ≥ 0, and death rates qi = µ, for
i ≥ 1. We have

∞∑
k=1

q1 · · · qk
p1 · · · pk

=
∞∑
k=1

(µ
λ

)k
,

which converges if and only if µ < λ. Thus, by Proposition 2.7 the single server queue
is transient if and only if the arrival rate is strictly greater than the rate at which the
server can work, and recurrent otherwise.

Fix an integer K > 0 and now suppose that λ + Kµ ≤ 1. The K-server queuing

model has birth rate pi = λ and death rate qi =

{
iµ, if i ≤ K
Kµ, if i ≥ K

. Thus, for n ≥ K

we have

q1 · · · qn
p1 · · · pn

=
q1 · · · qK · qK+1 · · · qn

p1 · · · pn
=

K!

KK

(
Kµ

λ

)n
,

and the sum (2.6) converges, and the chain is transient, if and only if Kµ < λ. 4

We now turn to the question of determining when a birth and death chain is
positive recurrent. By Theorem 1.74, it is sufficient to find conditions that determine
whether or not the model has a stationary distribution.
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For a birth and death chain, π is a stationary distribution if and only if
∑∞

k=0 πk =
1 and the following conditions are satisfied,

πk = πk−1 · pk−1 + πk · (1− pk − qk) + πk+1 · qk+1, if k ≥ 1 (2.7)

π0 = π0 · (1− p0) + π1 · q1. (2.8)

Rearranging equation (2.8) shows

q1 · π1 − p0 · π0 = 0,

while rearranging terms in equation (2.7) shows that for k ≥ 1

qk+1πk+1 − pkπk = qkπk − pk−1πk−1.

Iterating the above shows that if π satisfies (2.7) and (2.8), then for all k ≥ 0

qk+1πk+1 − pkπk = q1π1 − p0π0 = 0. (2.9)

Solving (2.9) shows that for k ≥ 0

πk+1 =
pk
qk+1

πk,

and we conclude that for k ≥ 1

πk =
pk−1

qk
πk−1 = · · · = p0p1 · · · pk−1

q1q2 · · · qk
π0.

We therefore see that π can be made to satisfy conditions (2.7) and (2.8), while also
being a probability vector, if and only if

∞∑
k=1

p0p1 · · · pk−1

q1q2 · · · qk
<∞. (2.10)

Specifically, when the sum converges we set

W =
∞∑
k=0

p0p1 · · · pk−1

q1q2 · · · qk
,

where the k = 0 term in the sum is taken to be equal to one, and let π0 = W−1. We
then have

∞∑
k=0

πk = π0 + π0

∞∑
k=1

p0p1 · · · pk−1

q1q2 · · · qk
= π0W = 1,

and
πk =

p0p1 · · · pk−1

q1q2 · · · qk
W−1, (2.11)

for k ≥ 1. We collect thoughts with the following proposition.
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Proposition 2.9. An irreducible birth and death chain with birth rates {pi} and death
rates {qi} is positive recurrent if and only if

∞∑
k=1

p0p1 · · · pk−1

q1q2 · · · qk
<∞.

In this case, π0 =

(
∞∑
k=0

p0p1 · · · pk−1

q1q2 · · · qk

)−1

, and πk = p0p1···pk−1

q1q2···qk
π0.

Example 2.10 (Example 2.6 continued). Consider again the queuing network with
a single server. In this case

∞∑
k=0

p0p1 · · · pk−1

q1q2 · · · qk
=
∞∑
k=0

(
λ

µ

)k
=

1

1− (λ/µ)
,

where the final equation holds provided that λ < µ. Hence, when λ < µ the chain is
positive recurrent and the equilibrium distribution is

πk =

(
1− λ

µ

)(
λ

µ

)k
, for k ≥ 0. (2.12)

Combining this result with Example 2.6 shows that when λ = µ the chain is null
current. 4

If the natural state space of the birth and death chain is finite, but still irre-
ducible, as in Example 2.5, the same analysis applies. Specifically, suppose that
S = {0, 1, . . . , N} is an irreducible component of a birth and death chain. When
searching for a stationary distribution, we still require that both (2.7) and (2.8) hold
for k ∈ {0, 1, . . . , N − 1}. These equations alone imply that we still have

πk =
p0p1 · · · pk−1

q1q2 · · · qk
π0, for k ≤ N.

In order to ensure that π is a probability vector, we set

π0 =

(
N∑
k=0

p0p1 · · · pk−1

q1q2 · · · qk

)−1

,

where we again take the k = 0 term in the sum to be equal to one. Note that the extra
boundary condition for the finite state space chain, πN = πN · (1− qN) + πN−1 · pN−1,
is satisfied by this distribution.

Expected time until extinction

Suppose that Xn, n ≥ 0, is a birth and death model in which {1, 2, . . . , } is an irre-
ducible communication class and 0 is an absorbing state. For example, see Example



CHAPTER 2. DISCRETE TIME MARKOV CHAINS IN THE LIFE SCIENCES73

2.5. Suppose further that the probability of absorption into state 0 is equal to one.
How long do we expect to wait before absorption?

Thus far, first step analysis has been useful, so we continue with it in the obvious
manner. We let H0 = inf{n ≥ 0 : Xn = 0} and for k ∈ {0, 1, 2, . . . } let τk = Ek[H0].
We have that τ0 = 0, and by a first step analysis for k ≥ 1 we have

τk = Ek[H0] =
∞∑
`=1

`P (H0 = `|X0 = k)

=
∞∑
`=1

`P (H0 = `|X1 = k + 1)pk +
∞∑
`=1

`P (H0 = `|X1 = k − 1)qk

+
∞∑
`=1

`P (H0 = `|X1 = k)(1− pk − qk)

=
∞∑
`=1

`P (H0 = `− 1|X0 = k + 1)pk +
∞∑
`=1

`P (H0 = `− 1|X0 = k − 1)qk

+
∞∑
`=1

`P (H0 = `− 1|X0 = k)(1− pk − qk),

where we used time-homogeneity in the last step. By reindexing we have

τk =
∞∑
`=0

(`+ 1)P (H0 = `|X0 = k + 1)pk +
∞∑
`=0

(`+ 1)P (H0 = `|X0 = k − 1)qk

+
∞∑
`=0

(`+ 1)P (H0 = `|X0 = k)(1− pk − qk)

= pk(1 + τk+1) + qk(1 + τk−1) + (1− pk − qk)(1 + τk).

After some rearranging, we find that for k ≥ 1

τk+1 = τk +
qk
pk

(
τk − τk−1 −

1

qk

)
. (2.13)

For example, because τ0 = 0,

τ2 = τ1 +
q1

p1

(
τ1 −

1

q1

)
. (2.14)

Similar to the analyses for transience and positive recurrence, we search for a usable
pattern. For k = 2 in (2.13) we have

τ3 = τ2 +
q2

p2

(
τ2 − τ1 −

1

q2

)
= τ2 +

q2

p2

(
q1

p1

(
τ1 −

1

q1

)
− 1

q2

)
= τ1 +

q1

p1

(
τ1 −

1

q1

)
+
q1q2

p1p2

(
τ1 −

1

q1

− p1

q1q2

)
,
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where we have used (2.14) multiple times. Let us think about the next step.

τ4 = τ3 +
q3

p3

(
τ3 − τ2 −

1

q3

)
.

We see that the first term, τ3, was just calculated. We begin to see that a summation
is forming for the general term. The new term in the sum comes from

q3

p3

(
τ3 − τ2 −

1

q3

)
=
q3

p3

(
q1q2

p1p2

(
τ1 −

1

q1

− p1

q1q2

)
− 1

q3

)
=
q1q2q3

p1p2p3

(
τ1 −

1

q1

− p1

q1q2

− p1p2

q1q2q3

)
,

and the pattern is emerging. In general, we have for m ≥ 1

τm = τ1 +
m−1∑
k=1

q1 · · · qk
p1 · · · pk

[
τ1 −

1

q1

−
k∑
i=2

p1 · · · pi−1

q1 · · · qi

]
, (2.15)

where we interpret the second summation as zero when k < 2. Therefore, if we can
determine τ1, we are done.

To determine τ1, the expected amount of time needed to hit state zero conditioned
upon an initial population of one, we change our model slightly. We let Yn, n ≥ 0,
be a Markov chain with the same transition rates as our original model except that
p̃0 = P (Y1 = 1|Y0 = 0) = 1. That is, if Yn = 0 for some n ≥ 0, then Yn+1 = 1 with
probability one. Now let T0 = inf{n ≥ 1 : Yn = 0} and note that E0[T0] = τ1 + 1,
where τ1 is what we want.

The key observation to make is that computing E0[T0] is easy because we know
from Theorem 1.72 that it is infinite if Yn is null recurrent and is equal to 1/π̃0, where
π̃0 is the stationary distribution of Yn, if Yn is positive recurrent.

In the case that Yn is positive recurrent we use our machinery from before and
find that

π̃0 =
1

1 +
∑∞

k=1
p0p1···pk−1

q1q2···qk

.

Therefore,

τ1 = E[T0]− 1 = π̃−1
0 − 1

=
∞∑
k=1

p0p1 · · · pk−1

q1q2 · · · qk
=

1

q1

+
∞∑
k=2

p1 · · · pk−1

q1q2 · · · qk
. (2.16)

Plugging (2.16) into (2.15) yields

τm = τ1 +
m−1∑
k=1

[
q1 · · · qk
p1 · · · pk

∞∑
i=k+1

p1 · · · pi−1

q1 · · · qi

]
.

This formula is legitimately scary, however such is life. In the finite state space case,
S = {0, 1, 2, . . . , N}, the only things that change in the formulas for τ1 and τm are
that the infinities become N ’s.
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Example 2.11 (Example 2.6 continued). Consider a single server queue with arrival
rate λ and service rate µ. Assume that λ < µ. Then

τ1 =
1

µ
+
∞∑
k=2

λk−1

µk
=

1

λ

∞∑
k=1

λk

µk
=

1

λ

(
∞∑
k=0

λk

µk
− 1

)

=
1

λ

(
1

1− (λ/µ)
− 1

)
=

1

µ− λ
.

Note that τ1 tends to infinity as λ→ µ. 4

2.3 Branching Processes

The study of branching processes arose from a very natural question: why, even
in a growing population, do some surnames die out? Specifically, in 1873 Francis
Galton posed the following problem. Suppose that N adult males in a population
each have different surnames. Suppose that in each generation the probability of a
given individual to have i ∈ {0, 1, 2, . . . } male children who survive to adulthood is
pi. What proportion of the surnames become extinct after r generations? It was
Henry William Watson who helped solve the problem, and the study of branching
processes had begun. Because it was Galton and Watson who first popularized the
models introduced below, the are commonly referred to as Galton-Watson processes.

Branching processes have proven to be quite useful in a number of arenas, and
their study has become a large subfield of probability theory.

2.3.1 Terminology and notation

We want a model for the size of a population satisfying the following assumptions.

1. Each individual independently produces a random number of offspring.

2. The distribution for the number of offspring is the same for each individual.

3. After reproducing, each individual dies.

We now turn the above assumptions into a precise mathematical model. For
positive integers n and k, let Y

(n)
k be independent and identically distributed random

variables with range {0, 1, 2, . . . } and probability mass function

P (Y
(n)
k = i) = pi.

We will suppose throughout this section that p0 > 0 and p0 + p1 < 1. Assuming X0

is given, we define Xn recursively via the formula

Xn =

Xn−1∑
k=1

Y
(n)
k , for n ≥ 1, (2.17)
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where any sum of the form
∑0

k=1 is taken to be zero. Thus, zero is seen to be an
absorbing state. The process Xn is called a branching process.

Note that Xn, n ≥ 0, satisfies the three assumptions detailed above. Moreover, Xn

satisfies the one-step Markov condition given in (1.2) since Xn is a function of only
Xn−1 and random variables that are independent from {X0, X1, . . . , Xn−1}. Thus, by
Proposition 1.4, Xn, also satisfies the Markov property of Definition 1.3.

It is not easy to compute the transition probabilities for this model, which are

pij = P (Xn+1 = j | Xn = i) = P (Y
(n+1)

1 + Y
(n+1)

2 + · · ·+ Y
(n+1)
i = j). (2.18)

Equation (2.18) can be solved using convolutions, but that solution is quite messy and
we do not choose that route. Instead, we begin by simply computing how the mean
of the process evolves in time, and then utilizing probability generating functions to
solve the original problem considered by Galton and Watson.

2.3.2 Behavior of the mean

Let µ = E[Y
(1)

1 ] denote the mean number of offspring produced per individual. We
assume throughout that µ <∞. First note that from (2.17),

E[Xn|Xn−1 = i] = E

[
i∑

k=1

Y
(n)
k

]
=

i∑
k=1

E
[
Y

(n)
k

]
= i · µ,

implying that for n ≥ 1
E[Xn|Xn−1] = µ ·Xn−1. (2.19)

Taking expectations of (2.19) yields E[Xn] = µ · E[Xn−1] for n ≥ 1. Applying this
relation repeatedly gives that for n ≥ 1

E[Xn] = µnE[X0].

We can already draw some interesting conclusions from this calculation. Suppose
that µ < 1. Then, assuming E[X0] < ∞, we have that E[Xn] → 0, as n → ∞.
Moreover, we have the following crude estimate

E[Xn] =
∞∑
j=0

jP (Xn = j) ≥
∞∑
j=1

P (Xn = j) = P (Xn ≥ 1).

Therefore, if µ < 1, we may conclude

P (Xn ≥ 1) ≤ E[Xn] = µnE[X0]→ 0, as n→∞.

Taking complements we find

lim
n→∞

P (Xn = 0) = 1. (2.20)
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Equation (2.20) says that the probability of the process having died out by time
n goes to 1, as n → ∞. However, this is not the same as saying “with probability
one, the process eventually dies out,” which we would write mathematically as

P
(

lim
n→∞

Xn = 0
)

= 1. (2.21)

However, we can prove that equation (2.21) also holds in our current setting, which
we do now.

Let En = {Xn = 0} be the event that the process has died out by time n. Then,
since 0 is an absorbing state, En ⊂ En+1, and {En} is an increasing sequence of sets.
Further, {

lim
n→∞

Xn = 0
}

=
∞⋃
i=1

Ei = lim
n→∞

n⋃
i=1

Ei = lim
n→∞

En

is the event that the process dies out at some time. By the continuity of probability
functions (see [4]) we have

P
(

lim
n→∞

Xn = 0
)

= P
(

lim
n→∞

En

)
= lim

n→∞
P (En) = lim

n→∞
P (Xn = 0) = 1. (2.22)

Therefore, having (2.20) allows us to conclude that, with probability equal to one,
the population eventually dies out. That is, (2.21) holds.

It is not yet entirely clear what happens when µ = 1 or µ > 1. In the case µ = 1
we get the interesting result that E[Xn] = E[X0] for all n, so the expected size of the
population stays constant. When µ > 1 the mean grows exponentially. However, this
last fact does not imply that the process will not die out. To easily see this, simply
note that there is always a non-zero probability that the population will go extinct
in the next generation, regardless of how large the population is.

2.3.3 Probability of extinction

For k, n ≥ 0 we define

an(k) = Pk(Xn = 0) = P (Xn = 0 | X0 = k), and a(k) = lim
n→∞

an(k).

Note that by the argument in and around (2.22), we have

a(k) = lim
n→∞

Pk(Xn = 0) = Pk

(
lim
n→∞

Xn = 0
)
.

and a(k) is the probability that the population eventually dies out given an initial
population of k.

If there are originally k people in the population, then for the entire population to
die out, each of the k lineages (termed branches) must die out. Because the branches
are all acting independently we may immediately conclude

a(k) = (a(1))k,
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and so it suffices to determine a(1). We call a(1) the extinction probability of the
chain and denote it by a.

Let H0 = inf{n ≥ 0 : Xn = 0}. We are interested in computing a = P1(H0 <∞).
A first step analysis yields

a =
∞∑
k=0

pkP (H0 <∞|X0 = k) =
∞∑
k=0

pka(k) =
∞∑
k=0

pka
k.

Hence, a ∈ [0, 1] satisfies the equation a =
∑∞

k=0 pka
k, and if pk = 0 for all but a

finite number of k, then a is seen to be a root of a polynomial. However, polynomials
can have multiple roots, and it is not yet clear how to uniquely identify a.

The key observation to make is that the function ϕ(a) =
∑∞

k=0 pka
k = E[aY

(1)
1 ]

is the probability generating function of the random variable Y
(1)

1 . Since probability
generating functions will play a large role in the remainder of this section, we pause
for a mathematical aside to discuss them.

Mathematical aside (Probability generating functions). The probability generating
function of a random variable X is the function ϕ(s) = E[sX ]. If we wish to highlight
the random variable X in the notation, we will write ϕX .

We will assume that X takes values in {0, 1, 2, . . . }, in which case

ϕ(s) =
∞∑
k=0

skP (X = k).

A few properties are immediate.

1. ϕ(0) = P (X = 0) and ϕ(1) = 1.

2. The domain of convergence for the infinite sum includes |s| ≤ 1. Therefore, the
sum can be differentiated term-wise and for |s| ≤ 1,

ϕ′(s) =
∞∑
k=1

ksk−1P (X = k), and ϕ′′(s) =
∞∑
k=2

k(k − 1)sk−2P (X = k),

(2.23)

where the second derivative can be taken term-wise so long as E[X] <∞.

3. From (2.23), we have
ϕ′(s) > 0, for s ≥ 0,

so long as P (X ≥ 1) > 0, and

ϕ′′(s) > 0, for s ≥ 0,

so long as P (X ≥ 2) > 0. In this case, ϕ is strictly convex.

Note that for the branching processes we are considering, we are assuming both
p0 > 0 and p0 + p1 < 1, showing that ϕ

Y
(n)
k

is strictly convex on s ≥ 0.
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4. Possibly defining the derivative as a limit from the left, we see

ϕ′(1) =
∞∑
k=1

kP (X = k) = E[X]

ϕ′′(1) =
∞∑
k=2

k(k − 1)P (X = k) = E[X2]− E[X].

5. Suppose that X1, X2, . . . , Xn are independent random variables and that each
of ϕXi(s) is finite for 0 ≤ s ≤ 1. Then for 0 ≤ s ≤ 1,

ϕX1+···+Xn(s) = ϕX1(s)ϕX2(s) · · ·ϕXn(s).

This follows from a simple computation

ϕX1+···+Xn(s) = E
[
sX1+···+Xn

]
= E

[
sX1
]
· · ·E

[
sXn
]

= ϕX1(s)ϕX2(s) · · ·ϕXn(s).

4

Returning to our study of branching processes. We see that the extinction prob-
ability a satisfies

a = ϕ
Y

(n)
k

(a).

Of course, a = 1 is one solution to the the above equation. The question is whether
or not there are more such solutions in the interval [0, 1]. To begin answering this
question, we note that by the strict convexity of ϕ

Y
(n)
k

, we may conclude that there

can be at most two solutions to the equation on the interval [0, 1]. See Figure 2.1.
Thus, we must only answer the following: (i) when will there be two solutions, and
(ii) if there are two solutions, which solution provides the desired probability?

It will be useful to find the probability generating function of Xn, n ≥ 1, given
that X0 = 1. We will show that, conditioned on X0 = 1,

ϕXn(s) = ϕ
Y

(1)
1
◦ ϕ

Y
(1)
1
◦ · · · ◦ ϕ

Y
(1)
1

= ϕ
(n)

Y
(1)
1

(n compositions). (2.24)

First, note that (2.24) holds by definition in the case n = 1 (recall that we are
assuming X0 = 1). We show the general case by induction on n. By a first step
analysis we have

ϕXn(s) =
∞∑
k=0

P1(Xn = k)sk =
∞∑
k=0

[
∞∑
j=0

P1(X1 = j)P1(Xn = k|X1 = j)

]
sk

=
∞∑
j=0

pj

[
∞∑
k=0

P (Xn−1 = k | X0 = j)sk

]
=
∞∑
j=0

pjEj
[
sXn−1

]
. (2.25)

The expectation in the last sum above is the probability generating function of Xn−1

conditioned upon X0 = j. However, this term can be simplified.
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Figure 2.1: The different ways that the generating function can intersect the line
y = s on the interval [0, 1]. There are two possibilities: (a) one intersection at s = 1
or (b) one intersection at s < 1 and one intersection at s = 1. In the case that there is
an intersection at a point strictly before 1, the point of intersection is the extinction
probability, a.

For ` ∈ {1, . . . , j}, let G
(n−1)
` denote the number of descendants at time (n− 1) of

the `th individual of the original population. We see that, given an initial population
of size j, we have Xn−1 = G

(n−1)
1 + · · ·+G

(n−1)
j . Further, the G

(n−1)
` are independent.

Note that G
(n−1)
` has the same distribution as the random variable Xn−1 given an

initial population of X0 = 1. In particular, we have that

Ej
[
sG

(n−1)
`

]
= E1

[
sXn−1

]
= ϕ

(n−1)

Y
(1)
1

(s), (2.26)

where the final equality is from our inductive hypothesis.
Returning to the expectation in (2.25),

Ej
[
sXn−1

]
= Ej

[
sG

(n−1)
1 +···+G(n−1)

j

]
=

j∏
`=1

Ej
[
sG

(n−1)
`

]
=

(
ϕ

(n−1)

Y
(1)
1

(s)

)j
, (2.27)

where the final equality is simply (2.26). Substituting (2.27) into (2.25) yields

ϕXn(s) =
∞∑
j=0

pj

(
ϕ

(n−1)

Y
(1)
1

(s)

)j
= ϕ

Y
(1)
1

(
ϕ

(n−1)

Y
(1)
1

(s)

)
= ϕ

(n)

Y
(1)
1

(s),

giving the desired result.
We are ready to prove the following lemma.
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Lemma 2.12. Let H0 = inf{n ≥ 0 : Xn = 0} and a = P1(H0 <∞) be the extinction
probability of the branching process. Then a is the smallest positive root of the equation
s = ϕ

Y
(1)
1

(s).

Proof. We already know that a = limn→∞ an(1) must satisfy the equation s =
ϕ
Y

(1)
1

(s). Let r denote any root of the equation contained in the interval [0, 1].

We will show that an(1) = P1(Xn = 0) ≤ r for all n ≥ 0. This will imply that
a = limn→∞ an(1) ≤ r, giving the result.

To prove the desired inequality, we first note that it is trivially true for n = 0
because a0(1) = 0. We now proceed by induction on n. Assuming an−1(1) ≤ r, we
have

an(1) = P1(Xn = 0) = ϕXn(0) = ϕ
(n)

Y
(1)
1

(0) = ϕ
Y

(1)
1

(ϕ
(n−1)

Y
(1)
1

(0))

= ϕ
Y

(1)
1

(ϕXn−1(0)) = ϕ
Y

(1)
1

(an−1(1)) ≤ ϕ
Y

(1)
1

(r) = r,

where we have utilized (2.24) twice and the inequality holds because ϕ
Y

(1)
1

is a non-

decreasing function.

Henceforth we denote by ϕ the probability generating function for Y
(1)

1 , ϕ
Y

(1)
1

.

Example 2.13. Suppose that p0 = 0.3, p1 = 0.6, p2 = 0.05, p3 = 0.05. Then
µ = 0.85 and

ϕ(a) = 0.3 + 0.6a+ 0.05a2 + 0.05a3.

Solving the equation a = ϕ(a) yields a ∈ {1, 1.65}. Thus, the extinction probability
is 1. 4

Example 2.14. Suppose that p0 = 0.2, p1 = 0.2, p2 = 0.3, p3 = 0.3. Then µ = 1.7
and

ϕ(a) = 0.2 + 0.2a+ 0.3a2 + 0.3a3.

Solving the equation a = ϕ(a) yields a ∈ {1, 0.291}. Thus, the extinction probability
is 0.291. 4

Example 2.15. Suppose that p0 = 1
4
, p1 = 1

2
, p2 = 1

4
. Then µ = 1 and

ϕ(a) = 1
4

+ 1
2
· a+ 1

4
· a2.

Solving the equation a = ϕ(a) yields a ∈ {1, 1}. Thus, the extinction probability is
1. 4

We now establish the criteria for when a < 1.

Theorem 2.16. For a branching process with p0 + p1 < 1 and p0 > 0, the extinction
probability a satisfies a = 1 if and only if µ = E[Y

(1)
1 ] ≤ 1.
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Proof. Note that we have already proven that if µ < 1, then a = 1. We now suppose
that µ = 1. In this case we know that

ϕ′(1) = E[Y
(1)

1 ] = µ = 1.

By the convexity of ϕ we must have ϕ′(s) < 1 for s < 1. Thus, for any s < 1 we have

1− ϕ(s) =

∫ 1

s

ϕ′(s)ds < 1− s.

That is, ϕ(s) > s. Therefore, there can be no root less than one and we have shown
that in this case the extinction probability is one.

Now we consider the case µ > 1. Then,

ϕ′(1) = µ > 1.

Since we also know that ϕ(1) = 1, there must be an s < 1 with ϕ(s) < s. However,
ϕ(0) = p0 > 0, and so by continuity we have that there must be some a ∈ (0, 1) for
which ϕ(a) = a. Since convexity of ϕ guarantees there can be at most two roots,
Lemma 2.12 shows that this minimal root is the extinction probability.

The case µ = 1 is quite interesting. For example we see that when µ = 1,

E[Xn | Xn > 0] =
∞∑
k=0

kP (Xn = k | Xn > 0) =
∞∑
k=0

k · P (Xn = k,Xn > 0)

P (Xn > 0)

=
1

P (Xn > 0)

∞∑
k=1

kP (Xn = k) =
1

P (Xn > 0)
E[Xn]

=
1

P (Xn > 0)
,

which tends to ∞ as n → ∞. Therefore, the expected value of the size of the
population, conditioned on the population having survived to time n, goes to infinity.

Definition 2.17. The mean of the offspring distribution, E[Y
(1)

1 ] = µ, is called as
the criticality parameter.

• If µ < 1, then the process is called subcritical.

• If µ = 1, then the process is called critical.

• If µ > 1, then the process is called supercritical.

Note that we can now give the solution to Galton’s original question, where there
were N males worried about the longevity of their surnames. After n generations,
the probability that a given surname has gone extinct is an(1) and the probability
that precisely j surnames have gone extinct is(

N

j

)
an(1)j(1− an(1))N−j.
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Because an(1) = ϕ(n)(0), these values can be solved for iteratively. If a < 1 we see
that as n→∞ the probability that exactly j surnames eventually go extinct is(

N

j

)
aj(1− a)N−j,

that is, the probability distribution is binomial(N, a).
We close this section with an example taken from [1].

Example 2.18. Suppose that a mutant gene appears in N individuals in a certain
population, and suppose that the population grows according to a branching process.
We suppose that the mean number of individuals produced by those with the mutant
gene is µ, and that for some small ε > 0

µ = 1 + ε.

What is the approximate probability that the mutant gene will become extinct?
Let a denote the extinction probability (when the population starts with one

mutant). We note that a ≈ 1 because (i) ϕ′(1) = µ = 1 + ε, and (ii) ϕ is strictly
convex. We will now approximate the value of a.

We begin by changing variables by defining θ via the equation a = eθ. Because
a ≈ 1, we know θ ≈ 0. We define M(s) = ϕ(es), and note that M(θ) = ϕ(eθ) =
ϕ(a) = a. Next define K(s) = ln(M(s)) and note that

K(θ) = ln(M(θ)) = ln(a) = ln(eθ) = θ. (2.28)

We will use the first few terms in the Taylor expansion of K around θ ≈ 0, and use
these, in conjunction with (2.28), to approximate θ, and hence a.

It is easy to check that K(0) = 0, K ′(0) = µ, and K ′′(0) = σ2 = Var(Y
(1)

1 ). For
example, we have

K(0) = ln(M(0)) = ln(ϕ(e0)) = ln(ϕ(1)) = ln(1) = 0.

The calculations for K ′(0) = µ and K ′′(0) = σ2 = Var(Y
(1)

1 ) are left as Exercise 2.11.
Expanding the left hand side of (2.28) using a Taylor series, we have

θ ≈ K(0) +K ′(0)θ +
1

2
K ′′(0)θ2 = µ · θ + σ2 · θ

2

2
.

Solving this equation, we find that

θ ≈ 2

σ2
(1− µ) = − 2

σ2
ε.

Exponentiating both sides yields

a ≈ e−2ε/σ2

.

For an initial size of N mutants we have

aN = P (all mutant genes eventually go extinct) ≈ e−2Nε/σ2

.

For example, in the case that the birth probabilities are Poisson, m = σ2 = 1 + ε.
Taking ε = 0.01, we have

aN ≈ e−2N(0.01)/1.01 ≈ 0.98039N .

The probability that the gene becomes established is 1− aN . See Table 2.1. 4
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N aN 1− aN
1 0.9804 0.0196

100 0.1380 0.8620
200 0.0191 0.9809
300 0.0026 0.9974

Table 2.1: Approximation of the probability that the gene goes extinct, aN , or be-
comes established, 1− aN , under the assumptions that there are originally N mutant
genes, each with a Poisson offspring distribution with mean 1.01.

2.4 Exercises

Exercise 2.1. Consider the genetics inbreeding problem with transition matrix (2.1).
Compute p3,i for each i ∈ {1, 2, . . . , 6}.
Exercise 2.2. Consider the single server queue. We found that when λ < µ, the
stationary distribution is given by (2.12). What is the expected length of the queue
in equilibrium. What happens as λ→ µ?

Exercise 2.3. Consider a birth-death process with qi = 1/4, for all i ≥ 1 with q0 = 0.
Suppose

pi =
1

4
· i+ 1

i+ 2
, i ≥ 0.

Note that pi < qi for all i, and pi → qi, as i → ∞. Is this chain transient, positive
recurrent, or null recurrent?

Exercise 2.4. Consider a birth-death process with qi = 1/4, for all i ≥ 1 (with, as
always q0 = 0). Suppose that

pi =
1

4
· i+ 2

i+ 1
, i ≥ 0.

Note that pi > qi for all i, and pi → qi, as i → ∞. Is this chain transient, positive
recurrent, or null recurrent?

Exercise 2.5. Consider a birth-death process with qi = 1/4, for all i ≥ 1 with q0 = 0.
Suppose

pi =
1

4
·
(
i+ 1

i+ 2

)2

, i ≥ 0.

Note that pi < qi for all i, and pi → qi, as i → ∞. Is this chain transient, positive
recurrent, or null recurrent?

Exercise 2.6. Consider a birth-death process with qi = 1/4, for all i ≥ 1 with q0 = 0.
Suppose

pi =
1

4
·
(
i+ 2

i+ 1

)2

, i ≥ 0.

Note that pi > qi for all i, and pi → qi, as i → ∞. Is this chain transient, positive
recurrent, or null recurrent?
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Exercise 2.7. Consider a birth and death process with qi = 1/4 if i ≥ 1, and q0 = 0,
and

pi =
1

4
·
(
i+ 1

i+ 2

)2

, i ≥ 0.

Note that this is the same chain as in Problem 2.5 above. We will again use Theorem
1.78 to estimate the stationary distribution. Simulate this process, with X0 = 0, and
average over the path to estimate πi = limn→∞ P (Xn = i), for i ∈ {0, 1, 2, 3, 4, 5}.
Note that this problem is similar to (and in some ways easier, even though the state
space is infinite) that of 1.16 of Chapter 3.

Exercise 2.8 (Lawler, 2006). Given a branching process with the following offspring
distributions, determine the extinction probability a.

1. p0 = 0.25, p1 = 0.4, p2 = 0.35.

2. p0 = 0.5, p1 = 0.1, p3 = 0.4.

3. p0 = 0.91, p1 = 0.05, p2 = 0.01, p3 = 0.01, p6 = 0.01, p13 = 0.01.

4. pi = (1− q)qi, for some q ∈ (0, 1).

Exercise 2.9. Consider again the branching process with p0 = 0.5, p1 = 0.1, p3 =
0.4, and suppose that X0 = 1. What is the probability that the population is extinct
in the second generation (X2 = 0), given that it did not die out in the first generation
(X1 > 0)?

Exercise 2.10 (Lawler, 2006). Consider a branching process with p0 = 1
3
, p1 =

1
3
, p2 = 1

3
. Find, with the aid of a computer, the probability that the population dies

out in the first n steps for n = 20, 100, 200, 1000, 1500, 2000, 5000. Do the same with
the values p0 = 0.35, p1 = 0.33, p2 = 0.32, and then do it for p0 = 0.32, p1 = 0.33,
and p2 = 0.35.

Exercise 2.11. Let K be defined via (2.28). Show that K ′(0) = µ = E[Y
(1)

1 ] and

K ′′(0) = σ2 = Var(Y
(1)

1 ).

Exercise 2.12. Consider Example 2.18 with Y
(1)

1 being a Poisson random variable
with mean 1.01. With the aid of a computer, find a and compare with the approximate
value a ≈ 0.98039.

Exercise 2.13. Suppose a branching process has a Poisson offspring distribution

pk = e−λ
λk

k!
, k = 0, 1, 2, . . . .

1. Supposing that X0 = 1, find the mean of Xn, the size of the population at time
n.

2. For λ = 1.5 and λ = 2, find the probability that the process eventually goes
extinct.



CHAPTER 2. DISCRETE TIME MARKOV CHAINS IN THE LIFE SCIENCES86

Exercise 2.14. We consider a model of replication for polymer chains. We consider
a polymer chain consisting of m nucleotides that will itself be copied, and whose
offspring chains will be copied, etc. We assume a fixed probability of p that a single
nucleotide is correctly copied during replication. Thus, the probability that the entire
chain is copied correctly is pm. We assume that the chain replicates at discrete times.
We also suppose that during each time window, any polymer chain is destroyed with
a probability of 1−q, and survives with a probability of q. Therefore, a given polymer
can yield zero (if it is destroyed), one (if it survives but is copied incorrectly), or two
(survives and is replicated perfectly) exact replica chains in the next time step with
respective probabilities

p0 = 1− q, p1 = q(1− pm), p2 = qpm.

For a given p and q, determine the threshold for m, the size of the polymer, for which
extinction of the exact chain is not assured. That is, give a condition on m for which
the probability of extinction is less than one.

For a survival rate of q = 0.8, determine how long the chain has to be so that
extinction is not guaranteed for the cases p = 0.2, 0.4, 0.5, 0.9, 0.99. Finally, using
any formulas you have computed, what happens when q < 1/2? Interpret this result.
Does it make sense?

Exercise 2.15. Consider a branching process with

p0 =
1

2
, p1 =

1

4
, and p2 =

1

4
.

For this chain, we have

µ = p1 + 2p2 =
3

4
,

and so extinction is gauranteed. Let X0 = 1, and denote the time at which the chain
goes extinct by Textinct. Write a Matlab script that simulates individual realizations
of this branching process. Use your script to estimate E[Textinct] via Monte Carlo.

Exercise 2.16. Prove Theorem 2.1 in the setting of the Wright-Fisher model. That
is, let Xn be a Markov chain with transition probabilities (2.2). Let limn→∞Xn = X∞,
which is a random variable taking the value 0 with probability g0(j) and the value 2N
with probability g2N(j). Show that limn→∞ Ej[Xn] = Ej[X∞] = 0 ·g0(j)+2N ·g2N(j).

Hint. First, use Jensen’s inequality and an argument similar to that of the usual
proof of Markov’s inequality to show that for any 0 < ε < 1,

|Ej[Xn]− Ej[X∞]| ≤ Ej[|Xn −X∞|] ≤ ε+ 2MPj(|Xn −X∞| > ε).

Next argue that for j ∈ {1, . . . , 2N − 1}, we have

Pj(|Xn −X∞| > ε) =
2N−1∑
k=1

p
(n)
j,k → 0, as n→∞.

Next, as ε was arbitrary, conclude the result.
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Exercise 2.17. Consider a branching process with offspring distribution

p0 = 1− p, and p2 = p,

where p ∈ [0, 1].

(a) For what values of p is extinction guaranteed?

(b) In the case that extinction may be avoided, calculate the probability of extinction
as a function of the parameter p.

Exercise 2.18 (Kimura 2-parameter model, [21]). One problem with the Jukes-
Cantor model of Section 2.1.3 is that it gives each mutation the same probability of
happening. However, the nucleotides A and G are purines and the nucleotides C and
T are pyrimidines and it is more likely for a purine to transition to the other purine
and a pyrimidine to transition to the other pyrimidine. Mutations between A and
G or between C and T are called transitions whereas the other mutations are called
transversions. Suppose that the probability of a transition is α and the probability
of a specific transversion, such as A → C, is β. Then the transition matrix for the
model is

P =


1− α− 2β α β β

α 1− α− 2β β β

β β 1− α− 2β α

β β α 1− α− 2β

 ,

where both α and β are small, and α > 2β. This is the Kimura 2-parameter model.
Note that the expected number of mutations per site over n generations is n(α+ 2β).
We will derive the Kimura 2-parameter distance to approximate this value.

(a) Find the eigenvalues and left eigenvectors of P . Use them to determine the vector

(1, 0, 0, 0)P n and, in particular, the probabilities p
(n)
12 , p

(n)
13 , and p

(n)
14 .

(b) Consider two strands of DNA. Let γ1 be the fraction of nucleotides that differ
due to a transition difference (i.e. an A in one is a G in the other, or other
such differences). Similarly, let γ2 be the fraction differing due to a transversion

difference. Why is it reasonable to set γ1 = p
(n)
12 and γ2 = p

(n)
13 + p

(n)
14 ? Use the

second equation to determine 2βn in a manner similar to how nρ was found for
the Jukes-Cantor model.

(c) Substitute as needed by using γ2 = p
(n)
13 + p

(n)
14 in γ1 = p

(n)
12 and solve for n as a

function of α, β, γ1, and γ2. As in the Jukes-Cantor model, use an appropriate
Taylor approximation of a logarithm to approximate 2(α + β)n as a function of
γ1 and γ2.
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(d) Combine the previous two parts to conclude that

dK2P = −1

4
ln
(
(1− 2γ2)(1− 2γ1 − γ2)2

)
is a reasonable approximation to n(α + 2β). The term dK2P is the Kimura 2-
parameter distance function.



Chapter 3

Renewal and Point processes

In this chapter we will study two classes of stochastic processes: renewal and point
processes. The material in this chapter will play a critical role in the study of stochas-
tic models of population processes found in Chapter 5.

3.1 Renewal Processes

A renewal process models occurrences of events happening at random times, where
the times between the occurrences are determined from independent and identically
distributed random variables. Specifically, let Yn, n ≥ 1, be a sequence of indepen-
dent and identically distributed random variables which take non-negative values. We
assume throughout that P (Yn = 0) < 1. We also let Y0 be a non-negative random
variable, independent from Yn, n ≥ 1, though not necessarily of the same distribu-
tion. The range of these random variables could be discrete, perhaps {0, 1, 2, . . . }, or
continuous, such as [0,∞). The random variables Yn will be the inter-event times of
the occurrences.

For each integer n ≥ 0, we define the random variable Sn by

Sn =
n∑
i=0

Yi. (3.1)

For example,

S0 = Y0, S1 = Y0 + Y1, and S2 = Y0 + Y1 + Y2.

Note that the random variable Sn gives the time of the nth occurrence (we think of
Y0 as the “zeroth” occurrence). The sequence or random variables {Sn, n ≥ 0} is
called a renewal sequence. The times Sn are called renewal times. The occurrences
themselves are usually called the renewals.

The random variable Y0 gives the time until the zeroth occurrence. If P (Y0 >
0) > 0, then the process is called delayed . If, on the other hand, we have that
P (Y0 = 0) = 1, in which case S0 = Y0 = 0 with a probability of one, then the process
is called pure.

89
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Recalling that the indicator function, 1A : R→ {0, 1}, is defined as

1A(x) =

{
1 if x ∈ A
0 if x /∈ A ,

we define the counting process

N(t) =
∞∑
n=0

1[0,t](Sn) = # of renewals up to and including time t. (3.2)

Note that if the process is pure, then Y0 = 0 and N(0) = 1 with probability one. The
counting function N will be our main object of study in this section. Note that N is
function whose domain is all of [0,∞) even if Yn are discrete random variables.

A few more definitions are required. If P (Yn <∞) = 1 for n ≥ 1, then the renewal
process is called proper. However, if P (Yn < ∞) < 1, in which case P (Yn = ∞) > 0
and E[Yn] = ∞, then the process is called defective. Note that if the process is
defective, then there will be a final renewal. In this case, N(t) remains bounded with
a probability of one, though the bound is a random variable. In fact, the bound can
be determined from a geometric random variable with parameter P (Yn <∞).

Our focus will be on trying to understand the large time behavior of the process
N . We will derive both a law of large numbers, and a central limit theorem for N(t),
as t → ∞. We point the interested reader to either [31] or [28] for a more complete
treatment on renewal processes, including a study of the renewal function

U(t)
def
= E[N(t)] = E

[
∞∑
n=0

1[0,t](Sn)

]
.

Example 3.1. Let {Xn, n ≥ 0} be an irreducible, positive recurrent, discrete time
Markov chain with state space S. For i ∈ S, let

S0 = inf{n ≥ 0 : Xn = i},

and for n ≥ 1
Sn = inf{j > Sn−1 : Xj = i}.

Let Y0 = S0 and for n ≥ 1 let
Yn = Sn − Sn−1.

By the strong Markov property the random variables Yn, n ≥ 1, are independent and
identically distributed. Thus, {Sn, n ≥ 0} is a sequence of renewal times. Since the
Markov chain is recurrent, the renewal process is proper. Since the chain is positive
recurrent, we know E[Y1] <∞.

Note that if X0 = i, then the process is pure, whereas if X0 6= i then the process is
delayed. The process N(t) =

∑∞
k=0 1[0,t](Sn) counts the number of times the process

has returned to state i by time t. For example, if S0 = 4, S1 = 10, and S2 = 11 are
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the first three times the chain enters state i, then

N(t) =


0 0 ≤ t < 4

1 4 ≤ t < 10

2 10 ≤ t < 11

3 11 ≤ t < 12,

with N(t) as yet undetermined for t ≥ 12. In particular, N is defined for all t, such
as N(10.5) = 2.

If the Markov chain were irreducible and transient, instead of recurrent, then the
associated renewal process defined above is defective, and there is a last time the
process returns to state i. 4

Example 3.2. At a certain nursing home, a particular resident will periodically come
into contact with a particular virus. Suppose that the times between such contacts
are well modeled by independent random variables with probability density function

f(x) =

{
2
√

2
π(x4+1)

x > 0

0 x ≤ 0
(3.3)

where the units of t are in weeks. Letting Y0 and Yn, n ≥ 1, have the density (3.3), Sn
determined by (3.1) models the times at which the resident comes into contact with
this virus. The process N(t) defined in (3.2) gives the number of times the resident
has come into contact with the virus by time t. 4

3.1.1 The behavior of N(t), as t→∞
Our goal in this section is to characterize the behavior of N(t), as t → ∞, where
we preserve the notation from the previous section. We begin with a law of large
numbers result.

Theorem 3.3. Let N(t) be the counting process (3.2) associated with the renewal
sequence {Sn, n ≥ 0}. Let µ = E[Y1]. Then, with a probability of one,

lim
t→∞

N(t)

t
=

1

µ
,

where the right-hand side is interpreted as zero if µ =∞.

Proof. Note that if the process is defective, then (i) µ =∞, and (ii) N(t) is uniformly
bounded in t. In this case 1/µ = 0 and limt→∞N(t)/t = 0. Thus, the result holds
when the process is defective.

We now assume the process is proper. We begin by recalling the strong law of
large numbers [4]. Suppose that Zn, n ≥ 1, are independent and identically distributed
random variables with E[Z1] ≤ ∞. Then, with a probability of one

1

n
(Z1 + · · ·+ Zn)→ E[Z1], as n→∞.
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Returning to our processes, the strong law of large numbers states that with a
probability of one

lim
n→∞

Y1 + · · ·+ Yn
n

= µ,

with the equality holding even if µ =∞. Thus, we may conclude that with probability
one,

Sn
n

=
Y0

n
+

1

n

n∑
i=1

Yi → µ, as n→∞.

Noting that N(t)→∞, as t→∞, we have that

1

N(t)
SN(t) → µ, as t→∞, (3.4)

with a probability of one. By construction, for N(t) ≥ 1 we have

SN(t)−1 ≤ t < SN(t).

Therefore, so long as N(t) ≥ 2,

SN(t)−1

N(t)
≤ t

N(t)
<
SN(t)

N(t)
=⇒

SN(t)−1

N(t)− 1
× N(t)− 1

N(t)
≤ t

N(t)
<
SN(t)

N(t)
.

Applying (3.4), we see that

t

N(t)
→ µ =⇒ N(t)

t
→ 1

µ
,

as t→∞, and the result is shown.

Theorem 3.3 says that

N(t) =
t

µ
+ o(t), as t→∞. (3.5)

A natural next question is: what is the next term in the expansion? This is a central
limit theorem type of question in that we are asking for the fluctuations around

N(t)− t

µ
.

We begin by defining
σ2 def

= Var(Yi),

for i ≥ 1, and we assume that σ2 <∞.

Theorem 3.4. As t→∞, the distribution of

N(t)− µ−1t

σµ−3/2
√
t
,

approaches that of a standard normal. That is,

lim
t→∞

P

(
N(t)− tµ−1√

tσ2µ−3
≤ x

)
=

1√
2π

∫ x

−∞
e−t

2/2dt. (3.6)
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Note that Theorem 3.4 loosely states that

N(t)− µ−1t

σµ−3/2
√
t
≈ B, (3.7)

where B is a Gaussian random variable with mean zero and variance one. Rearranging
terms in (3.7) yields,

N(t) ≈ t

µ
+

σ

µ3/2

√
t ·B,

showing that we are indeed uncovering the next term in the expansion of N(t).

Proof of Lemma 3.4. We begin by recalling the usual central limit theorem, see [4],
for the discrete time process Sn, n ≥ 1. It is

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ x

)
=

1√
2π

∫ x

−∞
e−t

2/2dt. (3.8)

This expression will be useful in the derivation of the limit (3.6).
Instead of simply proving that (3.6) holds, which would not give much intuition,

we will show why the process
N(t)− tµ−1√

tσ2µ−3

is properly scaled to give the desired convergence. Specifically, we will search for two
functions, h and g, for which

Z(t)
def
=
N(t)− h(t)

g(t)
=⇒ B, as t→∞,

where B is a standard Gaussian and the convergence is in the sense of distributions
(as in (3.6)).

Discovering the proper function h is straightforward. Theorem 3.3 implies that we
must choose h(t) = tµ−1 + o(t) in order for Z(t) to converge to a mean zero random
variable as t→∞. Hence, we take h(t) = tµ−1 and turn our attention to the function
g(t) in the denominator.

Noting that we have the central limit theorem (3.8) for the process Sn, we would
like to convert statements about N into equivalent statements pertaining to Sn. The
key observations is that for any n ≥ 0 we have that

N(t) ≤ n is equivalent to Sn > t,

both of which state that the number of renewals by time t is less than or equal to n.
Denoting by byc the greatest integer less than or equal to y ∈ R, we have

P

(
N(t)− tµ−1

g(t)
≤ x

)
= P

(
N(t) ≤ btµ−1 + g(t)xc

)
= P

(
Sbtµ−1+g(t)xc > t

)
= P

(
Sbtµ−1+g(t)xc − µbtµ−1 + g(t)xc

σ
√
btµ−1 + g(t)xc

>
t− µbtµ−1 + g(t)xc
σ
√
btµ−1 + g(t)xc

)
. (3.9)
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Because of (3.8) and (3.9), we see that we may conclude

P

(
N(t)− tµ−1

g(t)
≤ x

)
→ 1√

2π

∫ x

−∞
e−t

2/2dt, as t→∞,

so long as two conditions are met. The first condition is that

btµ−1 + g(t)xc → ∞, as t→∞,

and the second condition is that

t− µbtµ−1 + g(t)xc
σ
√
btµ−1 + g(t)xc

→ −x, as t→∞.

After dropping the floor function (since the terms will be large from the first condi-
tion), the second condition is equivalent to

−µg(t)x

σ
√
tµ−1 + g(t)x

→ −x, as t→∞,

which tells us that g(t) must scale like O(
√
t). Therefore, writing g(t) =

√
tK, we see

that the second condition is satisfied so long as K can be chosen in such a way that

−µ
√
tKx

σ
√
tµ−1 +

√
tKx

=
−µKx

σ
√
µ−1 + t−1/2Kx

→ −x, as t→∞.

Since t−1/2Kx→ 0 as t→∞, we arrive simply at the requirement

−µKx
σu−1/2

= −x,

which is equivalent to setting K = σu−3/2. We conclude that the second condition is
satisfied if we let

g(t) =
√
tσ2µ−3.

Note that in this case, condition (i) is also satisfied and the result is proved.

Example 3.5 (Example 3.2 continued). We again consider a resident in a nursing
home who sporadically comes in contact with a particular virus. Specifically, let
Yn, n ≥ 0, be independent random variables with density function (3.3), and let Sn
be defined via (3.1). The random variables Sn, n ≥ 0, give the times at which the
resident comes in contact with the virus, and N(t) =

∑∞
k=0 1[0,t](Sn) gives the number

of times the patient has been exposed to the virus by time t, where the time scale is
in weeks. Approximate the probability that this resident comes in contact with the
virus at least 230 times over the next three years.

We have that

µ = E[Y1] =

∫ ∞
0

x · 2
√

2

π(x4 + 1)
dx =

1√
2
,
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and

E[Y 2
1 ] =

∫ ∞
0

x2 · 2
√

2

π(x4 + 1)
dx = 1,

in which case
σ2 = Var(Y1) = 1− 1

2
= 1

2
.

Since there are 52 weeks in a year, we take t = 156. We have,

P (N(156) ≥ 230) = P

N(156)− 156 ·
√

2√
156 · 1

2
· 23/2

≥ 230− 156 ·
√

2√
156 · 1

2
· 23/2



= P

N(156)− 156 ·
√

2√
156 · 1

2
· 23/2

≥ 0.63

 .

By Theorem 3.4, this probability is well approximated by P (B ≥ 0.63) where B is a
standard normal random variable. Hence, P (N(156) ≥ 230) ≈ 0.26. 4

Another result from renewal theory, and one which should not be surprising at
this point, is called the elementary renewal theorem. It is stated below without proof.

Theorem 3.6. Let µ = E[Y1]. Then,

lim
t→∞

t−1E[N(t)] =
1

µ
,

where the right hand side is interpreted as zero if µ =∞.

3.1.2 The renewal reward process

A renewal reward process is only a slight variation of the renewal process. We now
suppose that at each renewal time, Sn, we are given a random reward, Rn, where Rn

can be positive, negative, or zero. We assume that the random variables {Rn, n ≥ 0}
are independent, and that the sequence {Rn, n ≥ 1} are also identically distributed.
However, we do not assume that the Rn are necessarily independent of Sn. For
example, they could be functions of the inter-event times Yn. We then define the
renewal reward process to be

R(t) =

N(t)−1∑
i=0

Ri =
∞∑
i=0

Ri · 1[0,t](Si), (3.10)

where we sum to N(t)− 1 since the we begin counting renewals at i = 0. Thus, R(t)
gives the total accumulated reward up to time t.

Example 3.7. Consider an insurance company with claims coming in at times Sn.
The sizes of the claims are Rn and the cummulative amount of claims against the
company by time t is R(t). 4
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Example 3.8. Consider a metabolic network that requires the amino acid methionine
to run properly. Methionine is ingested when the organism eats food. Letting Sn
denote the times the organism eats, and Rn the amount of methionine ingested at
time Sn, the process R(t) defined via (3.10) is the total amount of methionine ingested
by time t. 4

Theorem 3.9. If E[|Rj|] <∞ and E[Y1] = µ <∞, then

lim
t→∞

R(t)

t
=

E[R1]

µ
.

Proof. We have

lim
t→∞

R(t)

t
= lim

t→∞

1

t

N(t)−1∑
i=0

Ri = lim
t→∞

N(t)

t
· 1

N(t)

N(t)−1∑
i=0

Ri

 .
From Theorem 3.3 we know that

lim
t→∞

N(t)

t
=

1

µ
.

From the usual law of large numbers applied to the random variables Ri we have

lim
t→∞

1

N(t)

N(t)−1∑
i=0

Ri = E[R1],

implying the result.

Example 3.10. Suppose there are two animals, which we will call R and F , sharing
an ecosystem. F is aggressive and will attempt to fight R whenever it can. We
suppose that R only comes within range of F sporadically, and that the average
number of days between times they are close is d > 0. We also suppose that R can
expend energy each day in an effort to avoid detection by F . Specifically, by using
an energy amount of x ≥ 0 calories per day, the probability of actually being seen
by F (if F is close to R) is p(x). That is, the probability is a function of x. Finally,
suppose that if R is seen, then it will have to fight and expend an amount of energy
which is random, but has a mean value of V > 0. How much energy, x, should R
expend each day in order to minimize its long term total energy expenditure?

To answer the question, we model the situation with a renewal reward process.
For n ≥ 1, let Sn be the nth time that R and F are close to each other. For n ≥ 1
let Yn = Sn − Sn−1, where we define S0 = Y0 = 0. We know that E[Yi] = d for i ≥ 1.
Finally, let Ri be the amount of energy expended by R during the ith time that R
and F are close to each other.

Of course, F does not necessarily see R every time they are close. Therefore, let
Zi = 1 if R is forced to fight during the ith encounter and zero otherwise. Note that
P (Zi = 1) = p(x). Finally, let Xi be the random variable giving the amount of energy
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needed by R to fight during the ith encounter if it is seen. Note that E[Xi] = V .
Assuming Xi and Zi are independent, we have

E[Ri] = E[Xi1(Zi = 1)] = E[Xi]P (Zi = 1) = V · p(x).

Now let N(t) count the number of times R and F have been near each other by
time t. The total amount of energy used by time t ≥ 0 is then given by

R(t) = xt+

N(t)−1∑
i=1

Ri,

where we began counting at i = 1 since we took S0 = 0, which implies N(0) = 1.
The long run average energy usage for R is then

R(t)

t
= x+

1

t

N(t)−1∑
i=1

Ri → x+
E[R1]

E[Y1]
= x+

V

d
p(x), as t→∞.

For example, suppose that p(x) = e−x and that V > d. Then,

C(x) = x+
V

d
e−x

is minimized at x̄ = ln(V/d), and C(x̄) = 1 + ln(V
d

). 4

3.2 Point Processes

The basic idea of a point process is to allow us to model a random distribution of
points in a space, usually a subset of Euclidean space such as R, [0,∞), or Rd, for
d ≥ 1. Here are a few examples.

Example 3.11. Renewal processes distribute points, Sn, on [0,∞) so that the gaps
between points are independent and identically distributed random variables. 4

Example 3.12. The Poisson process, which will be the main object of our focus,
is a renewal process which distributes points so gaps are i.i.d. exponential random
variables. 4

Some other examples could include the following:

1. the breakdown times of a certain part of a car,

2. the position of proteins on a cell membrane,

3. the positions and times of earthquakes in the next 100 years,

4. the locations of diseased deer in a given region of Wisconsin.
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3.2.1 Preliminaries

We begin with an important mathematical notion, that of a measure.

Definition 3.13. Let E be a subset of Euclidean space, and let F be a σ-algebra of
E (think of this as the collection of subsets of E). Then, µ : F → R is a measure if
the following three conditions hold

1. For A ∈ F , i.e. for A a subset of E, µ(A) ≥ 0.

2. If {Ai} are disjoint sets of F , then

µ

(⋃
i

Ai

)
=
∑
i

µ(Ai).

3. µ(∅) = 0.

The concept of a measure generalizes the idea of length in one dimension, area in
two, etc. In fact, one of the most important measures is that of Lebesgue measure,
which is precisely length, area, volume, etc. For example, if µ is Lebesgue measure
on R, then for any a < b we have µ([a, b]) = b− a, and if [a, b] and [c, d] are disjoint,
then

µ ([a, b] ∪ [c, d]) = (b− a) + (d− c).
If µ is Lebesgue measure on R2, then for any region of space A ⊂ R2, we have
µ(A) = Area(A).

Another class of measures you are already familiar with is the class of probability
measures. Note that the axioms of probability are simply the three conditions laid
out above, with the added restriction that P (E) = 1 (where E is the sample space).

We now turn to point processes and start with some notation, terminology, and
definitions. We suppose that E is a subset of Euclidian space, Rd (or [0,∞),R2, etc.).
Similar to our study of the renewal process in the previous section, we want to be
able to distribute the points throughout E, and have a compact notation that counts
the number of points that fall in a given subset A ⊂ E. For renewal processes, we
distributed the points by assuming independent gaps between them, and let N(t)
denote the counting process giving the number of points up to time t.

We assume that {Xn, n ≥ 0} are random elements of E, which represent points
in the state space E. Next, we define the discrete (random, as it depends upon the
point Xn) measure by

1Xn(A) =

{
1, if Xn ∈ A,
0, if Xn /∈ A

. (3.11)

Note, therefore, that 1Xn is a function whose domain is F , i.e. the subsets of E, whose
range is {0, 1}, and that takes the value one whenever Xn is in the subset of interest.
Next, we note that by taking the sum over n, we find the total number of the points
contained in the set A. Therefore, we define the counting measure N by

N =
∑
n

1Xn ,
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so that for A ⊂ E,

N(A) =
∑
n

1Xn(A),

simply gives the total number of points in A ⊂ E.

Definition 3.14. The function N is called a point process on E, and {Xn} are called
the points.

We note that as N depends explicitly on the values of the points, Xn, it is natural
to call such an object a random measure since the points themselves are random.

We will make the (technical) running assumption that bounded regions of A must
always contain a finite number of points with a probability of one. That is, for any
bounded set A,

P (N(A) <∞) = 1.

Example 3.15. For a renewal process, we have E = [0,∞), and the points are the
renewal times {Sn}∞n=0. The point process is

N =
∞∑
n=0

1Sn .

Note that the notation for the counting process has changed from N(t) to N([0, t]).
4

Example 3.16. Consider modeling the positions, and illnesses, of sick deer in a given
region. A good choice for a state space would be

E = R2 × {1, 2, . . . ,M},

where the first component of E determines the deer’s location and the second lists
its ailment. The point process would then be

N =
∑
n

1{(Ln1,Ln2),m},

where (Ln1, Ln2) represents the latitude and longitude of the deer, and m its ailment.
4

An important statistic of a point process is the mean measure, or intensity, of the
process, which is defined to be

µ(A) = E[N(A)],

giving the expected number of points found in the region A. We note that the intensity
is commonly referred to as the propensity in the biosciences.
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3.2.2 The Poisson process

Poisson processes are a special type of point process. We will begin with a formulation
for a one-dimensional Poisson process that most people see in their first probability
course. We will later generalize to higher dimensions and variable intensities.

Definition 3.17. N is a counting process if N(0) = 0 and N is constant except for
jumps of +1.

For concreteness, we assume throughout that all processes are cadlag, which means
they are right continuous with left limits for all t > 0.

We will consider processes that satisfy the following assumption. Recall that a
function f is said to be o(h), and written f ∈ o(h) or f = o(h), if f(h)/h → 0, as
h→ 0.

Assumption 3.18. Let N be an integer valued process satisfying:

1. For some λ > 0,

P (N(t+ h)−N(t) = 1) = λh+ o(h), as h→ 0,

for any t ≥ 0.

2. For any t ≥ 0,

P (N(t+ h)−N(t) ≥ 2) = o(h), as h→ 0.

3. The process has independent increments. That is, if t0 < t1 < · · · < tm, then
N(tk)−N(tk−1), k = 1, . . . ,m, are independent random variables.

Definition 3.19. If the process N satisfies Assumption 3.18 with N(0) = 0, it is
called a homogeneous Poisson process with intensity, propensity, or rate, λ > 0.

The following proposition characterizes the distribution of the random variable
N(t)−N(s), and makes clear why the process N is termed a Poisson process.

Proposition 3.20. Let N satisfy Assumption 3.18. Then, N is a counting process
and for any t ≥ s ≥ 0 and any k ∈ {0, 1, 2, . . . },

P (N(t)−N(s) = k) = e−λ(t−s) (λ(t− s))k

k!
.

Thus N(t)−N(s) has a Poisson distribution with parameter λ(t− s).

Proof. We will prove the proposition in the case s = 0. Hence, we must show that
for any k ≥ 0

P (N(t) = k) = e−λt
(λt)k

k!
.
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For n ≥ 1, break the interval [0, t] into n subintervals of length t/n. We say a
change has occurred in N in the interval [a, b] if N(s) − N(s−) 6= 0 for s ∈ [a, b].
Define the two events

An = {k subintervals contain exactly 1 change event and other n− k contain zero}
Bn = {N(t) = k and at least one of the subintervals contains 2 or more changes}.

The events An and Bn are disjoint and

P (N(t) = k) = P (An) + P (Bn).

Note that the left hand side does not depend upon n. We will show that P (Bn)→ 0
as n→∞, hence proving that events happen one at a time and that N is a counting
process.

Recall Boole’s inequality, which states that

P

(⋃
i

Ci

)
≤
∑
i

P (Ci),

for any set of events {Ci}. We have

P (Bn) ≤ P (at least one subinterval has 2 or more events)

= P

(
n⋃
i=1

( ith subinterval contains 2 or more)

)

≤
n∑
i=1

P ( ith subinterval contains 2 or more)

=
n∑
i=1

o(t/n) = t

[
o(t/n)

t/n

]
.

Thus, P (Bn)→ 0, as n→∞.
We turn to the limiting behavior of P (An). From assumptions 1 and 2,

P ( 0 change events occur in a given interval of length h) = 1− λh− o(h).

Assumption 3 then gives

P (An) =

(
n

k

)[
λ
t

n
+ o(t/n)

]k [
1−

(
λt

n
− o(t/n)

)]n−k
≈
(
n

k

)(
λ
t

n

)k [
1−

(
λt

n

)]n−k
= (λt)k

n!

(n− k)!k!

(
1

n

)k (
1− λt

(
1

n

))n(
1− λt

n

)−k
.
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As n→∞ we have the following three limits

n!

(n− k)!

(
1

n

)k
=
n · (n− 1) · · · (n− k + 1)

nk
→ 1(

1− λt
(

1

n

))n
→ e−λt,

(
1− λt

n

)−k
→ 1.

Hence,

lim
n→∞

P (An) = e−λt
(λt)k

k!
.

proving the result.

Let Sk be the time of the kth change in the process N . First note that by
Proposition 3.20,

P (S1 > t) = P (N(t) = 0) = e−λt.

Hence, S1 has an exponential distribution with parameter λ > 0. Further, and again
by Proposition 3.20, for k ≥ 1,

P{Sk ≤ t} = P{N(t) ≥ k} = 1−
k−1∑
i=0

(λt)i

i!
e−λt, t ≥ 0.

Differentiating to obtain the probability density function gives

fSk(t) =

{ 1
(k−1)!

λktk−1e−λt t ≥ 0

0 t < 0,

and we see that Sk is has a gamma distribution with parameters k and λ. The above
suggests the following theorem, whose proof can be found in Chapter 7 of [4].

Theorem 3.21. Let T1 = S1 and for k > 1 let Tk = Sk − Sk−1. Then T1, T2, . . . are
independent and exponentially distributed with parameter λ.

Thus, we see that a homogeneous Poisson process with intensity λ > 0 is sim-
ply the counting process for a renewal process with inter-event times determined by
independent exponential random variables with parameter λ. Note that Theorem
3.21 gives a method for the construction of a Poisson process from a sequence of
i.i.d. exponential random variables.

Assumption 3.18 is equivalent to the following two conditions:

(i) for any A ⊂ R≥0 and k ≥ 0, we have that

P (N(A) = k) = e−λ|A|
(λ|A|)k

k!
,

where |A| is the Lebesgue measure of A, and
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(ii) If A1, . . . , Ak are disjoint subsets of E, then N(A1), . . . , N(Ak) are independent
random variables.

(To see the equivalence, take A = [t, t+ h].) This equivalence allows us to generalize
the notion of a Poisson process.

Definition 3.22. Let N be a point process on E ⊂ Rd, F a σ-algebra of E, and
µ a measure on E. We say that N is a Poisson process with mean measure µ, or a
Poisson random measure, if the following two conditions hold:

(i) For A ∈ F and k ≥ 0,

P (N(A) = k) =

{
e−µ(A)(µ(A))k

k!
, if µ(A) <∞

0, if µ(A) =∞
.

(ii) If A1, . . . , Ak are disjoint subsets of E, then N(A1), . . . , N(Ak) are independent
random variables.

Note that E[N(A)] = µ(A). One choice for the mean measure would be a multiple
of Lebesgue measure: µ(A) = λ|A|, where we recall that |A| = Area(A) in two
dimensions, |A| = Vol(A) in three dimensions, etc. If λ = 1, then the measure is said
to be unit-rate. When the mean measure is a multiple of Lebesgue measure, we call
the process homogeneous .

With Definition 3.22 in hand we can generalize away from the homogeneous case.

Example 3.23. Suppose that for open intervals (a, b), the mean measure µ for a
Poisson process is

µ((a, b)) = Λ(b)− Λ(a),

for some non-decreasing, absolutely continuous function Λ. If Λ has density λ (i.e. if
Λ is differentiable), then

µ((a, b)) = Λ(b)− Λ(a) =

∫ b

a

λ(s)ds,

or, more generally,

µ(A) =

∫
A

λ(s)ds,

for sets A. Note that, by construction, λ takes only non-negative values as Λ is
non-decreasing. Further, we have that

P (N((a, b)) = k) = e−(Λ(b)−Λ(a)) (Λ(b)− Λ(a))k

k!
= e−(

∫ b
a λ(s)ds) (

∫ b
a
λ(s)ds)k

k!
, (3.12)

and more generally,

P (N(A) = k) = e−
∫
A λ(s)ds

(∫
A
λ(s)ds

)k
k!

,

for any set A ⊂ R. The function λ is usually termed the rate, intensity, or propensity
function of the Poisson process, depending upon the specific scientific field in which

the model is being considered. 4
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We note that if the first assumption in Assumption 3.18 were changed to

P (N(t+ h)−N(t) = 1) = λ(t)h+ o(h), as h→ 0, (3.13)

then it can be argued that the resulting process is equivalent to the non-homogeneous
Poisson process just described. This is important from a modeling perspective, as it is
usually an assumption of the form (3.13) that is the starting point of a mathematical
model.

Example 3.24. Suppose we believe that the arrival times of frogs to a pond can be
reasonably modeled by a Poisson process. We suppose that frogs are arriving at a
rate of 3 per hour. What is the probability that no frogs will arrive in the next hour?
What is the probability that 12 or less frogs arrive in the next five hours?

Let N([0, t]) be a Poisson process of rate 3. Then,

P (N([0, 1]) = 0) = e−3·1 (3 · 1)0

0!
= e−3 = 0.04978.

Further,

P (N([0, 5]) ≤ 12) =
12∑
k=0

P (N([0, 5]) = k) =
12∑
k=0

e−3·5 (3 · 5)k

k!
≈ 0.2676.

4
Example 3.25. We change the previous example by recognizing that it is unlikely
that frogs would arrive anywhere according to a homogenous process. Instead, the
rate of arrival should fluctuate throughout the day. Therefore, we change our model
and suppose that the arrival of the frogs is modeled by an non-homogeneous Poisson
process with intensity function

λ(t) = 3 + sin(t/4),

where t = 0 is taken to be 8AM. Assuming it is exactly 8AM now, what is the
probability that no frogs will arrive in the next hour? What is the probability that
12 or less frogs arrive in the next five hours?

We let N([0, t]) be the Poisson process with intensity λ(t) = 3 + sin(t/4). Then,

P (N([0, 1]) = 0) = e−
∫ 1
0 (3+sin(t/4))dt

(∫ 1

0
(3 + sin(t/4))dt

)0

0!
= e−(7−4 cos(1/4)) ≈ 0.044.

Further,

P (N([0, 5]) ≤ 12} = k) =
12∑
k=0

P (N([0, 5]) = k)

=
12∑
k=0

e−
∫ 5
0 (3+sin(t/4))dt

(∫ 5

0
(3 + sin(t/4))dt

)k
k!

≈ 0.1017.

4
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Example 3.26. Suppose we believe that bears in upper Wisconsin are distributed as
a spatial Poisson process with rate λ = 3 per square mile. Suppose you are camping
in northern Wisconsin tonight. What is the expected distance between you and the
nearest bear?

Let R be the distance of the nearest bear from the campground and let d(r) be a
disc of radius r centered at the campground. Then,

P (R > r) = P (N(d(r)) = 0) = e−λ|d(r)|.

Since
|d(r)| = πr2,

we have
P (R > r) = e−3πr2

.

Hence,

E[R] =

∫ ∞
0

r · 6πre−3πr2

dr =
1

2 ·
√

3
≈ 0.2887 miles,

where we utilized that the density is fR(r) = 6πre−3πr2
. 4

3.2.3 Transformations of Poisson processes

Suppose that we let Eλ
n , n ≥ 1, be i.i.d. exponential random variables with parameter

λ > 0. Define

Sλn
def
=

n∑
i=1

Eλ
i ,

and let Nλ be the associated Poisson process,

Nλ([0, t])
def
=

∞∑
n=1

1[0,t](S
λ
n) =

∞∑
n=1

1{Sλn≤t} =
∞∑
n=1

1{∑n
i=1 E

λ
i ≤t}.

By the basic properties of exponential random variables, we know that Eλ
i has the

same distribution as Ei/λ, where Ei are unit exponential random variables. Therefore,

Nλ([0, t]) =
∞∑
n=1

1{∑n
i=1 E

λ
i ≤t}

D
=
∞∑
n=1

1{∑n
i=1 Ei≤λt} = N([0, λt]), (3.14)

where
D
= is equality in distribution and where N is a unit-rate Poisson process (since

the exponential random variables used to construct it have a parameter of 1). The
importance of the relation (3.14) can not be overstated, and we will interpret it in
two different ways. First, it can be viewed as a time-change. That is, it shows that if
a homogenous Poisson process with rate λ > 0 is desired, then it is sufficient to start
with a unit-rate process and simply “move” along its time-frame at rate λ. If λ > 1
we move faster than unit speed, whereas if λ < 1, we move slower.
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Second, (3.14) can be viewed as a spacial shifting of points. It shows that if the
position of the points of a homogeneous process of rate λ > 0 are multiplied by λ, then
the resulting point process is also Poisson, and it is, in fact, a homogeneous process
of rate 1. Likewise, we could start with a unit-rate process and divide the position of
each point by λ to get a homogeneous process with rate λ. This phenomenon will be
explored further in the next subsection.

Both interpretations are important and will be returned to repeatedly. This is
our first example of a transformation of a Poisson process, via time or space, yielding
another Poisson process. In the next section we greatly expand our understanding of
such transformations.

General transformations of Poisson processes

We return to the example at the end of the last subsection in which we transformed
one Poisson process into another, though we now take a slightly different perspective.
Let Ei denote independent, unit-exponential random variables, and let Sn =

∑n
i=1 Ei.

Letting

N([0, t]) =
∞∑
n=1

1{Sn≤t},

we know that N is a unit-rate Poisson process. For λ > 0, let T : R→ R be defined
via

T (x) =
x

λ
.

We then have that

Nλ([0, t])
def
=

∞∑
n=1

1{T (Sn)≤t} =
∞∑
n=1

1{Sn/λ≤t} =
∞∑
n=1

1{∑n
i=1 Ei/λ≤t}

is a homogeneous Poisson process with rate λ since En/λ, n ≥ 1, are independent
exponential random variables with a parameter of λ. Also, the mean measure of the
process has changed during the transformation from

µ((a, b)) = b− a,

to
µ′((a, b)) = λ(b− a),

where b > a. Note that

µ′((a, b)) = λ(b− a) = (λb− λa) = µ((λa, λb)) = µ(T−1(a, b)).

Collecting thoughts, we see that moving the points around via the function, or trans-
formation, T resulted in another Poisson process, and the new mean measure can be
understood via the inverse of T and the original measure µ. We will see below that
this is a general result, however we begin by building up our terminology.
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For two euclidean spaces E and E ′, we assume the existence of some one-to-one
function T : E → E ′. Note that the function T−1 induces a set mapping from the
subsets of E ′ to those of E. That is, for A′ ⊂ E ′ we have

T−1(A′) = {x ∈ E : T (x) ∈ A′}.

Therefore, T−1(A′) is simply the pre-image of A′ under T .
We want to take the points of a general Poisson process, N , defined on E, apply

T to them, and consider the resulting point process in E ′. Note that because T is
one-to-one, for any A ⊂ E we have that N(A) = N(T (A)).

We will denote the mean measure of N by µ and the points associated with N as
Xn. The goal is to be able to count the number of points, T (Xn) ∈ E ′, in a given
region A′ ⊂ E ′. Letting N ′ denote that counting process, we see that

N ′(A′) =
∑
n

1T (Xn)(A
′) =

∑
n

1{T (Xn)∈A′} =
∑
n

1{Xn∈T−1(A′)}

=
∑
n

1Xn(T−1(A′))

= N(T−1(A′))

= N ◦ T−1(A′).

Further, we see the expected number of points is

µ′(A′) = µ(T−1(A′)) = µ ◦ T−1(A′).

That is, once again, the mean measure is determined by T−1 and the original mean
measure µ. The following proposition is incredibly useful and, even though the proof
is rather straightforward, nearly miraculous.

Proposition 3.27. Suppose that T : E → E ′ is a one-to-one mapping between
Euclidean spaces such that if B′ ⊂ E ′ is bounded, then so is T−1(B′) ⊂ E. If N is
Poisson process on E with mean measure µ and points {Xn}, then

N ′ = N ◦ T−1

is a Poisson process on E ′ with points {T (Xn)} and mean measure

µ′ = µ ◦ T−1.

Proof. We need to show that the two properties of a Poisson process as given in
Definition 3.22 are satsified. Firstly, we have for any B′ ⊂ E ′ and k ≥ 0,

P (N ′(B′) = k) = P (N(T−1(B′)) = k)

= e−µ(T−1(B′)) (µ(T−1(B′)))
k

k!

= e−µ
′(B′) (µ′(B′))k

k!
,
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where the second equality follows since N is a Poisson process with mean measure µ.
Next, if B′1, . . . , B

′
m are disjoint, then so are T−1(B′1), . . . , T−1(B′m). Therefore, the

random variables

{N ′(B′1), · · · , N ′(B′m)} =
{
N(T−1(B′1)), · · · , N(T−1(B′m))

}
,

are independent.

Example 3.28. Let N =
∑

n 1Xn be a homogeneous Poisson process with rate λ = 1
and state space E = [0,∞) (hence, Xn − Xn−1 are i.i.d. unit exponential random
variables). In this case, the mean measure is µ([a, b]) = b− a.

Let T (x) = x2 and define the N ′ via

N ′(A) =
∑
n

1X2
n
(A),

where A ⊂ [0,∞). By Proposition 3.27, N ′ is a Poisson process on [0,∞) with mean
measure

µ′([0, t]) = µ(T−1([0, t])) = µ{x : x2 ≤ t} = µ
(

[0,
√
t]
)

=
√
t =

∫ t

0

1
2

√
s ds.

Hence, recalling Example 3.23, the resulting process has intensity λ(s) = 1
2

√
s, for

s ≥ 0. 4

In the previous example, we started with a unit-rate Poisson processes, performed
a transformation, and ended with a Poisson process with intensity λ(s) = 1

2

√
s. This

calculation raises the following natural question: given a specific nonnegative valued
function λ : R≥0 → R≥0, how do we transform the points of a unit-rate Poisson
process in order to obtain one with intensity function λ?

We begin by defining the non-decreasing function m via

m(t) =

∫ t

0

λ(s)ds.

Next, we define a partial inverse function for m, denoted I, via

I(x) = inf{t ≥ 0 : m(t) ≥ x}, x ≥ 0.

The function I is almost an inverse function because

m(I(x)) =

∫ I(x)

0

λ(s)ds = x, (3.15)

which follows since I(x) is defined to be the smallest u ≥ 0 for which∫ u

0

λ(s)ds = x. (3.16)
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Example 3.29 (Example 3.28 continued). Let

λ(s) =

{
1
2
s−1/2 s > 0

0 else

and, for t ≥ 0,

m(t) =

∫ t

0

λ(s)ds =
√
t.

Then,

I(x) = inf
{
t ≥ 0 :

√
t ≥ x

}
= x2.

Of course, in this case I is a true inverse of m since we have both

m(I(x)) = m(x2) = x,

I(m(t)) = I(
√
t) = t,

for x, t ≥ 0. 4

The function I is not always a true inverse of m since we do not always have
I(m(x)) = x. The issue is that λ may take the value zero for portions of its domain.
For example, suppose λ(s) = 0 for all s ∈ (u, x) where 0 ≤ u < x. This implies

m(u) =

∫ u

0

λ(s)ds =

∫ u

0

λ(s)ds+

∫ x

u

λ(s)ds =

∫ x

0

λ(s)ds = m(x).

Therefore,
I(m(x)) = inf{t : m(t) ≥ m(x)} ≤ u < x.

Example 3.30. Let

λ(t) =


1 0 ≤ t < 1

0 1 ≤ t < 2

1 2 ≤ t <∞
.

in which case

m(t) =


t 0 ≤ t < 1

1 1 ≤ t < 2

t− 1 2 ≤ t <∞
We have

I(x) = inf{t ≥ 0 : m(t) ≥ x} =


x, 0 < x < 1

1, x = 1

x+ 1, 1 < x

.

Thus, for example,
I(m(1.5)) = I(1) = 1,

whereas
I(m(2.5)) = I(1.5) = 1.5 + 1 = 2.5.

4
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While it is not always true that I(m(x)) = x, we do always have the identity

I(m(x)) ≤ x. (3.17)

This follows because

I(m(x)) = inf{t ≥ 0 : m(t) ≥ m(x)} ≤ x,

as x is certainly one number (though not necessarily the smallest) that satisfies the
inequality m(t) ≥ m(x).

Lemma 3.31. The function I is strictly increasing.

Proof. Suppose that x < y. Then,∫ I(x)

0

λ(s)ds = x < y =

∫ I(y)

0

λ(s)ds =⇒ I(x) < I(y).

Thus, the function I is a one-to-one transformation, and we will apply it to the
points of a unit-rate Poisson process. Let N =

∑
n 1Xn be a unit-rate homogeneous

Poisson process, with corresponding pointsXn (soXn−Xn−1 are i.i.d. unit exponential
random variables). We then let

Nλ =
∑
n

1I(Xn), (3.18)

which by Proposition 3.27 (and Lemma 3.31) is a Poisson process on [0,∞).
What is the mean measure? To find out, the following lemma is useful.

Lemma 3.32. For all x, t ≥ 0,

I(x) ≤ t ⇐⇒ x ≤ m(t).

Proof. First suppose that I(x) ≤ t. We must show that x ≤ m(t). Applying m,
which is non-decreasing, to both sides of the inequality I(x) ≤ t yields

m(I(x)) ≤ m(t).

By (3.15) we have m(I(x)) = x, and so we conclude x ≤ m(t).
Next, we suppose that x ≤ m(t) and will show that I(x) ≤ t. Apply I, which is

strictly increasing, to x ≤ m(t) to find

I(x) ≤ I(m(t)).

By (3.17) we know I(m(t)) ≤ t, which gives us the desired implication.
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Returning to the mean measure for our new process, Lemma 3.32 shows that for
any t ≥ 0,

{x : I(x) ≤ t} = {x : x ≤ m(t)}. (3.19)

Let µ be (unit-rate) Lebesgue measure. By Proposition 3.27, the mean measure, µλ,
of our new process satisfies

µλ([0, t]) = µ(I−1([0, t])) = µ({x : I(x) ≤ t}) = µ({x : x ≤ m(t)})
= m(t)

=

∫ t

0

λ(s)ds,

confirming that the resulting process is a non-homogeneous Poisson process with
intensity function λ.

Returning to Nλ defined in (3.18), we also see that

Nλ([0, t]) =
∑
n

1I(Xn)([0, t]) (definition of N ′)

=
∑
n

1{I(Xn)≤t}

=
∑
n

1{Xn≤m(t)} (Lemma (3.32))

=
∑
n

1Xn([0,m(t)]) (3.20)

= N

([
0,

∫ t

0

λ(s)ds

])
. (3.21)

Condensing notation, we see that if Nλ is a Poisson process with intensity λ, then

Nλ(t) = N

(∫ t

0

λ(s)ds

)
, (3.22)

where N is a unit-rate Poisson process. Thus, to get a non-homogeneous Poisson
process with intensity function λ, it is enough to correctly modulate the speed at which
the “clock” runs on a Poisson process with points determined by unit exponentials.
This is called a time-changed representation for the non-homogeneous Poisson process
and will play a critical role in our understanding of continuous time Markov chains
in later chapters.

Simulating non-homogeneous Poisson processes

We turn to the issue of efficiently simulating a non-homogeneous Poisson process. We
see that simulating such a process is equivalent to simulating the right hand side of
(3.22), and the following strategy does just that.

1. Let E1 be an exponential random variable with parameter one. This is the first
point of the homogeneous Poisson point process.
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2. Solve for the smallest t1 that satisfies∫ t1

0

λ(s)ds = E1.

Using the notation from above, we see this is equivalent to setting t1 = I(E1).
Note that if the anti-derivative of λ is of a nice form, then solving this equation
will be simple. The value t1 is the first point of the non-homogeneous process.

3. Repeat. Let E2 be an exponential random variable with parameter one. This
is the second point of the homogeneous Poisson point process.

4. Solve for the smallest t2 that satisfies∫ t2

t1

λ(s)ds = E2.

The value t2 is the second point of the non-homogeneous process.

5. Repeat until a desired number of points for the non-homogeneous process have
been generated.

The following algorithm generates the points of a non-homogeneous Poisson pro-
cess with intensity function λ. The points of the non-homogeneous process are de-
noted tn, n ≥ 1.

Algorithm. Set t0 = 0. Set n = 1.

1. Let En be an exponential random variable with parameter one, which is inde-
pendent from all other random variables already generated.

2. Find the smallest u ≥ 0 for which∫ u

tn−1

λ(s)ds = En.

Set tn = u. Note this is equivalent to solving∫ u

0

λ(s)ds = E1 + · · ·+ En,

for u.

3. Set n← n+ 1.

4. Return to step 1 or break.

The above algorithm for simulating a non-homogeneous Poisson process is the
core of future methods for the simulation of continuous time Markov chains.
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Counting process

Figure 3.1: One realization of the counting process N(t2/2), blue curve, versus the
plot of the deterministic function t2/2, green curve. The data is generated in Example
3.33.

Example 3.33. Suppose that λ(t) = t for all t ≥ 0. We consider the problem of
simulating the non-homogeneous Poisson process with intensity λ(t):

N

(∫ t

0

λ(s)ds

)
= N

(∫ t

0

s ds

)
= N

(
1

2
t2
)
,

where N is a unit-rate Poisson process. Supposing our stream of unit exponential
random variables begins with E = [1.8190, 0.2303, 1.1673, 0.6376, 1.7979], we have the
following.

1. To find the first jump of our counting process we solve∫ t1

0

λ(s)ds =
1

2
t21 = 1.8190 =⇒ t1 ≈ 1.907.

2. To find the second jump, we solve∫ t2

1.907

s ds = 0.2303 =⇒ 1

2
t22 −

1

2
(1.907)2 = 0.2303 =⇒ t2 = 2.024.

Similarly, we simply could have solved for t2 via∫ t2

0

λ(s)ds =
1

2
t22 = (1.8190 + 0.2303) =⇒ t2 = 2.024.
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3. Solving for t3 :

1

2
t23 = (1.8190 + 0.2303 + 1.1673) =⇒ t3 = 2.536.

4. Solving for t4:

1

2
t24 = (1.8190 + 0.2303 + 1.1673 + 0.6376) =⇒ t4 = 2.776.

5. Solving for t5:

1

2
t25 = (1.8190 + 0.2303 + 1.1673 + 0.6376 + 1.7979) =⇒ t5 = 3.362.

Note that the actual time between events, tn− tn−1, is (non-monotonically) reducing.
Plots of (a) the counting process, and (b) the deterministic function t2/2, are found
in Figure 3.1. 4

Differing time frames

Consider the non-homogeneous Poisson process with intensity function λ(t),

Nλ(t)
def
= N

(∫ t

0

λ(s)ds

)
,

where N is a unit-rate Poisson process. Note that the variable t represents time.
However, there is another time frame in the problem: that of the Poisson process N .
Let

τ(t)
def
=

∫ t

0

λ(s)ds,

and note that the process Nλ can be written as

Nλ(t) = N

(∫ t

0

λ(s)ds

)
= N(τ(t)).

We see that τ(t) give the current time of the Poisson process N . We can use this
notation to simplify our calculations. For example, because N is a unit-rate Poisson
process we have

P (N(τ(t) + h)−N(τ(t)) = 1) = h+ o(h), as h→ 0. (3.23)

This tells us the following about the process Nλ,

P
(
Nλ(t+ h)−Nλ(t) = 1

)
= P

(
N

(∫ t+h

0

λ(s)ds

)
−N

(∫ t

0

λ(s)ds

)
= 1

)

= P

(
N

(∫ t+h

t

λ(s)ds+ τ(t)

)
−N(τ(t)) = 1

)
= P (N(λ(t)h+ o(h) + τ(t))−N(τ(t)) = 1)

= λ(t)h+ o(h), as h→ 0,

(3.24)

where the second to last equality follows from calculus, and the final equality follows
from (3.23).
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Processes with random intensity

Suppose that X(t) is some stochastic process defined for all time t ≥ 0. For example,
we could have that Xn, n ≥ 0, is a discrete time Markov chain and

X(t)
def
= Xbtc,

where bxc is the largest integer less than or equal to x. Note that in this case X(t)
is a step function, though in general this need not be the case.

We now consider the process which, conditioned upon the history of X, i.e. on
X(s), 0 ≤ s ≤ t, behaves locally like a non-homogeneous Poisson process with inten-
sity function λ(X(t)). That is, we want Nλ to satisfy the relations

P
(
Nλ(t+ h)−Nλ(t) = 1 |Xs, 0 ≤ s ≤ t

)
= λ(X(t))h+ o(h), as h→ 0

P
(
Nλ(t+ h)−Nλ(t) ≥ 2 | Xs, 0 ≤ s ≤ t

)
= o(h), as h→ 0.

(3.25)

From the results of the previous section, we believe we can model such a process via

Nλ(t) = N

(∫ t

0

λ(X(s))ds

)
, (3.26)

where N is a unit-rate Poisson process that is independent from X. Later we will
discuss how the independence assumption can be weakened a bit. Note that condi-
tioned upon Xs, 0 ≤ s ≤ t, the expected number of points for the process (3.26) in
the interval [0, t] is

E
[
Nλ(t) |Xs, 0 ≤ s ≤ t

]
= E

[
N

(∫ t

0

λ(X(s))ds

) ∣∣∣∣Xs, 0 ≤ s ≤ t

]
=

∫ t

0

λ(X(s))ds.

Taking expectations again shows that

E[Nλ(t)] = E
[∫ t

0

λ(X(s))ds

]
=

∫ t

0

E[λ(X(s))]ds.

If λ is a nonlinear function, then it is not permissible to switch the expectation with
λ, and so we do not have that the expected number of points is

∫ t
0
λ(E[X(s)])ds.

We will show that the process (3.26) satisfies one of the modeling assumptions
(3.25), leaving the second for a homework exercise. Denoting

τ(t) =

∫ t

0

λ(X(s))ds,
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which itself is a stochastic process, we have

P (Nλ(t+ h)−Nλ(t) = 1 | Xs, 0 ≤ s ≤ t)

= P

(
N

(∫ t+h

0

λ(X(s))ds

)
−N

(∫ t

0

λ(X(s))ds

)
= 1

∣∣∣∣ Xs, 0 ≤ s ≤ t

)

= P

(
N

(∫ t+h

t

λ(X(s))ds+ τ(t)

)
−N (τ(t)) = 1

∣∣∣∣ Xs, 0 ≤ s ≤ t

)
= P

(
N (λ(X(t))h+ o(h) + τ(t))−N (τ(t)) = 1

∣∣ Xs, 0 ≤ s ≤ t

)
= λ(X(t))h+ o(h),

valid as h → 0, where the last equality follows from the independence of X and N .
The remaining condition is left as a homework exercise.

Note that we did not strictly require that N and X be independent. Instead, we
only require that for all t ≥ 0, the increments N(s+ τ(t))−N(τ(t)) are independent
from Xs, 0 ≤ s ≤ t. That is, loosely, we require that X can not look into the
future behavior of N . This seems like a minor point, but it will have large modeling
consequences with the first such example found in Example 3.35. In Example 3.36 we
demonstrate what can go wrong if we do not have such an independence condition.

Example 3.34. Suppose Xn gives the number of people living in a valley at the
beginning of year n ≥ 0. We suppose that the number of births in this valley can be
modeled via a Poisson process with local intensity λ(X(n)) for the entirety of year n.

Letting X(t)
def
= Xbtc (which is the process attained by extending Xn to all of R≥0),

we see that the number of births by time t can be modeled via

B(t) = N

(∫ t

0

λ(X(s))ds

)
,

where N is a unit-rate Poisson process. Note that it would be reasonable to assume
that λ(·) is a non-negative function with λ(0) = 0. 4

Example 3.35. We give a general model for arrivals and departures. This formula-
tion could be used to model a queue, the transcription and degradation of mRNA,
etc. For concreteness, we choose the language of a queue.

We suppose that arrivals are taking place at a constant rate of λ > 0. Therefore,
letting N1 denote a unit-rate Poisson process, we define

A(t) = N1

(∫ t

0

λds

)
= N1(λt),

to be our arrival process.
Let X(t) be the number of people in the queue at time t and assume that depar-

tures are happening at a rate of µ(X(t)). That is, we suppose that if D(t) gives the
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number of departures by time t ≥ 0, then

P (D(t+ h)−D(t) = 1 | Xs, 0 ≤ s ≤ t) = µ(X(t))h+ o(h), as h→ 0

P (D(t+ h)−D(t) ≥ 2 | Xs, 0 ≤ s ≤ t) = o(h), as h→ 0,
(3.27)

Let N2 be another unit-rate Poisson process that is independent of N1 and define

D(t) = N2

(∫ t

0

µ(X(s))ds

)
. (3.28)

We will discuss below why D satisfies the conditions (3.27).
Noting that we must have X(t) = X(0) + A(t) − D(t), we see that X(t) is the

solution to the stochastic equation

X(t) = X(0) +N1(λt)−N2

(∫ t

0

µ(X(s))ds

)
.

Such an equation is an example of a random time change representation. Existence of
a unique solution to the above equation can be shown by a “jump by jump” argument,
which we will discuss in detail later in the course.

Note that N2 and X are not independent. However, letting

τ(t) =

∫ t

0

µ(X(s))ds,

we see that N2(τ(t) + s)−N2(τ(t)), s ≥ 0, is independent from Xs, 0 ≤ s ≤ t. This
allows us to conclude that the conditions (3.27) are still valid in the usual manner.
4

Example 3.36. In each of the previous examples, we defined some process Ñ as

Ñ(t) = N

(∫ t

0

X(s)ds

)
,

where N is an independent unit-rate Poisson process and X is another stochastic
process, in order to find a jump process satisfying the two conditions

P (Ñ(t+ h)− Ñ(t) = 1 | Xs, 0 ≤ s ≤ t) = µ(X(t))h+ o(h), as h→ 0

P (Ñ(t+ h)− Ñ(t) ≥ 2 | Xs, 0 ≤ s ≤ t) = o(h), as h→ 0.

For each example, we worried whether or not certain increments of the Poisson process
N were independent of the stochastic process X(s). This worry is justified, as we will
demonstrate now.

Let Ei denote independent, exponential random variables with a parameter of
one. Let N be the unit-rate Poisson process with points

Sn =
n∑
i=1

Ei,
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where we take S0 = 0. Now define X(t) = Sbtc+1 − Sbtc. That is, X(t) gives the
value of the waiting time of the current “gap” in the points. For example, for each
0 ≤ s < 1,

X(s) = S1 − S0 = E1.

Finally, define

Ñ(t) = N

(∫ t

0

X(s)ds

)
.

Note that X(t) looks into the future of N . We have Ñ(0) = 0, and that for 0 ≤ h < 1

Ñ(h) = N(hE1).

Thus,

P
(
Ñ(h)− Ñ(0) ≥ 1 | X(0)

)
=

{
1 if h ≥ 1
0 else

,

showing this counting process does not satisfy the equations (3.25). 4

3.3 Exercises

Exercise 3.1. Recall that for a renewal process if P (Yn <∞) < 1, then the process
is called defective. Suppose that P (Y0 < ∞) = 1 and argue why in the defective
case N(t) is bounded, with the bound given by a geometric random variable with a

parameter of p
def
= 1 − P (Yn < ∞). Give the distribution precisely in the event that

the process is a pure renewal process.

Exercise 3.2. Show that for a renewal process

SN(t)−1 ≤ t < SN(t),

so long as N(t) ≥ 1. Hint: draw a picture.

Exercise 3.3. Let E be an exponential random variable with parameter 1. For λ > 0,
show that E/λ is an exponential random variable with parameter λ. That is, if Eλ is

an exponential random variable with parameter λ > 0, show that Eλ D= E/λ, where
E is a unit exponential random variable.

Exercise 3.4. Verify that 1Xn , defined in (3.11), satisfies the three properties that
make it a measure.

Exercise 3.5. Let N(t) be a one-dimensional homogeneous Poisson process with
rate λ > 0 and points Sn (i.e. jumps happen at the times Sn). We are assuming
N(0) = 0. Suppose I tell you that N(t) = 1 for some t > 0. Find the conditional
distribution of the time S0. That is, find the distribution of the time of the first jump,
S0, conditioned upon knowing N(t) = 1. Hint: the distribution has a name, give it.
Note how the answer depends upon λ.
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Exercise 3.6. Let N(t) be a one-dimensional homogeneous Poisson process with rate
λ > 0 and points Sn (i.e. jumps happen at the times Sn). We are assuming N(0) = 0.
Suppose that I tell you N(t) = n for some t > 0 and n ≥ 1. Find the conditional
distribution of the time S0. That is, find the distribution of the time of the *first*
jump conditioned upon knowing N(t) = n for some n ≥ 1. Note how the answer
depends upon λ.

Exercise 3.7. Let N be a unit-rate Poisson process with associated points Sn, n ≥ 0.
That is, for t ≥ 0,

N([0, t])
def
=

∞∑
n=0

1{Sn≤t},

where S0 and Sn − Sn−1, n ≥ 1, are independent unit exponential random variables.
Let T : R≥0 → R2

≥0 be defined via T (x) = (x, x2). Describe the resulting counting

process Ñ when the points Sn are transformed by T . Be sure to give the state space
and mean measure of the resulting process.

Exercise 3.8. Let N be a non-homogeneous Poisson process with local intensity
λ(t) = t2. Write a Matlab code that simulates this process until 500 jumps have
taken place. Next, write a script that simulates this process up to a time of 15. You
are required to turn in both of your codes, and three plots from each.

Exercise 3.9. Students at a boarding school can be in one of three states: sad,
neutral, or happy. If they are sad, they do not want to make many phone calls to
each other. If they are neutral, they make some phone calls to each other, and if
they are happy, they tend to make lots of phone calls to each other. Suppose that
the state of the student body changes each day according to a discrete time Markov
chain with state 1 being sad, state 2 being neutral, and state 3 being happy, and that
the transition matrix is given by

P =

 .1 .8 .1
.3 .1 .6
.1 .4 .5

 .

Let X(t) ∈ {1, 2, 3} denote the state of this Markov chain at time t, noting that it is
a step function and constant each day. Now suppose we believe that the number of
calls to the local cell phone tower can be modeled as a time non-homogeneous Poisson
process with local intensity

λ(t) = λ(X(t)) =


10, if X(t) = 1
33, if X(t) = 2
56, if X(t) = 3

,

where the units of t are days. Assuming that the Markov chain starts day 1 in state 1,
approximate the probability that the cell tower receives more calls on day two than
day one and that it receives more calls on day 3 than day 2. Solve this problem
by simulating the model n = 102, 103, and 104 times and averaging (that is, give
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three different answers based upon the different choices of n). Note that you will be
applying to law of large numbers to conclude that these values constitute an estimate
for the desired probability.

Next, answer the same question for 4 days (that is, estimate the probability of
increasing number of calls for the first 4 days), and then answer the same question
for 5 days.

Exercise 3.10. Suppose that X(t) is a stochastic process and that Ñ satisfies (3.26),
where N is a unit-rate Poisson process independent from X. Show that

P
(
Ñ(t+ h)− Ñ(t) ≥ 2 | Xs, 0 ≤ s ≤ t

)
= o(h), as h→ 0.

Exercise 3.11. Let Xn be a discrete time Markov chain with state space S =
{0, 1, 2, . . . } and transition probabilities

pi,j =


p if j = i+ 1

1− p if j = 0

0 else

.

For n ≥ 0, let Sn be the (n+1)st time the chain hits zero. Let Y0 = S0 and for n ≥ 1,
let Yn = Sn − Sn−1.

(a) What is the distribution of Yn for n ≥ 1?

(b) Argue that {Sn} is a renewal sequence. Under what conditions would the sequence
be delayed, and under what conditions would the sequence be pure?

(c) Let X0 = 1 and suppose that p = 1
4

and let N(t) =
∑∞

n=0 1[0,t](Sn). Analytically
approximate

P (N(1000) ≤ 761.5).

(d) Still supposing that X0 = 1 and p = 1
4
, write a Matlab code that uses Monte

Carlo to approximate p = P (N(1000) ≤ 761.5). Use the (standard) central limit
theorem to provide a 95% confidence interval with width 0.02.

Exercise 3.12. An entrepreneur has just opened a restaurant. She believes that if she
spends x dollars per day on food preparation and cleaning, then her daily revenue will
follow a Poisson distribution with a parameter of 100

√
x. However, health inspectors

check on the restaurant sporadically. Specifically, they arrive after random amounts of
time that are well modeled by exponential random variables with parameter λ = 1/4.
If the health inspector shows up, there is a probability of

p(x) = e−x/4000

that the restaurant will receive a fine. Finally, the expected value of the fine is known
to be 2,000,000

(1+x)
.
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(a) For what value of x will this entrepeneur maximize her long run profits? What
will her average daily profit be?

(b) If the average fine is pushed up to

200,000,000

1 + x
,

is it still possible for her to make a profit? If so, what is the value x that maximizes
profit, and what will her average daily profit be?

(c) Answer the same question as part (b) if the average fine is pushed to

2,000,000,000

1 + x
.

Exercise 3.13. Suppose that a class of students are observing a meteor shower
between the hours of 11pm and 3am. Suppose that meteors are appearing according
to a Poisson process with intensity λ = 4 per hour. find the following:

(a) The probability they see more than 3 meteors in the first hour.

(b) The probability they see zero meteors in the first hour, but at least 11 meteors
in the final three hours.

(c) Given that there were 13 meteors seen all night, what is the probability there
were no meteors seen in the first hour?

Exercise 3.14. Redo all parts of Exercise 3.13 under the assumption that the occur-
rences of meteors is well modeled by a Poisson process with rate function

λ(s) = 3.5 +
√
s, s ≥ 0.

Exercise 3.15. Consider a forrest that is inhabited by deer. Specifically, suppose
that the forest is rectangular and is 10 miles wide (north-south) and 20 miles long
(east-west). Suppose that the positions of the deer are well modeled by a spatial
Poisson point process with mean measure

µ(A) =

∫∫
A

λ(x, y) dx dy,

where (0, 0) is the southwest corner of the forest, and

λ(x, y) =

{
exp

{
−
(

(x−10)2

100
+ (y−5)2

25

)}
, 0 ≤ x ≤ 20, 0 ≤ y ≤ 10

0, else
.

For a region of the forrest A, we let N(A) be the number of deer in that region.

(a) What is P (N(A1) = 3), where A1 = [2, 4]× [7, 8]?
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(b) What is the probability there are no deer within one mile of the edge of the forest?

Exercise 3.16. In this problem, we verify (3.22) directly. A non-homogeneous Pois-
son process with intensity function λ : R≥0 → R≥0 is a Poisson process with mean
measure satisfying

µ([a, b)) =

∫ b

a

λ(s)ds, (3.29)

for all 0 ≤ a ≤ b and any k ∈ {0, 1, 2, . . . }. (See (3.12).) Let N be a unit-rate Poisson
process on [0,∞) and define

Nλ(t) = N

(∫ t

0

λ(s) ds

)
.

Verify directly that Nλ satisfies the two conditions of Definition 3.22 with E = [0,∞)
and mean measure (3.29). That is, show that Nλ(A) has the correct Poisson distri-
bution and that Nλ has independent increments.

Exercise 3.17. LetN be a unit-rate Poisson process with associated points Sn, n ≥ 0.
That is, for t ≥ 0,

N([0, t])
def
=

∞∑
n=0

1{Sn≤t},

where S0 and Sn − Sn−1, n ≥ 1, are independent unit exponential random variables.
Find a function f so that f(Sn), n ≥ 1 are the points of a Poisson process on [0,∞)
with mean measure satisfying

µ([a, b)) = b4 − a4,

for any 0 ≤ a ≤ b.

Exercise 3.18. In this exercise we will prove that if Y is a unit Poisson process, then
for any T > 0 we have

sup
0≤t≤T

| 1
V
Y (V t)− t| → 0, as V →∞, (3.30)

with a probability of one.

(a) Let Y be a unit Poisson process. Prove that for any t ≥ 0,

lim
V→∞

1
V
Y (V t) = t,

with a probability of one. (Hint: Y (V t) is a renewal process.)

(b) Let fn(t), n ≥ 1, be a sequence of non-decreasing functions. Suppose that for
some T > 0 we have fn(t) → f(t), as n → ∞, for all 0 ≤ t ≤ T (pointwise
convergence). Then we have the following stronger result

sup
0≤t≤T

|fn(t)− f(t)| → 0, as n→∞.

Use this fact, which you do not need to prove, and part (a) to conclude (3.30)
holds with a probability of one.



Chapter 4

Continuous Time Markov Chains

In Chapter 1, we considered stochastic processes that were discrete in both time
and space, and that satisfied the Markov property: conditional on the present, the
future of the process is independent from the past. Here we generalize such models
by allowing for time to be continuous. As before, we will always take our state space
to be either finite or countably infinite. A good mental image to have when first
encountering continuous time Markov chains is simply a discrete time Markov chain
in which transitions can happen at any time.

Throughout this chapter, we make the assumption that our processes are cadlag ,
meaning they are right-continuous with left hand limits. That is, we assume that for
each t ≥ 0, lims→t− X(s) exists and that lims→t+ X(s) = X(t). This condition implies
that if a transition occurs “at time t,” then we take X(t) to be the new state so that
X(t) 6= lims→t− X(s).

4.1 The basics

We begin with the definition of a continuous time Markov chain.

Definition 4.1. The continuous time processX(t), t ≥ 0, taking values in the discrete
state space S is said to be a continuous time Markov chain (CTMC) if for any t > s
and any j ∈ S,

P (X(t) = j | X(r), 0 ≤ r ≤ s) = P (X(t) = j | X(s)). (4.1)

The process is said to be time-homogeneous if

P (X(t) = j | X(s) = k) = P (X(t− s) = j | X(0) = k) (4.2)

for any 0 ≤ s ≤ t and any states j, k ∈ S.

As in the discrete time setting, the assumption in Definition 4.1 can be stated
succinctly as: conditioned upon the present (time s), the future (time t > s) is
independent from the past.

123
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Example 4.2. Suppose the state space of a continuous time Markov chain is S =
{1, 2}. We assume there can only be transitions between the two states, so that we do

not allow transitions of the form 1 → 1 or 2 → 2 . Graphically, we therefore
only allow

1 � 2 .

If we were to model the dynamics via a discrete time Markov chain, the transition
matrix would simply be

P =

(
0 1
1 0

)
,

and the dynamics would be quite trivial: the process would begin in state 1 or 2, and
then deterministically transition between the two states.

At this point, we do not know how to understand the dynamics in the continuous
time setting. In particular, we do not yet know the distribution for the times between
transitions. 4

Motivated by Example 4.2, our first question is: how long will a time-homogeneous
continuous time Markov chain remain in a given state? Explicitly, suppose X(0) =
x ∈ S and let Tx denote the time we transition away from state x. To find the
distribution of Tx, we let s, t ≥ 0 and find

P (Tx > s+ t | Tx > s)

= P (X(r) = x for r ∈ [s, s+ t] | X(r) = x for r ∈ [0, s])
(since P (A ∩B|B) = P (A|B))

= P (X(r) = x for r ∈ [s, s+ t] | X(s) = x) (Markov property)

= P (X(r) = x for r ∈ [0, t] | X(0) = x) (time homogeneity)

= P (Tx > t).

Hence, Tx satisfies the loss of memory property, and is therefore exponentially dis-
tributed.1 We denote the parameter of the exponential holding time for state x as
λ(x) so that for any t ≥ 0,

P (Tx ≤ t) = 1− e−λ(x)t.

Of course, we have E[Tx] = 1
λ(x)

. Thus, the larger λ(x), representing the rate out of
state x, the smaller the expected time for the transition to occur.

Example 4.3. We return to Example 4.2, though now we assume the rate from state
1 to state 2 is λ(1) > 0, and the rate from state 2 to state 1 is λ(2) > 0. We commonly
incorporate these parameters into the model by placing them next to the transition
arrow in the graph:

1
λ(1)

�
λ(2)

2 .

1Recall that the exponential random variable is the only continuous random variable with this
property.
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The dynamics of the model are now clear. Assuming X(0) = 1, the process will
remain in state 1 for an exponentially distributed amount of time, with parameter
λ(1), at which point it will transition to state 2. The process will remain in state 2
for an exponentially distributed amount of time with parameter λ(2), at which time
it will transition to state 1. This process then continuous indefinitely. 4

Example 4.3 is deceptively simple as it is clear that when the process transitions
out of state 1, it must go to state 2, and vice versa. However, consider the process
with states 1, 2, and 3 with transition graph

1 � 2 � 3 .

Even if you are told the holding time parameter for state 2, without further infor-
mation you can not figure out wether you transition to state 1 or state 3 after you
leave state 2. Therefore, we see we need to understand the transition probabilities
associated with the process, which we do now.

We begin with the following proposition stating that where the chain goes is
independent from how long it takes to transition.

Proposition 4.4. Conditioned upon X(0) = x, the random variable X(Tx) is inde-
pendent from Tx.

Proof. It is sufficient to show that for any s ≥ 0 and any y ∈ S

P (X(Tx) = y|Tx > s,X(0) = x) = P (X(Tx) = y|X(0) = x).

We have

P (X(Tx) = y|Tx > s,X(0) = x) = P (X(Tx) = y|X(r) = x, 0 ≤ r ≤ s)

= P (X(Tx) = y|X(s) = x)

= P (X(Tx) = y|X(0) = x),

where the second equality follows from the Markov property and the third equality
follows from time-homogeneity.

For each y 6= x in S, we define

pxy = P (X(Tx) = y | X(0) = x).

We next define
λ(x, y) = λ(x)pxy.

Since Tx is exponential with parameter λ(x), we have that

P (Tx < h) = 1− e−λ(x)h = λ(x)h+ o(h), as h→ 0.

Combining the above, for y 6= x we have

P (X(h) = y | X(0) = x) = P (Tx < h,X(Tx) = y | X(0) = x) + o(h)

= λ(x)hpxy + o(h)

= λ(x, y)h+ o(h),

(4.3)
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as h → 0, where the o(h) in the first equality represents the probability of seeing
two or more jumps (each with an exponential distribution) in the time window [0, h].
Therefore, λ(x, y) yields the local rate, or intensity, of transitioning from state x to
state y. Note that for x ∈ S∑

y 6=x

λ(x, y) =
∑
y 6=x

λ(x)pxy = λ(x).

We also have

P (X(h) = x | X(0) = x) = 1− λ(x)h+ o(h). (4.4)

By time-homogeneity and (4.3)-(4.4), for any t ≥ 0 we have

P (X(t+ h) = y|X(t) = x) = λ(x, y)h+ o(h) (4.5)

P (X(t+ h) = x|X(t) = x) = 1− λ(x)h+ o(h) (4.6)

Similarly to our consideration of the Poisson process, it can be argued that any
time homogeneous process satisfying the local conditions (4.5) and (4.6) also satisfies
the Markov property (4.1). This is not surprising as the conditions (4.5)-(4.6) only
make use of the current state of the system and ignore the entire past. This leads to
an equivalent definition of a continuous time Markov chain that incorporates all the
relevant parameters of the model and is probably the most common definition in the
literature.

Definition 4.5. A time-homogeneous continuous time Markov chain with transition
rates λ(x, y) is a stochastic process X(t), t ≥ 0, taking values in a finite or countably
infinite state space S satisfying

P (X(t+ h) = x | X(t) = x) = 1− λ(x)h+ o(h)

P (X(t+ h) = y | X(t) = x) = λ(x, y)h+ o(h),

where y 6= x, and λ(x) =
∑

y 6=x λ(x, y).

When only the local rates λ(x, y) are given, then the transition probabilities of
the chain can be recovered via the identity

pxy =
λ(x, y)

λ(x)
=

λ(x, y)∑
y 6=x λ(x, y)

.

Example 4.6. Let N be a Poisson process with intensity λ > 0. As N satisfies

P (N(t+ h) = j + 1 | N(t) = j) = λh+ o(h)

P (N(t+ h) = j | N(t) = j) = 1− λh+ o(h),

we see that it is a time-homogeneous continuous time Markov chain. Note also that
the Poisson process is the continuous time version of the deterministically monotone
chain from Example 1.11. 4
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Example 4.7. Consider again the three state Markov chain

1
λ(1,2)

�
λ(2,1)

2
λ(2,3)

�
λ(3,2)

3 ,

where the local transition rates have been placed next to their respective arrows.
Note that the holding time in state two is an exponential random variable with a
parameter of

λ(2) = λ(2, 1) + λ(2, 3),

and the probability that the chain enters state 1 after leaving state 2 is

p21 =
λ(2, 1)

λ(2, 1) + λ(2, 3)
,

whereas the probability that the chain enters state 3 after leaving state 2 is

p23 =
λ(2, 3)

λ(2, 1) + λ(2, 3)
.

This chain could then be simulated by sequentially computing holding times and
transitions. 4

An algorithmic construction of a general continuous time Markov chain should
now be apparent, and will involve two building blocks. The first will be a stream
of unit exponential random variables used to construct our holding times, and the
second will be a discrete time Markov chain, denoted Xn, with transition probabilities
pxy that will be used to determine the sequence of states. Note that for this discrete
time chain we necessarily have that pxx = 0 for each x. We also explicitly note that
the discrete time chain, Xn, is different than the continuous time Markov chain, X(t),
and the reader should be certain to clarify this distinction. The discrete time chain
is often called the embedded chain associated with the process X(t).

Algorithm 2. (Algorithmic construction of continuous time Markov chain)
Input:

• Let Xn, n ≥ 0, be a discrete time Markov chain with transition matrix Q. Let
the initial distribution of this chain be denoted by α so that P (X0 = k) = αk.

• Let En, n ≥ 0, be a sequence of independent unit exponential random variables.

Algorithmic construction:

1. Select X(0) = X0 according to the initial distribution α.

2. Let T0 = 0 and define W (0) = E0/λ(X(0)), which is exponential with parameter
λ(X(0)), to be the waiting time in state X(0).

3. Let T1 = T0 +W (0), and define X(t) = X(0) for all t ∈ [T0, T1).
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4. Let X1 be chosen according to the row associated with X0 in the transition
matrix Q, and define W (1) = E1/λ(X1).

5. Let T2 = T1 +W (1) and define X(t) = X1 for all t ∈ [T1, T2).

6. Continue process.

Note that two random variables will be needed at each iteration of Algorithm
2, one to compute the holding time, and one to compute the next state of the dis-
crete time Markov chain. In the biology/chemistry context, the algorithm implicit
in the above construction is typically called the Gillespie algorithm, after Dan Gille-
spie. However, it (and its natural variants) is also called, depending on the field,
the stochastic simulation algorithm, kinetic Monte Carlo, dynamic Monte Carlo, the
residence-time algorithm, the n-fold way, or the Bortz-Kalos-Liebowitz algorithm.
This algorithm has been discovered many times and plays a critical role in many
branches of science.

As the future of the process constructed in Algorithm 2 only depends upon the
current state of the system, and the current holding time is exponentially distributed,
it satisfies the Markov property (4.1). Further, for y 6= x we have

P (X(h) = y | X(0) = x) = P (X(T1) = y, T1 ≤ h | X(0) = x) + o(h)

= λ(x)hpxy + o(h)

= λ(x, y)h,

showing we also get the correct local intensities.
One useful way to think about the construction in Algorithm 2 is in terms of alarm

clocks:

1. When the chain enters state x, independent “alarm clocks” are placed at each
state y, and the yth is programed to go off after an exponentially distributed
amount of time with parameter λ(x, y).

2. When the first alarm goes off, the chain moves to that state, all alarm clock are
discarded, and we repeat the process.

Note that to prove that this algorithm is, in fact, equivalent to the algorithmic con-
struction above, you need to recall that the minimum of exponential random variables
with parameters λ(x, y) is itself exponentially distributed with parameter

λ(x) =
∑
y

λ(x, y),

and that it is the yth that went off with probability

λ(x, y)∑
j 6=x λ(x, j)

=
λ(x, y)

λ(x)
.

See Propositions B.3 and B.4.
We close this section with three examples.
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Example 4.8. We consider a random walker on S = {0, 1, . . . }. We suppose the
transition intensities are

λ(i, i+ 1) = λ

λ(i, i− 1) = µ, if i > 0,

and λ(0,−1) = 0. Therefore, the probability of the embedded discrete time Markov
chain transitioning up if the current state is i 6= 0, is λ/(λ+µ), whereas the probability
of transitioning down is µ/(λ + µ). When i 6= 0, the holding times will always be
exponentially distributed with a parameter of λ+ µ. 4
Example 4.9. We generalize Example 4.8 by allowing the transition rates to depend
upon the current state of the system. As in the discrete time setting this leads to a
birth and death process.

For i ∈ {0, 1, . . . , } let

λ(i, i+ 1) = B(i)

λ(i, i− 1) = D(i),

where we take D(0) = 0. Note that the transition rates are now state dependent, and
may even be unbounded as i→∞. Common choices for the rates include

B(i) = λi

D(i) = µi,

for some scalar λ, µ > 0. Another common model would be to assume a population
satisfies a logistical growth model,

B(i) = ri

D(i) =
r

K
i2.

where K is the carrying capacity.
Analogously to Example 3.35, if we let X(t) denote the state of the system at

time t, we have that X(t) solves the stochastic equation

X(t) = X(0) + Y1

(∫ t

0

B(X(s))ds

)
− Y2

(∫ t

0

D(X(s))ds

)
, (4.7)

where Y1 and Y2 are independent unit-rate Poisson processes. As in Example 3.35, it
is now an exercise to show that the solution to (4.7) satisfies the correct local intensity
relations of Definition 4.5. For example, denoting

A(t) = Y1

(∫ t

0

B(X(s))ds

)
, and D(t) = Y2

(∫ t

0

D(X(s))ds

)
,

we see that

P (X(t+ h) = x+ 1 | X(t) = x)

= P (A(t+ h)− A(t) = 1, D(t+ h)−D(t) = 0 | X(t) = x) + o(h)

= B(x)h(1−D(x)h) + o(h)

= B(x)h+ o(h).

4
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4.2 Explosions

We demonstrate a behavior that is not possible in the discrete time setting: explo-
sions. Recall that in Algorithm 2, which constructs a continuous time Markov chain,
the value Tn represents the time of the nth transition of the chain. Therefore, the
chain so constructed is only defined up until the (random) time

T∞
def
= lim

n→∞
Tn.

If T∞ <∞, then we say that an explosion has happened.

Definition 4.10. If

Pi(T∞ =∞) = P (T∞ =∞ | X(0) = i) = 1, for all i ∈ S,

than we will say the process is non-explosive. Otherwise we will say the process is
explosive.

Note that a process could be explosive even if

Pi(T∞ =∞) = 1,

for some i ∈ S; see Example 4.13. It is not too difficult to construct an explosive
process.

Proposition 4.11. Suppose that {En}, n ≥ 1, are independent exponential random
variables with respective parameters λn. Then,

P

(
∞∑
n=1

En <∞

)
= 1 ⇐⇒

∞∑
n=1

1

λn
<∞.

Proof. We will prove one direction of the implication (the one we will use). For
the other direction, see [31, Section 5.1]. We suppose that

∑
n

1
λn

< ∞. Because∑
nEn ≥ 0 and

E

[∑
n

En

]
=
∑
n

E[En] =
∑
n

1

λn
<∞,

we may conclude that
∑

nEn <∞ with probability one.

Thus, we see that we can construct an explosive birth process by requiring that
the parameters of the exponential holding times satisfy

∑
n 1/λ(Xn) <∞.

Example 4.12 (An explosive process). Consider a pure birth process in which the
embedded discrete time Markov chain is the deterministically monotone chain of
Example 1.11. Suppose that the holding time parameter in state i is λ(i). Finally,
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let X(t) denote the state of the continuous time process at time t. The stochastic
equation satisfied by X is

X(t) = X(0) +N

(∫ t

0

λ(X(s))ds

)
,

where N is a unit-rate Poisson process. Suppose that λ(n) = λn2 for some λ > 0 and
that X(0) = 1. Then the nth holding time is determined by an exponential random
variable with parameter λn2, which we denote by En. Since∑

n

1

λn2
<∞,

we may conclude by Proposition 4.11 that

P

(∑
n

En <∞

)
= 1,

and the process is explosive. The stochastic equation for this model is

X(t) = X(0) +N

(
λ

∫ t

0

X(s)2ds

)
,

and should be compared with the deterministic ordinary differential equation

x′(t) = λx2(t) ⇐⇒ x(t) = x(0) + λ

∫ t

0

x(s)2ds,

which also explodes in finite time. 4

Example 4.13. Consider a continuous time Markov chain with state space

S = {−2,−1, 0, 1, 2, . . . }.

We suppose that the graph of the model is

-2
1

�
1

-1
2← 0

1→ 1
1→ 2

22

→ 3
32

→ · · · ,

where, in general, the intensity of the transition n → n + 1, for n ≥ 1, is λ(n) =
n2. From the previous example, we know this process is explosive. However, if
X(0) ∈ {−2,−1}, then the probability of explosion is zero, whereas if X(0) = 0, the
probability of explosion is 1/3. 4

The following proposition characterizes the most common ways in which a process
is non-explosive. A full proof can be found in [31].
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Proposition 4.14. For any i ∈ S,

Pi(T∞ <∞) = Pi

(∑
n

1

λ(Xn)
<∞

)
, (4.8)

and therefore, the continuous time Markov chain is non-explosive iff

Pi

(∑
n

1

λ(Xn)
=∞

)
= 1,

for every i ∈ S. In particular,

(1) If λ(i) ≤ c for all i ∈ S for some c > 0, then the chain is non-explosive.

(2) If S is a finite set, then the chain is non-explosive.

(3) If T ⊂ S are the transient states of the embedded discrete time chain {Xn} and
if

Pi(Xn ∈ T, for every n ≥ 1) = 0,

for every i ∈ S, then the chain is non-explosive.

Proof. The equivalence of the probabilities in (4.8) is shown in [31, Section 5.2]. We
will focus on the three conditions implying non-explosiveness.

For (1), simply note that∑
n

1

λ(X(n))
≥
∑
n

1

c
=∞.

To show (2), we note that if the state space is finite, we may simply take c = max{λi},
and apply (1).

We will now show (3). If Pi(Xn ∈ T, for every n ≥ 1) = 0, then entry into T c

is assured. There must, therefore, be a state i ∈ T c, which is hit infinitely often
(note that this value can be different for different realizations of the process). Let the
infinite sequence of times for which Xn = i be denoted by nj, j ≥ 1. Then,∑

n

1

λ(Xn)
≥
∑
j

1

λ(Xnj)
=
∑
j

1

λ(i)
=∞,

showing the result.

We will henceforth have a running assumption that unless otherwise explicitly
stated, all processes considered in this chapter are non-explosive.



CHAPTER 4. CONTINUOUS TIME MARKOV CHAINS 133

4.3 Forward Equation, Backward Equation, and

the Generator Matrix

In this section, we consider non-explosive continuous time Markov chains and we
focus on transition probabilities of the form

Pij(t) = P (X(t) = j | X(0) = i),

where i, j ∈ S and t ≥ 0? We first derive the Kolmogorov forward equations. We
have

P ′ij(t) = lim
h→0

Pij(t+ h)− Pij(t)
h

= lim
h→0

1

h
(P (X(t+ h) = j | X(0) = i)− P (X(t) = j | X(0) = i))

= lim
h→0

1

h

(∑
y∈S

P (X(t+ h) = j | X(t) = y,X(0) = i)P (X(t) = y | X(0) = i)

− P (X(t) = j | X(0) = i)

)
.

However,∑
y∈S

P (X(t+ h) = j | X(t) = y,X(0) = i)P (X(t) = y | X(0) = i)

= P (X(t+ h) = j | X(t) = j,X(0) = i)P (X(t) = j | X(0) = i)

+
∑
y 6=j

P (X(t+ h) = j | X(t) = y,X(0) = i)P (X(t) = y | X(0) = i) (4.9)

= (1− λ(j)h)Pij(t) +
∑
y 6=j

λ(y, j)hPiy(t) + o(h), (4.10)

and so

P ′ij(t) = lim
h→0

1

h

(
(1− λ(j)h− 1)Pij(t) +

∑
y 6=j

λ(y, j)Piy(t)h+ o(h)

)
= −λ(j)Pij(t) +

∑
y 6=j

λ(y, j)Piy(t).

Thus,

P ′ij(t) = −λ(j)Pij(t) +
∑
y 6=j

Piy(t)λ(y, j). (4.11)

These are the Kolmogorov forward equations for the process. In the biology literature
this system of equations is often termed the chemical master equation.
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We point out that there was a small mathematical “slight of hand” in the above
calculation. To move from (4.9) to (4.10), we had to assume that∑

y

Piy(t)oy(h) = o(h),

where we write oy(h) to show that the size of the error can depend upon the state y.
This condition is satisfied for all systems we will consider.

Definition 4.15. Let X(t) be a continuous time Markov chain on some state space
S with transition intensities λ(i, j) ≥ 0. Recalling that

λ(i) =
∑
j 6=i

λ(i, j),

The matrix

Aij =

{
−λ(i), if i = j

λ(i, j), if i 6= j
=

{
−
∑

j λ(i, j), if i = j

λ(i, j), if i 6= j

is called the generator , or infinitesimal generator , or generator matrix of the Markov
chain.

We see that the Kolmogorov forward equations (4.11) can be written as the matrix
differential equation

P ′(t) = P (t)A,

since

(P (t)A)ij =
∑
y

Piy(t)Ayj = PijAjj +
∑
y 6=j

PiyAyj

= −λ(j)Pij(t) +
∑
y 6=j

Piyλ(y, j).

At least formally, this system can be solved

P (t) = P (0)etA = etA,

where etA is the matrix exponential and we used that P (0) = I, the identity matrix.
recall that the matrix exponential is defined by

eAt
def
=

∞∑
k=0

tnAn

n!
.

This solution is always valid in the case that the state space is finite.
We make the following observations pertaining to the generator A:

1. The elements on the main diagonal are all strictly negative.
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2. The elements off the main diagonal are non-negative.

3. Each row sums to zero.

We also point out that given a state space S, the infinitesimal generator A completely
determines the Markov chain as it contains all the local information pertaining to the
transitions: λ(i, j). Thus, it is sufficient to characterize a chain by simply providing
a state space, S, and generator, A.

Example 4.16. A molecule transitions between states 0 and 1. The transition rates
are λ(0, 1) = 3 and λ(1, 0) = 1. The generator matrix is

A =

(
−3 3
1 −1

)
.

4

Example 4.17. Consider a mathematician wandering between three coffee shops
with graphical structure

A
µ1

�
λ1

B
µ2

�
λ2

C.

The infinitesimal generator of this process is

A =

 −µ1 µ1 0
λ1 −(λ1 + µ2) µ2

0 λ2 −λ2

 ,

and the transition matrix for the embedded Markov chain is

P =

 0 1 0
λ1/(λ1 + µ2) 0 µ2/(λ1 + µ2)

0 1 0

 .

4

Example 4.18. For a unit-rate Poisson process, we have

A =


−1 1 0 . . .
0 −1 1 0 . . .
0 0 −1 1
...

...
. . . . . .

 .

4

If we are given an initial distribution of α and want the probability of being in
state j at time t, then we simply note

Pα(X(t) = j)
def
=
∑
i

P (X(t) = j | X(0) = i)P (X(0) = i) =
∑
i

αiPij = (αP (t))j.

Thus,
αP (t) = Pα(t) = αetA. (4.12)
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Backward equation

Before attempting to solve a system using Kolmogorov’s forward equations, we in-
troduce another set of equations, called Kolmogorov’s backward equations, which are
valid for all continuous time Markov chains. The derivation below follows that of [31].

We begin by finding an integral equation satisfied by Pij(t). We will then differ-
entiate it to get the backward equations.

Proposition 4.19. For all i, j ∈ S and t ≥ 0, we have

Pij(t) = δije
−λ(i)t +

∫ t

0

λ(i)e−λ(i)s
∑
k 6=i

QikPkj(t− s)ds,

where, as usual,

δij =

{
1, if i = j
0, if i 6= j

is the Kronecker delta function, and Q is the transition matrix of the embedded discrete
time Markov chain.

Proof. Conditioning on the first jump time of the chain, T1, we have

P (X(t) = j | X(0) = i)

= P (X(t) = j, T1 > t | X(0) = i) + P (X(t) = j, T1 ≤ t | X(0) = i).

We handle these terms separately. For the first term on the right hand side of the
above equation, a first transition has not been made. Thus, X(t) = j iff j = i and
does so with a probability of one. That is,

P (X(t) = j,T1 > t | X(0) = i)

= P (X(t) = j | T1 > t,X(0) = i)P (T1 > t | X(0) = i)

= δijPi(T1 > t)

= δije
−λ(i)t.

For the second term, we will condition on the time of the first jump happening
in (s, s + ∆), for small ∆ (we will eventually take ∆ → 0). As the holding time is
exponential with parameter λ(i), this event has probability∫ s+∆

s

λ(i)e−λ(i)rdr = λ(i)e−λ(i)s∆ +O(∆2).
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We let sn = nt/N for some large N , denote ∆ = t/N , and see

P (X(t) = j, T1 ≤ t | X(0) = i) =
N−1∑
n=0

P (X(t) = j, T1 ∈ (sn, sn+1) | X(0) = i)

=
N−1∑
n=0

P (X(t) = j | X(0) = i, T1 ∈ (sn, sn+1))P (T1 ∈ (sn, sn+1) | X(0) = i)

=
N−1∑
n=0

P (X(t) = j | X(0) = i, T1 ∈ (sn, sn+1))
[
λ(i)e−λ(i)sn∆ +O(∆2)

]
=

N−1∑
n=0

λ(i)e−λ(i)sn
∑
k 6=i

P (X(t) = j,X1 = k | X(0) = i, T1 ∈ (sn, sn+1))∆ +O(∆)

=
N−1∑
n=0

λ(i)e−λ(i)sn
∑
k 6=i

[
P (X(t) = j | X1 = k,X(0) = i, T1 ∈ (sn, sn+1))

× P (X1 = k | X(0) = i, T1 ∈ (sn, sn+1))

]
∆ +O(∆)

≈
N−1∑
n=0

λ(i)e−λ(i)sn
∑
k 6=i

QikPkj(t− sn)∆ +O(∆)

→
∫ t

0

λ(i)e−λ(i)s
∑
k 6=i

QikPkj(t− s)ds,

as ∆→ 0. Combining the above shows the result.

Proposition 4.20. For all i, j ∈ S, we have that Pij(t) is continuously differentiable
and

P ′(t) = AP (t), (4.13)

which in component form is

P ′ij(t) =
∑
k

AikPkj(t).

The system of equations (4.13) is called the Kolmogorov backwards equations. Note
that the difference with the forward equations is the order of the multiplication of
P (t) and A. However, the solution of the backwards equation is once again seen to
be

P (t) = etA,

agreeing with previous results.
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Proof. Use the substitution u = t− s in the integral equation to find that

Pij(t) = δije
−λ(i)t +

∫ t

0

λ(i)e−λ(i)s
∑
k 6=i

QikPkj(t− s)ds

= δije
−λ(i)t +

∫ t

0

λ(i)e−λ(i)(t−u)
∑
k 6=i

QikPkj(u)ds

= e−λ(i)t

[
δij +

∫ t

0

λ(i)eλ(i)u
∑
k 6=i

QikPkj(u)ds

]
.

Differentiating yields

P ′ij(t) = −λ(i)e−λ(i)t

[
δij +

∫ t

0

λ(i)eλ(i)u
∑
k 6=i

QikPkj(u)ds

]
+ e−λ(i)t · λ(i)eλ(i)t

∑
k 6=i

QikPkj(t)

= −λ(i)Pij(t) + λ(i)
∑
k 6=i

QikPkj(t)

=
∑
k

(−λ(i)δikPkj(t)) +
∑
k

λ(i)QikPkj(t)

=
∑
k

(−λ(i)δik + λ(i)Qik)Pkj(t)

=
∑
k

AikPkj(t).

Both the forward and backward equations can be used to solve for the associated
probabilities as the next example demonstrates.

Example 4.21. We consider a two state, {0, 1}, continuous time Markov chain with
generator matrix

A =

(
−λ λ
µ −µ

)
.

We will use both the forwards and backwards equations to solve for P (t).

Approach 1: Backward equation. While we want to compute Pij(t) for each pair
i, j ∈ {0, 1}, we know that

P00(t) + P01(t) = P10(t) + P11(t) = 1,

for all t ≥ 0, and so it is sufficient to solve just for P00(t) and P10(t).
The backwards equation is P ′(t) = AP (t), yielding the equations

P ′00(t) = λ[P10(t)− P00(t)]

P ′10(t) = µ[P00(t)− P10(t)].
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We see that
µP ′00(t) + λP ′10(t) = 0 =⇒ µP00(t) + λP10(t) = c.

We know that P (0) = I, so we see that

µP00(0) + λP10(0) = c ⇐⇒ µ = c.

Thus,
µP00(t) + λP10(t) = µ =⇒ λP10(t) = µ− µP00(t).

Putting this back into our differential equations above we have that

P ′00(t) = µ− µP00(t)− λP00(t) = µ− (µ+ λ)P00(t).

Solving, with P00(t) = 1 yields

P00(t) =
µ

µ+ λ
+

λ

µ+ λ
e−(µ+λ)t.

Of course, we also have that

P01(t) = 1− P00(t)

P10(t) =
µ

λ
− µ

λ

(
µ

µ+ λ
+

λ

µ+ λ
e−(µ+λ)t

)
=

µ

µ+ λ
− µ

µ+ λ
e−(µ+λ)t.

Approach 2: Forward equation. This is easier. We want to solve

P ′(t) = P (t)A.

We now get

P ′00(t) = −P00(t)λ+ P01(t)µ = −P00(t)λ+ (1− P00(t))µ = µ− (λ+ µ)P00(t)

P ′10(t) = −λP10(t) + µP11(t) = −λP10(t) + µ(1− P10(t)) = µ− (λ+ µ)P00(t),

and the solutions above follow easily.
Note that, as in the discrete time setting, we have that

lim
t→∞

P (t) =
1

λ+ µ

(
µ λ
µ λ

)
,

yielding a common row vector which can be interpreted as a limiting distribution. 4

There is a more straightforward way to make the above computations: simply
solve the matrix exponential.
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Example 4.22 (Computing matrix exponentials). Suppose that A is an n×n matrix
with n distinct eigenvectors. Then, letting D be a diagonal matrix consisting of the
eigenvalues of A, we can decompose A into

A = QDQ−1,

where Q consists of the eigenvectors of A (ordered similarly to the order of the eigen-
values in D). In this case, we get the very nice identity

eAt =
∞∑
n=0

tn(QDQ−1)n

n!
= Q

(
∞∑
n=0

tnDn

n!

)
Q−1 = QeDtQ−1,

where eDt, because D is diagonal, is a diagonal matrix with diagonal elements eλit

where λi is the ith eigenvalue.

Example 4.23. We now solve the above problem using the matrix exponential.
Supposing, for concreteness, that λ = 3 and µ = 1, we have that the generator
matrix is

A =

(
−3 3
1 −1

)
It is easy to check that the eigenvalues are 0,−4 and the associated eigenvalues are
[1, 1]t and [−3, 1]t. Therefore,

Q =

(
1 −3
1 1

)
, Q−1 =

(
1/4 3/4
−1/4 1/4

)
,

and

etA =

(
1/4 + (3/4)e−4t 3/4− (3/4)e−4t

1/4− (1/4)e−4t 3/4 + (1/4)e−4t

)
.

You should note that

lim
t→∞

etA =

(
1/4 3/4
1/4 3/4

)
,

which has a common row. Thus, for example, in the long run, the chain will be in
state zero with a probability of 1/4. 4

4.4 Stationary Distributions

In this section we will parallel our treatment of stationary distributions for discrete
time Markov chains. We will aim for intuition, as opposed to attempting to prove
everything, and point the interested reader to [31] and [29] for the full details of the
proofs.
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4.4.1 Classification of states

We start by again classifying the states of our process. Viewing a continuous time
Markov chain as an embedded discrete time Markov chain with exponential holding
times makes the classification of states, analogous to Section 1.5 in the discrete time
setting, easy. We will again denote our state space as S.

Definition 4.24. The communication classes of the continuous time Markov chain
X(t), t ≥ 0, are the communication classes of the embedded Markov chain Xn, n ≥ 0.
If there is only one communication class, we say the chain is irreducible; otherwise it
is said to be reducible.

Noting that X(t) will return to a state i infinitely often if and only if the embedded
discrete time chain does motivates the following.

Definition 4.25. State i ∈ S is called recurrent for X(t), t ≥ 0, if i is recurrent for
the embedded discrete time chain Xn, n ≥ 0. Otherwise, i is transient.

Definition 4.26. Let T1 denote the first jump time of the continuous time chain.
We define

τi
def
= inf{t ≥ T1 : X(t) = i},

and set mi = Ei[τi]. We say that state i is positive recurrent if mi <∞.

Note that, perhaps surprisingly, we do not define i to be positive recurrent if i is
positive recurrent for the discrete time chain. In Example 4.33 we will demonstrate
that i may be positive recurrent for Xn, while not for X(t).

As in the discrete time setting, recurrence, transience, and positive recurrence are
class properties.

Note that the concept of periodicity no longer plays a role, or even makes sense
to define, as time is no longer discrete. In fact, if P (t) is the matrix with entries
Pij(t) = P (X(t) = j | X(0) = i) for an irreducible continuous time chain, then for
every t > 0, Pij(t) has strictly positive entries because there is necessarily a path
between i and j, and a non-zero probability of moving along that path in time t > 0.

4.4.2 Invariant measures

Recall that equation (4.12) states that if the initial distribution of the process is α,
then αP (t) is the vector whose ith component gives the probability that X(t) = i.
We therefore define an invariant measure in the following manner.

Definition 4.27. A measure η = {ηj, j ∈ S} on S is called invariant if for all t > 0

ηP (t) = η.

If this measure is a probability distribution, then it is called a stationary distribution.

The following theorem gives us a nice way to find stationary distributions of
continuous time Markov chains.
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Theorem 4.28. Let X(t) be an irreducible and recurrent continuous time Markov
chain with generator matrix A. Then the following statements are equivalent:

1. ηA = 0;

2. ηP (t) = η, for all t ≥ 0.

Proof. The proof of this fact is easy in the case of a finite state space, which is what
we will assume here. Recall Kolmogorov’s backward equation

P ′(t) = AP (t).

Assume that ηA = 0. Multiplying the backwards equation on the left by η shows

0 = ηAP (t) = ηP ′(t) =
d

dt
ηP (t).

Thus,
ηP (t) = ηP (0) = η,

for all t ≥ 0.
Now assume that ηP (t) = η for al t ≥ 0. Then, for all h > 0, we have

ηP (h) = η =⇒ η(P (h)− I) = 0 =⇒ η
(P (h)− I)

h
= 0.

Taking h→ 0 now shows that

0 = ηP ′(0) = ηA,

where we have used that P ′(0) = A, which follows from either the forward or backward
equations.

The interchange above of differentiation with summation can not in general be
justified in the infinite dimensional setting, and different proof is needed and we refer
the reader to [29, Section 3.5].

Theorem 4.29. Suppose that X(t) is irreducible and recurrent. Then X(t) has an
invariant measure η, which is unique up to multiplicative factors. Moreover, for each
k ∈ S, we have

ηk =
πk
λ(k)

,

where π is the unique invariant measure of the embedded discrete time Markov chain
Xn. Finally, η satisfies

0 < ηj <∞, ∀j ∈ S,

and if
∑

i ηi <∞ then η can normalize by 1/
∑

k ηk to give a stationary distribution.



CHAPTER 4. CONTINUOUS TIME MARKOV CHAINS 143

Proof. By Theorem 4.28, we must only show that there is a solution to ηA = 0,
satisfying all the desired results, if and only if there is an invariant measure to the
discrete time chain. We first recall that π was an invariant measure for a discrete time
Markov chain if and only if πQ = π, where Q is the transition matrix. By Theorem
1.72, such a π exists, and is unique up to multiplicative constants, if Xn is irreducible
and recurrent.

Recall that if j 6= k, then Ajk = λ(j)Qjk and that Ajj = −λ(j). We now simply
note that

η′A = 0 ⇐⇒
∑
j

ηjAjk = 0, ∀k ⇐⇒
∑
j 6=k

ηjλ(j)Qjk − ηkλ(k) = 0.

However, this holds if and only if∑
j 6=k

ηjλ(j)Qjk = ηkλ(k) ⇐⇒ πQ = π, where πk
def
= λ(k)ηk.

That is, the final equation (and hence all the others) holds if and only if π is invariant
for the Markov matrix Q. Such a π exists, and satisfies all the desired properties, by
Theorem 1.72. Further, we see the invariant measure of the continuous time Process
satisfies ηk = πk/λ(k), as desired.

Example 4.30. Consider the continuous time Markov chain with generator matrix

A =


−5 3 1 1

1 −1 0 0

2 1 −4 1

0 2 2 −4

 .

The unique left eigenvector of A with eigenvalue 0, i.e. the solution to ηA = 0,
normalized to sum to one is

η =

(
14

83
,

58

83
,

6

83
,

5

83

)
.

Further, note that the transition matrix for the embedded discrete time Markov chain
is

P =


0 3

5
1
5

1
5

1 0 0 0
1
2

1
4

0 1
4

0 1
2

1
2

0

 .

Solving for the stationary distribution of the embedded chain, i.e. solving πP = π,
yields

π =

(
35

86
,
29

86
,

6

43
,

5

43

)
.



CHAPTER 4. CONTINUOUS TIME MARKOV CHAINS 144

Finally, note that

(η1λ(1), η2λ(2), η3λ(3), η4λ(4)) =
(
5 · 14

83
, 58

83
, 4 · 6

83
, 4 · 5

83

)
=
(

70
83
, 58

83
, 24

83
, 20

83

)
= 172

83

(
35
86
, 29

86
, 6

43
, 5

43

)
= 172

83
π,

as predicted by the theory. 4

We now consider the positive recurrent case. We recall that mi = Ei[τi], the
expected first return time to state i. The following result should not be surprising at
this point. See [29] for a proof.

Theorem 4.31. Let A be the generator matrix for an irreducible continuous time
Markov chain. Then the following are equivalent

1. Every state is positive recurrent.

2. Some state is positive recurrent.

3. A is non-explosive and has an invariant distribution η.

Definition 4.32. We call the continuous time Markov chain X(t), t ≥ 0, ergodic if
it is irreducible and positive recurrent.

The following example shows that positive recurrence of the embedded discrete
time Markov chain Xn, n ≥ 0, does not guarantee that X(t), t ≥ 0, is positive recur-
rent.

Example 4.33. We consider a continuous time Markov chain whose embedded dis-
crete time Markov chain has state space S = {0, 1, 2, . . . } and transition matrix

Q =


0 1 0 0 · · ·
q 0 p 0 · · ·
q 0 0 p
...

. . .

 ,

where p+ q = 1. This is the “success run chain” and we showed in Problem 1.12 that
the discrete time chain is positive recurrent. Let λ(i) be the holding time parameter
for state i of the associated continuous time Markov chain, and let Em, m ≥ 0,
denote a sequence of independent unit exponential random variables, which are also
independent of the embedded discrete time Markov chain. Finally, assuming that
X0 = 0, let T1 denote the first return time to state 0 of the embedded chain. For
example, if T1 = 3, then X0 = 0, X1 = 1, X2 = 2, and X3 = 0. More generally,



CHAPTER 4. CONTINUOUS TIME MARKOV CHAINS 145

we have X0 = 0, X1 = 1, . . . , XT1−1 = T1 − 1, and XT1 = 0. For m < T1, we let
W (m) = Em/λ(m) be the holding time in state m. We have

m0 = E0[τ0] = E0

[
T1−1∑
m=0

W (m)

]

= E

[
∞∑
m=0

W (m)1{m<T1}

]

=
∞∑
m=0

E[W (m)1{m<T1}].

However, we know that the holding times and the embedded chain are independent.
Thus, as 1{m<T1} is simply a statement pertaining to the embedded chain,

E[W (m)1{m<T1}] = E[W (m)] · E[1{m<T1}] =
1

λ(m)
P0(m < T1).

Combining the above,

m0 =
∞∑
m=0

1

λ(m)
P0(m < T1)

=
1

λ(0)
+
∞∑
m=1

1

λ(m)
P0(m < T1).

For m ≥ 1,

P (m < T1) =
∞∑

n=m+1

P (T1 = n) =
∞∑

n=m+1

pn−2q = qpm−1

∞∑
n=0

pn = pm−1.

Thus,

m0 =
1

λ(0)
+
∞∑
m=1

1

λ(m)
pm−1.

Of course, we have not chosen λ(m) yet. Taking λ(m) = pm, we see

m0 =
1

λ(0)
+
∞∑
m=1

1

pm
pm−1 = 1 +

∞∑
m=1

1

p
=∞.

So, Xn is positive recurrent, but X(t) is not. 4

The following example, taken from [29], shows two things. First, it demonstrates
that a transient chain can have an invariant measure. Further, it even shows stranger
behavior is possible: a transient chain can have an invariant distribution! Of course,
the previous theorems seem to suggest that this is not possible. However, there is a
catch: the chain could be explosive. In fact, if a transient chain is shown to have a
stationary distribution, then the chain must be explosive for otherwise Theorem 4.31
is violated.
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Example 4.34. Consider a discrete time random walker on S = {0, 1, 2, . . . }. Sup-
pose that the probability of moving to the right is p > 0 and to the left is q = 1− p.
To convert this into a continuous time chain, we suppose that λ(i) is the holding time
parameter in state i. More specifically, we assume X(t) is a continuous time Markov
chain with generator matrix A satisfying

A =


−λ(0)p λ(0)p 0 0 0 · · ·
qλ(1) −λ(1) pλ(1) 0 0 · · ·

0 qλ(2) −λ(2) pλ(2) 0 · · ·
0 0 qλ(3) −λ(3) pλ(3)
...

. . . . . .


We know that this chain is transient if p > q since the discrete time chain is. We now
search for an invariant measure satisfying

ηA = 0,

which in component form is

−λ(0)pη0 + qλ(1)η1 = 0

λ(i− 1)pηi−1 − λ(i)ηi + λ(i+ 1)qηi+1 = 0 i > 0.

We will confirm that η satisfying

η(i) =
1

λ(i)

(
p

q

)i
,

is a solution. The case i = 0 is easy to verify

λ(0)pη0 = λ(0)p
1

λ(0)
= p = qλ(1)

1

λ(1)

p

q
= qλ(1)η1.

The i > 0 case follows similarly.
Therefore, there is always an invariant measure, regardless of the values p and q.

Taking p > q and λ(i) = 1 for all i, we see that the resulting continuous time Markov
chain is transient, and has an invariant measure

η(i) =

(
p

q

)i
,

which can not be normalized to provide an invariant distribution.
Now, consider the case when p > q, with 1 < p/q < 2, and take λ(i) = 2i. Define

α
def
= p/q < 2. Then,

∞∑
i=0

η(i) =
∞∑
i=0

(α
2

)i
=

1

1− α/2
=

2

2− α
<∞,

Therefore, we can normalize to get a stationary distribution. Since we already know
this chain is transient, we have shown that it must, in fact, explode. 4
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4.4.3 Limiting distributions and convergence

We have found conditions for the existence of a unique stationary distribution to a
continuous time Markov chain: irreducibility and positive recurrence (i.e. ergodicity).
As in the discrete time case, there is still the question of convergence. The following
is proven in [29].

Theorem 4.35. Let X(t) be an ergodic continuous time Markov chain with unique
invariant distribution η. Then, for all i, j ∈ S,

lim
t→∞

Pij(t) = ηj.

Example 4.36. Let S = {0, 1} with transition rates λ(0, 1) = 3 and λ(1, 0) = 1.
Then the generator matrix is

A =

(
−3 3
1 −1

)
.

Solving directly for the left eigenvector of A with eigenvalue 0 yields

π = (1
4
, 3

4
),

which agrees with the result found in Example 4.23. 4

As in the discrete time setting, we have an ergodic theorem. For a proof, see [31,
Section 5.5].

Theorem 4.37. Suppose that X(t) is an irreducible, positive recurrent continuous
time Markov chain with unique stationary distribution η. Then, for any initial con-
dition, and any i ∈ S,

P

(
1

t

∫ t

0

1{X(s)=i}ds→ ηi, as t→∞
)

= 1.

Moreover, for any bounded function f : S → R we have

P

(
1

t

∫ t

0

f(X(s))ds→ f̄ , as t→∞
)

= 1,

where
f̄ =

∑
j∈S

ηjf(j) = Eη[f(X∞)],

where X∞ has distribution η.

Thus, as in the discrete time setting, we see that ηi gives the proportion of time
spent in state i over long periods of time. This gives us an algorithmic way to sample
from the stationary distribution: simulate a single long trajectory and average over
it.
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4.5 The Generator, Revisited

In this section, we let X(t), t ≥ 0, be a time-homogeneous continuous time Markov
chain with discrete state space S and generator matrix A.

Consider a function f : S → R. Since f is simply a mapping from the discrete
space S to R, we can represent f as a column vector whose ith component is equal
to f(i). For example, if S = {1, 2, 3} and f(1) = −2, f(2) = π, and f(3) = 100, then
we take

f =

 −2
π

100

 .
As A is a matrix, it is possible to consider Af , which is itself a column vector, and
hence a function from S to R.

If the initial distribution for our Markov chain is α, then for any f we have that

Eα[f(X(t))] =
∑
j∈S

Pα(X(t) = j)f(j)

=
∑
j∈S

(∑
i∈S

P (X(t) = j | X(0) = i)Pα(X(0) = i)

)
f(j)

=
∑
i∈S

αi

(∑
j∈S

Pij(t)f(j)

)
=
∑
i∈S

αi(P (t)f)i

= αP (t)f.

(4.14)

Now recall that the forward equation stated that P ′(t) = P (t)A. Integrating this
equation yields

P (t) = I +

∫ t

0

P (s)Ads,

and multiplication on the right by f gives

P (t)f = f +

∫ t

0

P (s)Afds. (4.15)

Multiplying (4.15) on the left by α yields

αP (t)f = αf +

∫ t

0

αP (s)(Af)ds,

which combined with (4.14) gives

Eα[f(X(t))] = Eα[f(X(0))] +

∫ t

0

Eα[(Af) (X(s))] ds

= Eα[f(X(0))] + Eα
[∫ t

0

(Af) (X(s)) ds

]
.

(4.16)
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Equation 4.16 is a version of Dynkin’s formula. For a more formal derivation in the
Markov process setting, see [12, Section 1.1].

Example 4.38. We will re-derive the mean and variance of a Poisson process using
Dynkin’s formula. Let X(t) be a Poisson process with intensity λ > 0. The state
space is S = {0, 1, 2, . . . } and for any function f : S → R

(Af) =


−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ · · ·
...

. . . . . .




f(0)
f(1)
f(2)

...

 =


−λf(0) + λf(1)
−λf(1) + λf(2)
−λf(2) + λf(3)

...

 .

Thus, for any i ∈ {0, 1, 2, . . . }

(Af)(i) = λ(f(i+ 1)− f(i)).

Letting f(i) = i, and taking X(0) = 0 we have

E[f(X(t))] = E[X(t)] = 0 +

∫ t

0

E[(Af)(X(s))]ds

=

∫ t

0

E
[
λ
(
f(X(s) + 1)− f(X(s))

)]
ds

= λ

∫ t

0

ds

= λt.

In order to find the second moment, we let g(i) = i2 and repeat the previous steps,

E[g(X(t))] = E[X(t)2] = 0 +

∫ t

0

E [(Af)(X(s))] ds

=

∫ t

0

E
[
λ
(
g(X(s) + 1)− g(X(s))

)]
ds

= λ

∫ t

0

E
[
X(s)2 + 2X(s) + 1−X(s)2

]
ds

= λ

∫ t

0

E
[
2X(s) + 1

]
ds = λ

∫ t

0

(2λs+ 1)ds = λ2t2 + λt.

Therefore, the variance is

Var(X(t)) = E
[
X(t)2

]
− (E[X(t)])2 = λt,

as expected. 4

Both the mean and variance of a time-homogeneous Poisson process are well
known. However, the above method is quite general and is useful in myriad ap-
plications.
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Example 4.39. Let b > 0 and consider a pure birth process on S = {1, 2, . . . } with
growth rate λ(i) = bi and initial condition X(0) = 1. For f : S → R, we have that

(Af)(i) = bi
(
f(i+ 1)− f(i)

)
, (4.17)

for all i ∈ S, where A is the generator for the continuous time chain.
For f(i) = i, we have that

E[f(X(t))] = E[X(t)] = 1 +

∫ t

0

E [(Af)(X(s))] ds

= 1 +

∫ t

0

E
[
bX(s)

(
f(X(s) + 1)− f(X(s))

)]
ds

= 1 + b

∫ t

0

E[X(s)]ds.

Therefore, defining g(t) = E[X(t)], we see that

g′(t) = bg(t), g(0) = 1.

Thus,
g(t) = E[X(t)] = ebt.

This result should be compared with the solution to the deterministic linear growth
model x′(t) = bx(t), which yields the same solution. 4

Let ei be the row vector with a one in the ith component, and zeros elsewhere.
We see from (4.14) that for all t ≥ 0

eiP (t)f = Ei[f(X(t))]. (4.18)

In words, the ith component of the vector P (t)f gives Ei[f(X(t))]. Next, note that

(Af)(i) = ei(Af) = ei(P
′(0)f) = ei lim

h→0

1

h
(P (h)f − P (0)f)

= lim
h→0

1

h
(eiP (h)f − eif)

= lim
h→0

Ei[f(X(h))]− f(i)

h
, (4.19)

where we used (4.18) in the final equality. Taking f(i) = 1{i=j} for some j ∈ S,
i.e. f = eTj , we see that (4.19) yields

Aij = lim
h→0

1

h
(P (X(h) = j | X(0) = i)) = λ(i, j),

when i 6= j, and

Ajj = lim
h→0

1

h
(P (X(h) = j | X(0) = j)− 1) = −λ(j),

for the diagonal elements. Therefore, (4.19) could be taken as an alternative definition
of the generator for a Markov process, though one which views the generator as an
operator and not simply as a matrix that stores the transition intensities.
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Example 4.40. Consider a store in which customers arrive at rate λ > 0 and depart
at rate µX(t), where X(t) is the number of customers at time t. For i ≥ 0 we have

(Af)(i) = lim
h→0

Ei[f(X(h))]− f(i)

h

= lim
h→0

1

h

[
f(i+ 1)Pi(X(h) = i+ 1) + f(i− 1)Pi(X(h) = i− 1)

+ f(i)Pi(X(h) = i)− f(i) + o(h)

]
= lim

h→0

1

h

[
f(i+ 1)λh+ f(i− 1)µih+ f(i)(1− λh− µih)− f(i) + o(h)

]
= λ(f(i+ 1)− f(i)) + µi(f(i− 1)− f(i)).

So, for example, taking f(y) = y to be the identity, and X(0) = x, we have that

E[X(t)] = E[f(X(t))] = E[X(0)] + E
[∫ t

0

(Af)(X(s))ds

]
= x+ E

[∫ t

0

(
λ(X(s) + 1−X(s))

)
+ µX(s)

(
X(s)− 1−X(s)

)
ds

]
= x+

∫ t

0

(λ− µE[X(s)])ds.

Setting g(t) = E[X(t)], we see that g(0) = x and g′(t) = λ−µg(t). Solving this initial
value problem yields the solution

E[X(t)] = xe−µt +
λ

µ
(1− e−µt).

The second moment, and hence the variance, of the process can be calculated in a
similar manner. 4

4.6 Continuous Time Birth and Death Processes

We revisit the topic of birth and death process, though now in the setting of con-
tinuous time. As in Section 2.2, our state space is S = {0, 1, 2, . . . }. For each
n ∈ {0, 1, 2, . . . }, the transition rates are

λ(n, n+ 1) = bn and λ(n, n− 1) = dn,

where bn, dn ≥ 0, d0 = 0, and λ(n, j) = 0, when |j − n| ≥ 2. The generator matrix is

A =



−b0 b0 0 0 0 · · ·
d1 −(b1 + d1) b1 0 0 · · ·
0 d2 −(b2 + d2) b2 0 · · ·
0 0 d3 −(b3 + d3) b3 · · ·
...

...
. . . . . . . . .


,
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whereas the generator as an operator (see Section 4.5) satisfies

Af(n) = bn(f(n+ 1)− f(n)) + dn(f(n− 1)− f(n)), (4.20)

where f : {0, 1, 2, . . . } → R.
We begin with examples, many of which are analogous to those in the discrete

time setting.

Example 4.41. The Poisson process is a birth-death process with bn ≡ λ, for some
λ > 0, and dn ≡ 0. 4

Example 4.42. A pure birth process with bn ≥ 0, and dn ≡ 0 is an example of a
birth and death process. 4

Example 4.43 (Queueing Models). We suppose that arrivals of customers are oc-
curring at a constant rate of λ > 0. That is, we assume that bn ≡ λ. However,
departures occur when a customer has been served. There are a number of natural
choices for the model of the service times.

(a) (Single server) If there is a single server, and that person always serves the first
person in line, then we take dn = µ > 0, if n ≥ 1, and d0 = 0.

(b) (k servers) If there are k ≥ 1 servers, and the first k people in line are always
being served, then for some µ > 0 we take

dn =

{
nµ, if n ≤ k
kµ, if n ≥ k

.

(c) (∞ servers) If we suppose that there are an infinite number of servers, then
dn = nµ for some µ > 0.

4

Example 4.44 (Population Models). Suppose that X(t) represents the number of
individuals in a certain population at time t ≥ 0. Assuming the rates of both repro-
duction and death are proportional to population size we have

bn = λn and dn = µn,

for some λ, µ > 0. 4

Example 4.45 (Population with immigration). Consider the previous system except
bn = λn+ ν for some ν > 0, representing an inflow due to immigration. Now 0 is no
longer an absorbing state. 4

Example 4.46 (Fast growing population). Consider a population that grows at a
rate proportional to the square of the number of individuals. Assuming no deaths,
we have for some λ > 0 that

bn = λn2, and µn = 0.

We saw in Example 4.12 that this population grows so fast that it reaches an infinite
population in finite time with a probability of one. 4
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Returning to a general system, consider the embedded discrete time Markov chain
of a continuous time birth and death process. The transition probabilities of this chain
are

pn,n+1 = pn
def
=

bn
bn + dn

qn,n−1 = qn
def
=

dn
bn + dn

.

The following proposition follows directly from Proposition 2.7.

Proposition 4.47. A continuous time birth and death process is transient if and only
if

∞∑
k=1

d1 · · · dk
b1 · · · bk

<∞.

Proof. From Proposition 2.7, the embedded chain, and hence the continuous time
chain, is transient if and only if

∞∑
k=1

q1 · · · qn
p1 · · · pk

<∞.

Noting that
∞∑
k=1

q1 · · · qn
p1 · · · pk

=
∞∑
k=1

d1 · · · dk
b1 · · · bk

,

completes the proof.

Similarly to the discrete time case, we can now conclude that the single server
queue is transient if and only if µ < λ, and that the k server queue is transient if and
only if kµ < λ. For the infinite server queue we have

∞∑
k=1

d1 · · · dk
p1 · · · pk

=
∞∑
k=1

k!
(µ
λ

)k
=∞,

for any choice of µ, λ > 0. Thus, the infinite server queue is always recurrent.

We turn to the question of positive recurrence and stationary distributions. We
know that a stationary distribution η must satisfy ηA = 0, which in component form
is

η0b0 = η1d1

(bk + dk)ηk = bk−1ηk−1 + dk+1ηk+1, for k ≥ 1.

Noting that these are the same equations as (2.7) and (2.8), we can conclude that
such an η exists and can be made into a probability vector if and only if

∞∑
k=1

b0b1 · · · bk−1

d1 · · · dk
<∞.

The following is analogous to Proposition 2.9.
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Proposition 4.48. There exists a stationary distribution for a continuous time birth
and death chain if and only if

∞∑
k=1

b0b1 · · · bk−1

d1 · · · dk
<∞.

In this case,

η0 =

(
∞∑
k=0

b0b1 · · · bk−1

d1 · · · dk

)−1

,

where the k = 0 term in the above sum is taken to be equal to one, and for k ≥ 1,

ηk =
b0 · · · bk−1

d1 · · · dk
η0.

For example, for the single server queue we have

∞∑
k=0

(
λ

µ

)k
=

(
1− λ

µ

)−1

,

provided λ < µ, and in this case

ηk =

(
1− λ

µ

)(
λ

µ

)k
.

The expected length of the queue in equilibrium is

∞∑
k=0

kηk = k

(
1− λ

µ

)(
λ

µ

)k
=
λ

µ

(
1− λ

µ

)−1

=
λ

µ− λ
,

which grows to infinity as λ approaches µ.

For the infinite server queue we have

∞∑
k=0

b0 · · · bk−1

d1 · · · dk
=
∞∑
k=0

1

k!

(
λ

µ

)k
= eλ/µ.

Therefore, a stationary distribution exists, and since we already know the chain is re-
current we may conclude it is positive recurrent. Note that the stationary distribution
is Poisson(λ/µ), and

ηk = e−λ/µ
(λ/µ)k

k!
, for k ≥ 0. (4.21)

In the next chapter, we will see why many models from chemistry and biology have
stationary distributions that are Poisson.

We close by noting that the generator as described in (4.20) can be utilized to
compute the moments of a birth and death process in the case that the intensities
are linear functions of the state.
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Example 4.49. Consider linear birth and death process with transition rates

bn = λn, dn = µn, and d0 = 0,

where λ, µ > 0. For f : {0, 1, 2, . . . } → R, we have

(Af)(n) = λn(f(n+ 1)− f(n)) + µn(f(n− 1)− f(n)),

for n ≥ 0. Taking f(n) = n and X(0) = x we have

E[X(t)] = E[f(X(t))] = E[f(X(0))] + E
[∫ t

0

(Af)(X(s))ds

]
= f(x) + E

[ ∫ t

0

λX(s)(f(X(s) + 1)− f(X(s)))

+ µX(s)(f(X(s)− 1)− f(X(s)))ds

]
= x+ E

[∫ t

0

λX(s)(X(s) + 1−X(s)) + µX(s)
(
X(s)− 1−X(s)

)
ds

]
= x+ (λ− µ)

∫ t

0

E[X(s)]ds.

Solving this integral equation yields

E[X(t)] = xe(λ−µ)t. (4.22)

Solving for the second moment, and hence the variance, is done in a similar manner.
4

4.7 Exercises

Exercise 4.1. Consider a continuous time Markov chain with state space {1, 2, 3, 4}
and generator matrix

A =


−3 2 0 1

0 −2 1
2

3
2

1 1 −4 2

1 0 0 −1

 .

Write a Matlab code that simulates a path of this chain. To do so, use the con-
struction provided in the notes (i.e. simulate the embedded chain and holding times
sequentially). Using this code and assuming that X(0) = 1, estimate E[X(3)] by
averaging over 10,000 such paths. Note that you will need to make sure you break
your “for” or “while” loop after you see that the time will go beyond T = 3, without
updating the state for that step.

Exercise 4.2. In Example 4.13, it was stated that if X(0) = 0, then the probability
of an explosion was 1/3. Why is that?
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Exercise 4.3. Suppose that α > 1. Prove that any birth process for which λ(n) = nα

is explosive.

Exercise 4.4. Consider a continuous time Markov chain with S = {1, 2} and

λ(1, 2) = 2, λ(2, 1) = 3.

Find P (t), the matrix whose i, jth entry gives P (X(t) = j | X(0) = i).

Exercise 4.5. Let A be the generator matrix for an irreducible continuous time
Markov chain with finite state space S. Let λ0 > 0 be such that |Aij| < λ0 for all
i, j ∈ S. Now define

P =
1

λ0

A+ I,

where I is the identity matrix.

(a) Show that P is a transition matrix for an irreducible, aperiodic discrete time
Markov chain on the state space S.

(b) Using part (a), show that A has a unique left eigenvector with eigenvalue 0 that
is a probability vector and that all other eigenvalues have negative real part.

Exercise 4.6 (Taken from Durrett, [9]). Consider a hemoglobin molecule that can
carry either one oxygen molecule or one carbon monoxide molecule. Suppose that
the oxygen and carbon dioxide molecules are arriving one at a time according to
rates λ1 and λ2 respectively. Suppose further that if the hemoglobin molecule is
free when one of the molecules arrives it attaches to the hemoglobin molecule for
an exponential amount of time with parameter µ1 (for oxygen) and µ2 (for carbon
dioxide). Formulate a continuous time Markov chain for this system with state space
{O,E,C}, where O represents an attached oxygen molecule, C represents an attached
carbon dioxide molecule, and E represents an empty hemoglobin molecule. Next, find
the long run fraction of time the hemoglobin molecule is in each of its states.

Exercise 4.7. For Example 4.39, verify that the generator of the process satisfies
equation (4.17).

Exercise 4.8. Using Dynkin’s formula, calculate Var(X(t)) of the linear birth process
of Example 4.39.

Exercise 4.9. Using Dynkin’s formula, calculate Var(X(t)) of the linear birth and
death process of Example 4.49.

Exercise 4.10. Let X(t), t ≥ 0, be a continuous time Markov chain with generator
matrix

A =

 −5 3 2
2 −3 1
3 4 −7

 .
(a) Find Kolmogorov’s forward equations for this model.
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(b) Find Kolmogorov’s backward equations for this model.

(c) Find the stationary distribution for this chain.

(d) Find the stationary distribution for the embedded discrete time Markov chain.

Exercise 4.11. Let X(t), t ≥ 0, be a continuous time birth and death process with
intensities

λ(n, n+ 1) = 7(n+ 1)2 and λ(n, n− 1) = 4n3,

for n ≥ 0. Determine if the chain is transient, recurrent, or positive recurrent. If the
chain is positive recurrent, give the stationary distribution.

Exercise 4.12. Let X(t), t ≥ 0, be a continuous time birth and death process with
intensities

λ(n, n+ 1) = 7(n+ 1)3 and λ(n, n− 1) = 4n3,

for n ≥ 0. Determine if the chain is transient, recurrent, or positive recurrent. If the
chain is positive recurrent, give the stationary distribution.

Exercise 4.13. Let X(t), t ≥ 0, be a continuous time birth and death process with
intensities

λ(n, n+ 1) = 3(n+ 1)3 and λ(n, n− 1) = 4n3,

for n ≥ 0. Determine if the chain is transient, recurrent, or positive recurrent. If the
chain is positive recurrent, give the stationary distribution.



Chapter 5

Continuous Time Markov Chains
in biochemistry

5.1 Models of biochemical reaction systems

We introduce the most common stochastic model for biochemical reaction systems.
These models are used extensively in cell biology, with applications ranging from
gene interaction and protein regulatory networks, to virology, to neural networks.
This chapter is adapted from [3].

5.1.1 The basic model

It is useful to understand that a biochemical reaction system consists of two parts:
(i) a reaction network, and (ii) a choice of dynamics. The network is a static object
that consists of a triple of sets:

(i) species, S, which are the chemical components whose counts we wish to model
dynamically,

(ii) complexes, C, which are non-negative linear combinations of the species that
describe how the species can interact, and

(iii) reactions, R, which describe how to convert one such complex to another.

For example, if in our system we have only three species, which we denote by
A, B, and C, and the only transition type we allow is the merging of an A and a
B molecule to form a C molecule, then we may depict this network by the directed
graph

A+B → C.

For this very simply model our network consists of species S = {A,B,C}, complexes
C = {A+B, C}, and reactions R = {A+B → C}.

Example 5.1. Suppose there are two forms of a given protein: “active” and “inac-
tive.” Denote by A the active form of the protein and denote by B the inactive form.

158
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We suppose that there are only two types of transitions that can take place in the
model: an active protein can become inactive, and an inactive protein can become
active. However, we further suppose that an inactive protein B is required to catalyze
the inactivation of an active protein A. That is, we suppose that the two possible
reactions can be depicted in the following manner

A+B → 2B, (R1)

B → A, (R2)

where, for example, the reaction (R1) captures the idea that both an A and a B
molecule are required for the deactivation of an A molecule and the result of such a
reaction is a net gain of one molecule of B and a net loss of one molecule of A.

We again see that there are three sets of objects necessary to give a full description
of the above network. First, we need a set of species, which in this case is just
S = {A,B}. We require a directed graph in which the vertices are linear combinations
of the species. These linear combinations are the complexes, which for this model is
the set C = {A + B, 2B, B, A}. Finally, we associate the edges of the graph with
the reactions, R = {A+B → 2B, B → A}. 4

Definition 5.2. A chemical reaction network is a triple {S, C,R} where

(i) S = {S1, . . . , SN} is the set of species,

(ii) C is the set of complexes, consisting of linear combinations of the species with
non-negative integer coefficients,

(iii) R = {yk → y′k : yk, y
′
k ∈ C and yk 6= y′k} is the set of reactions. We assume there

are M > 0 reactions.

The notation we use throughout is to write the kth reaction as

M∑
i=1

ykiSi →
M∑
i=1

y′kiSi, (5.1)

where the vectors yk, y
′
k ∈ ZN≥0 are associated with the source and product complex,

respectively. For example, if the kth reaction is S1 +S2 → S3, we have, yk1 = 1, yk2 =
1, yk3 = 0 and y′k1 = 0, y′k2 = 0, y′k3 = 1. Note that we abuse notation slightly by
writing yk → y′k as opposed to (5.1). We define ζk := y′k − yk ∈ ZN to be the reaction
vectors of the network. For example, the reaction vector for the reaction S1 +S2 → S3

is

ζk =

 −1
−1
1

 .
It is most common to forgo formally giving each of the three sets necessary for

a reaction network, as it is easier to simply give the directed graph implied by the
reaction network. For example, the network

S + E � C → S + P, E � ∅, (5.2)
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corresponds to the reaction network with S = {S,E,C, P}, C = {S + E, C, S +
P, E, ∅}, and R = {S + E → C, C → S + E, C → S + P, E → ∅, ∅ → E}.

Note that the empty set appearing in (5.2) is a valid complex. It is used to model
the inflow or outflow (or degradation) of molecules.

Having a notion of a reaction network in hand, we turn to the question of how to
model the dynamical behavior of the counts of the different species.

Returning to Example 5.1 for the time being, let X1(t) and X2(t) be random
variables giving the numbers of molecules of type A and B present in the system at
time t, respectively. Denote by R1(t) and R2(t) the counting processes determining
the number of times reactions (R1) and (R2) have occurred by time t. Clearly, X
satisfies

X(t) = X(0) +R1(t)

(
−1
1

)
+R2(t)

(
1
−1

)
.

From the results of Chapter 3, the counting processes R1 and R2 can be specified
by specifying their respective intensity functions. For the time being, we delay the
conversation regarding what the appropriate form for these intensity functions should
be and simply denote them by λ1 and λ2. The process X then satisfies the stochastic
equation

X(t) = X(0) + Y1

(∫ t

0

λ1(X(s))ds

)(
−1
1

)
+ Y2

(∫ t

0

λ2(X(s))ds

)(
1
−1

)
,

where Y1, Y2 are independent, unit Poisson processes.
Returning to the general reaction network of Definition 5.2, for each reaction

yk → y′k ∈ R we specify an intensity function λk : ZN≥0 → R≥0. The number of
times that the kth reaction occurs by time t can then be represented by the counting
process

Rk(t) = Yk

(∫ t

0

λk(X(s))ds

)
,

where the Yk are independent unit Poisson processes. The state of the system then
satisfies the equation X(t) = X(0) +

∑
k Rk(t)ζk, or

X(t) = X(0) +
M∑
k=1

Yk

(∫ t

0

λk(X(s))ds

)
ζk (5.3)

where the sum is over the reaction channels. (Recall that ζk = y′k − yk.) The repre-
sentation (5.3) was developed by Thomas Kurtz, see, for example, [12, Chapter 6] or
[27].

5.1.2 Intensity functions: mass-action kinetics

We specify the intensity functions, or kinetics of the model. The minimal assumption
that can be put on the kinetics is that it is stoichiometrically admissible, which simply
says that λk(x) = 0 if xi < yki for any i ∈ {1, . . . , N}. Stoichiometric admissibility
ensures that reactions can only occur if there are sufficient molecules to produce the
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source complex and guarantees that the process remains within ZN≥0 for all time. The
most common choice of intensity function λk is that of stochastic mass-action kinetics.
The stochastic form of the law of mass-action says that for some constant κk, termed
the reaction rate constant, the rate of the kth reaction should be

λk(x) = κk

N∏
i=1

yki!

(
xi
yki

)
= κk

N∏
i=1

xi!

(xi − yki)!
. (5.4)

Note that the rate is proportional to the number of distinct subsets of the molecules
present that can form the inputs for the reaction. This assumption reflects the idea
that the system is well-stirred. The reaction rate constants are typically placed next
to the arrow in the reaction diagram. The following table gives a representative list
of reactions with their respective intensities under the assumption of mass-action
kinetics,

Reaction Intensity Function

∅ κ1→ S1 λ1(x) = κ1

S1
κ2→ S2 λ2(x) = κ2x1

S1 + S2
κ3→ S3 λ3(x) = κ3x1x2

2S1
κ4→ S2 λ4(x) = κ4x1(x1 − 1)

where similar expressions hold for intensity functions of higher order reactions.

5.1.3 Example: Gene transcription and translation

We give a series of stochastic models for gene transcription and translation. Tran-
scription is the process by which the information encoded in a section of DNA is
transferred to a piece of messenger RNA (mRNA). Next, this mRNA is translated
by a ribosome, yielding proteins. We will give a series of three examples, with the
first, Example 5.3, only including basic transcription, translation, and degradation
of both mRNA and proteins. Next, in Example 5.4, we allow for the developed pro-
teins to dimerize. Finally, in Example 5.5, we allow the resulting dimer to inhibit
the production of the mRNA, and hence the protein and dimers themselves. This
inhibition is an example of a negative feedback loop in that the protein product (i.e.
the dimer) inhibits the rate of its own production. We note that each of our models
leaves out many components, such as the RNA polymerase that is necessary for tran-
scription, and the ribosomes that are critical for translation. Instead, we will assume
that the abundances of such species are fixed and have been incorporated into the
rate constants. More complicated, and realistic, models can of course incorporate
both ribosomes and RNA polymerase.

Example 5.3. Consider a model of transcription and translation consisting of three
species: S = {G,M,P}, representing Gene, mRNA, and Protein, respectively. We
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suppose there are four possible transitions in our model:

R1) G
κ1→ G+M (Transcription)

R2) M
κ2→M + P (Translation)

R3) M
dM→ ∅ (Degradation of mRNA)

R4) P
dP→ ∅ (Degradation of protein)

where, as usual, the reaction rate constants for the different reactions have been
placed above the reaction arrows.

We denote by X(t) = (X1(t), X2(t), X3(t))T ∈ Z3
≥0 the vector giving the numbers

of genes, mRNA molecules, and proteins at time t, respectively. The four reaction
channels have reaction vectors

ζ1 =

 0
1
0

 , ζ2 =

 0
0
1

 , ζ3 =

 0
−1
0

 , ζ4 =

 0
0
−1

 ,
and respective intensities κ1, κ2X1(t), dMX1(t), dPX2(t). The stochastic equation
governing X(t) is

X(t) = X(0)+Y1(κ1t)ζ1 + Y2

(
κ2

∫ t

0

X2(s)ds

)
ζ2 + Y3

(
dM

∫ t

0

X2(s)ds

)
ζ3

+Y4

(
dP

∫ t

0

X3(s)ds

)
ζ4,

(5.5)

where Yi, i ∈ {1, 2, 3, 4}, are independent unit Poisson processes, and we have assumed
that X1(t) ≡ 1. Note that the rate of reaction 3 is zero when X2(t) = 0 and the rate
of reaction 4 is zero when X3(t) = 0. Therefore, non-negativity of the numbers of
molecules is assured. See Figure 5.1 for a single realization of the stochastic model
together with the associated deterministic model (see Section 5.4 for a definition of
the deterministic model of a chemical reaction system). 4

Example 5.4. We continue the previous example but now allow for the possibility
that the protein dimerizes via the reaction 2P

κ3→ D. The degradation of the dimer

is allowed by the reaction D
dd→ ∅. The set of species for the model is now S =

{G,M,P,D} and, keeping all other notation the same as in Example 5.3, we let
X4(t) denote the number of dimers at time t. The stochastic equation for this model
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Figure 5.1: A single trajectory of the model in Example 5.3 with choice of rate
constants κ1 = 200, κ2 = 10, dM = 25, and dp = 1. The associated deterministic
model with the same choice of rate constants is overlain (dashed).

is

X(t) =X(0) + Y1 (κ1t)


0
1
0
0

+ Y2

(
κ2

∫ t

0

X2(s)ds

)
0
0
1
0



+Y3

(
dM

∫ t

0

X2(s)ds

)
0
−1
0
0

+ Y4

(
dP

∫ t

0

X3(s)ds

)
0
0
−1
0



+Y5

(
κ3

∫ t

0

X3(s)(X3(s)− 1)ds

)
0
0
−2
1

+ Y6

(
dd

∫ t

0

X4(s)ds

)
0
0
0
−1

 ,
where Yk, k ∈ {1, . . . , 6}, are independent unit Poisson processes. See Figure 5.2 for a
single realization of the stochastic process together with the associated deterministic
model. 4

Example 5.5. Continuing the previous examples, we now allow for the dimer to
interfere with, or inhibit, the production of the mRNA. Specifically, we assume the
dimer can bind to the segment of DNA being translated, at which point no mRNA
can be produced. Because the resulting dimers inhibit their own production (through
the mRNA), this is an example of negative feedback. We must now explicitly model
the gene to be in one of two states: bound and unbound. We let G remain the
notation for the unbound gene, and use B to represent a bound gene. Let X5(t) give
the number of bound genes at time t. Note that X1 + X5 gives the total number
of genes. We continue to assume that X1(t) + X5(t) ≡ 1. Now the set of species is
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Figure 5.2: A single trajectory of the model in Example 5.4 with choice of rate
constants κ1 = 200, κ2 = 10, dM = 25, dp = 1, κ3 = 0.01, and dd = 1. The associated
deterministic model with the same choice of rate constants is overlain (dashed).

S = {G,M,P,D,B} and we must add the reactions corresponding to binding and
unbinding to our model,

G+D
κon

�
κoff

B,

where κon, κoff > 0 are the reaction rate constants. The stochastic equations are now

X(t) =X(0) + Y1

(
κ1

∫ t

0

X1(s)ds

)
0
1
0
0
0

+ Y2

(
κ2

∫ t

0

X2(s)ds

)
0
0
1
0
0



+Y3

(
dM

∫ t

0

X2(s)ds

)
0
−1
0
0
0

+ Y4

(
dP

∫ t

0

X3(s)ds

)
0
0
−1
0
0



+Y5

(
κ5

∫ t

0

X3(s)(X3(s)− 1)ds

)
0
0
−2
1
0

+ Y6

(
dd

∫ t

0

X4(s)ds

)
0
0
0
−1
0



+Y7

(
κon

∫ t

0

X4(s)X1(s)ds

)
−1
0
0
−1
1

+ Y8

(
κoff

∫ t

0

X5(s)ds

)
1
0
0
1
−1

 .
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Figure 5.3: A single trajectory of the model in Example 5.5 with choice of rate
constants κ1 = 200, κ2 = 10, dM = 25, dp = 1, κ3 = 0.01, dd = 1, kon = 2, koff = 0.1.
The associated deterministic model with the same choice of rate constants is overlain
(dashed). Note that the negative feedback loop has allowed for strikingly different
dynamics between the two models.

Note that the rate of the first reaction has changed to incorporate the fact that mRNA
molecules will only be produced when the gene is free. We note that this example
can be easily modified to have the dimer only slow the rate of production, or even
raise the rate of production. If the rate of production is raised, then this would be an
example with positive feedback. See Figure 5.3 for a single realization of the stochastic
process modeled above (i.e. with the negative feedback) together with the associated
deterministic model. Note the strikingly different behavior between the stochastic
and deterministic model. 4

5.1.4 Example: Virus kinetics

The following model of viral kinetics was first developed in [33] by Srivastava et al.,
and subsequently studied by Haseltine and Rawlings in [20], and Ball et al., in [5].

Example 5.6 (Viral infection). The model includes four time-varying species: the
viral genome (G), the viral structural protein (S), the viral template (T ), and the
secreted virus itself (V ). We denote these as species 1, 2, 3, and 4, respectively, and
let Xi(t) denote the number of molecules of species i at time t. The model has six
reactions,

R1 : T
1→ T +G, R2 : G

0.025→ T, R3 : T
1000→ T + S,

R4 : T
0.25→ ∅, R5 : S

2→ ∅, R6 : G+ S
7.5×10−6

→ V,
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Figure 5.4: A single trajectory of the model in Example 5.6. Note that the y-axis
uses a log scale.

where the units of time are in days. The stochastic equations for this model are

X1(t) = X1(0) + Y1

(∫ t

0
X3(s)ds

)
− Y2

(
0.025

∫ t

0
X1(s)ds

)
− Y6

(
7.5 · 10−6

∫ t

0
X1(s)X2(s)ds

)

X2(t) = X2(0) + Y3

(
1000

∫ t

0
X3(s)ds

)
− Y5

(
2

∫ t

0
X2(s)ds

)
− Y6

(
7.5 · 10−6

∫ t

0
X1(s)X2(s)ds

)

X3(t) = X3(0) + Y2

(
0.025

∫ t

0
X1(s)ds

)
− Y4

(
0.25

∫ t

0
X3(s)ds

)

X4(t) = X4(0) + Y6

(
7.5 · 10−6

∫ t

0
X1(s)X2(s)ds

)
.

(5.6)

Note that the rate constants of the above model vary over several orders of magnitude,
which will in turn cause a large variation in the molecular counts of the different
species. See Figure 5.4 for a single realization of this process. 4

5.1.5 Example: Enzyme kinetics

We consider a standard model in which an enzyme catalyzes the conversion of some
substrate to a product.

Example 5.7. Let S be a substrate, E be an enzyme, SE be an enzyme-substrate
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complex, and P be a product and consider the reaction network

S + E
κ1

�
κ2

SE
κ3→ P + E,

which is a slightly simplified version of (5.2). Letting X1, X2, X3, X4 be the processes
giving the counts of species S,E, SE, and P , respectively, the stochastic equations
for this model are

X1(t) = X1(0)− Y1

(∫ t

0
κ1X1(s)X2(s)ds

)
+ Y2

(∫ t

0
κ2X3(s)ds

)
X2(t) = X2(0)− Y1

(∫ t

0
κ1X1(s)X2(s)ds

)
+ Y2

(∫ t

0
κ2X3(s)ds

)
+ Y3

(∫ t

0
κ3X3(s)ds

)
X3(t) = X3(0) + Y1

(∫ t

0
κ1X1(s)X2(s)ds

)
− Y2

(∫ t

0
κ2X3(s)ds

)
− Y3

(∫ t

0
κ3X3(s)ds

)
X4(t) = X4(0) + Y3

(∫ t

0
κ3X3(s)ds

)
.

4

5.1.6 Generator of the process and the forward equations

We derive the generator, A, for the process (5.3). For i ∈ ZN≥0 and a bounded function
f we have

Ei[f(X(h))] =

(
M∑
k=1

f(i+ ζk)Pi(X(h) = i+ ζk)

)
+ f(i)Pi(X(h) = i) + o(h)

=

(
M∑
k=1

f(i+ ζk)λk(i)h+ o(h)

)
+ f(i) (1− λ(i)h+ o(h)) + o(h),

where the first o(h) term incorporates the probability of having more than one reaction
in the time interval of size h. Since λ(i) =

∑
k λk(i) we have

Ei[f(X(h))] =

(
M∑
k=1

f(i+ ζk)λk(i)h+ o(h)

)
+ f(i)

(
1−

M∑
k=1

λk(i)h+ o(h)

)
+ o(h)

=
M∑
k=1

λk(i)(f(i+ ζk)− f(i))h+ f(i) + o(h),

where we have collected the o(h) terms. Therefore, the generator satisfies

(Af)(i) = lim
h→0

Ei[f(X(h))]− f(i)

h
=

M∑
k=1

λk(i)(f(i+ ζk)− f(i)). (5.7)

The generator can be viewed as giving us the correct chain-rule for our stochastic
equations. For example, consider the related ODE system

ẋ(t) =
M∑
k=1

λk(x)ζk. (5.8)
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Then, for any smooth f : RN → R, we have

d

dt
f(x(t)) =

∑
k

λk(x(t))ζk · ∇f(x(t)),

in which case

f(x(t)) = f(x(0)) +

∫ t

0

(
d

ds
f(x(s))

)
ds

= f(x(0)) +

∫ t

0

∑
k

λk(x(s))ζk · ∇f(x(s))ds

For the stochastic equation Dynkin’s formula (4.16) yields

E[f(X(t))] = E[f(X(0))] + E

[∫ t

0

∑
k

λk(X(s))(f(X(s) + ζk)− f(X(s)))ds

]
Noting that

lim
h→0

f(x+ hζk)− f(x)

h
= ∇f(x) · ζk

completes the analogy. Note that letting xi(t) be the solution to the ode (5.8) with
initial condition i, it would be fair to call the operator

(Bf)(i) = lim
h→0

f(xi(h))− f(i)

h
=
∑
k

λk(i)ζk · ∇f(i)

the generator of the deterministic process.
We turn to the forward equations, which are

d

dt
Pi(X(t) = j) =

∑
y 6=j

λ(y, j)Pi(X(t) = y)− λ(j)Pi(X(t) = j)

=
M∑
k=1

λk(j − ζk)Pi(X(t) = j − ζk)−
M∑
k=1

λk(j)Pi(X(t) = j),

or, more generally,

d

dt
Pα(X(t) = j) =

∑
k

λk(j − ζk)Pα(X(t) = j − ζk)−
∑
k

λk(x)Pα(X(t) = j), (5.9)

where α is the initial distribution. Equation (5.9) is often called the chemical master
equation in the biological literature and is probably the most well known equation in
those settings.

We can use the forward equation (5.9) to find the system of equations that must
be satisfied by any stationary distribution. Setting the left hand side of (5.9) to zero,
we see a stationary distribution ν satisfies

M∑
k=1

λk(x− ζk)ν(x− ζk) =
M∑
k=1

λk(x)ν(x). (5.10)
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Solving for such a ν is, in general, non-trivial. In fact, it is an open problem to even
classify those networks for which a solution exists. Later, we will see a large class of
systems for which the equations can be solved.

5.1.7 Population processes

We point out that systems of the form (5.3) are quite general. In particular, they
are utilized to model many types of population processes, and not just models from
chemistry.

Consider a continuous time Markov chain taking values in RN that can undergo
transitions in directions {ζ`}, where each ζ` ∈ RN . Suppose that the intensity of the
chain in direction ζ` is given by the function λ`, in which case

P (X(t+ ∆t)−X(t) = ζl |Xs, 0 ≤ s ≤ t) = λl(X(t))∆t+ o(∆t). (5.11)

If we write
X(t) = X(0) +

∑
l

ζlRl(t)

where Rl(t) is the number of jumps of the chain in direction ζl at or before time t,
then (5.11) implies

P (Rl(t+ ∆t)−Rl(t) = 1 |Xs, 0 ≤ s ≤ t) = λl(X(t))∆t+ o(∆t), ζl ∈ RN .

Rl is a counting process with intensity λl(X(t)) and so following Chapter 3 we have

X(t) = X(0) +
∑

ζlYl

(∫ t

0

λl(X(s))ds

)
, (5.12)

where the Yl are independent unit Poisson processes. This equation, also a random
time change, has a unique solution by the same jump by jump argument used in
Section 5.1.1, provided

∑
l λl(x) < ∞ for all x. Of course, as we know from Section

4.2, unless we add additional assumptions, we cannot rule out the possibility that the
solution only exists up to some finite time. For example, if d = 1 and λ1(k) = (1+k)2,
the solution of

X(t) = Y1

(∫ t

0

(1 +X(s))2ds

)
hits infinity in finite time.

We present two examples that are not chemical in nature, but instead are popu-
lation processes.

Example 5.8. We build a model for the behavior of predator-prey interactions. We
denote the predator by F (foxes) and the prey by R (rabbits). We now consider what
would make a reasonable model. We first note that because rabbits will reproduce,
we have a transition of the general form

R
κ1→ 2R.
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This yields an intensity function of the form λ1(x) = κ1x, and simply assumes the
growth rate is proportional to the population size. We also have reproduction of the
foxes. However, note that the rate of reproduction should be a function of the number
of rabbits. Thus, we have

F
κ2g(R)→ 2F.

where g(R) is some function of the number of rabbits. Said differently, we are claiming
that the intensity of this transition should be of the form κ2XFg(XR), where X is
the state of the system giving the numbers of each animal. It seems plausible that g
should be non-decreasing and g(0) = 0. For ease, we take g(R) = R, though do not
try to provide a good argument for why. That is, we are just choosing something.
If data is provided for an actual model, more could be said about the function g.
Next, it should be that interactions between rabbits and foxes decrease the rabbit
population. That is, we have a transition of the form

R + F
κ3→ F.

Finally, we have death by natural causes

R
κ4→ ∅, F

κ5→ ∅.

This example is famous for producing oscillations. For example, when we choose

κ1 = 10, κ2 = 0.01, κ3 = 0.01, κ4 = 0.01, κ5 = 10,

and an initial condition of XR(0) = XF (0) =1,000, we get dynamics as exemplified
in Figure 5.5. 4

Example 5.9. We consider a basic stochastic model for the transmission of a disease
in a population. We suppose that there are three types of people in the population:

1. Those that are susceptible to infection, denoted S.

2. Those that are infected, denote I.

3. Those that are recovered, and no longer susceptible, denote R.

Such models are commonly referred to as SIR models.
Letting X = (XS, XI , XR)T , natural transitions, including rates, for the model

are

Transition Rate
∅ → S λ1(X) = κ1(XS +XI +XR)

S + I → 2I λ2(X) = κ2XSXI

I → R κ3XI

S → ∅ κ4XS

I → ∅ κ5XI

R→ ∅ κ6XR

.



CHAPTER 5. CONTINUOUS TIME MARKOV CHAINS IN BIOCHEMISTRY171

0 2 4 6600

700

800

900

1000

1100

1200

1300

1400

1500

Time

Nu
mb

ers

 

 

Rabbits
Foxes

Figure 5.5: The numbers of Rabbits and Foxes as a function of time for the predator-
prey model of Example 5.8. The oscillatory behavior of this model is apparent.

Note the the first rate says that the rate of growth of the susceptible population
is proportional to the size of the entire population (i.e. only healthy children are
born). Such models are extensively studied in population heath where the goal is to
find the best treatment so that the disease goes extinct with some high probability.
Of course, for each disease the parameters will be different and must be estimated.
Natural conditions would be that κ5 ≥ κ4 and κ5 ≥ κ6. Depending on the time-scale
of the problem, it may be natural to assume that κ1 = κ4 = κ5 = κ6 = 0, leaving
only the system

S + I
κ2→ 2I, I

κ3→ R.

For example, if the infection being modeled is a cold then the time-frame may only
be a few weeks. Obviously, this is not the case for a longer term infection such as
HIV.

There are many variants to this model, including sophisticated models that take
space (i.e. countries, rates of air travel, etc.) into account. 4

5.2 Simulation

Three algorithms for the numerical simulation of sample paths of stochastically mod-
eled chemical reaction systems are provided below. In Section 5.2.1, the “Gillespie
algorithm” or stochastic simulation algorithm is presented. This is simply Algorithm
2 from Section 4.1 for simulating the embedded discrete time Markov chain. It is
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redundant to give the algorithm here, but we present it for completeness. Next, in
Section 5.2.2, the algorithm for simulating the random time change representation
(5.3) is given. This method often goes by the name “the next reaction method.”
Finally, in Section 5.2.3 a natural approximate algorithm is presented. The method
is known as τ -leaping, and is simply Euler’s method applied to the random time
change representation (5.3). Throughout this section all random variables generated
are assumed to be independent of each other and all previous random variables.

5.2.1 The stochastic simulation algorithm

The stochastic simulation algorithm, or Gillespie’s algorithm, is simply Algorithm
2 of Section 4.1 applied in the chemical kinetic context. See [16, 17] for historical
references.

Algorithm 3. (Gillespie Algorithm)
Initialize: Set the initial number of molecules of each species and set t = 0.

1. Calculate the intensity function, λk, for each reaction.

2. Set λ0 =
∑M

k=1 λk.

3. Generate two independent uniform(0,1) random numbers r1 and r2.

4. Set ∆ = ln(1/r1)/λ0 (equivalent to drawing an exponential random variable
with parameter λ0).

5. Find µ ∈ [1, . . . ,M ] such that

1

λ0

µ−1∑
k=1

λk < r2 ≤
1

λ0

µ∑
k=1

λk,

which is equivalent to choosing from reactions 1, . . . ,M, with the kth reaction
having probability λk/λ0.

6. Set X(t+ ∆) = X(t) + ζµ.

7. Set t = t+ ∆.

8. Return to step 1 or quit.

Note that Algorithm 3 uses two random numbers per step. The first is used to
find when the next reaction occurs and the second is used to determine which reaction
occurs at that time. That is, the second random variable (in step 5) simulates the
next step of the embedded chain.
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5.2.2 The next reaction method

The algorithm below simulates the random time change representation (5.3). The
method is usually termed the next reaction method. See [15, 2]. The formal algorithm
we present follows that of [2].

In Algorithm 4 below, the variable Tk will represent the value of the integrated
intensity function,

∫ t
0
λk(X(s))ds, where t is the current time. Further, the variable

Pk will represent the first jump time of the process Yk after time Tk. That is,

Pk = inf{s > Tk : Yk(s) > Yk(Tk)}.

Note that if Tk happens to be equal to a jump time of Yk, then Pk−Tk is an exponential
random variable with a parameter of one. Continuing, for each k ∈ {1, . . . ,M} we
will set ∆tk to be the solution to the equation∫ t+∆tk

t

λ(X(s))ds = Pk − Tk.

Under the assumption that no other reaction takes place before t+ ∆tk, we see∫ t+∆tk

t

λ(X(s))ds = ∆tkλk(X(t)) =⇒ ∆tk = (Pk − Tk)/λk(X(t)).

Finding the minimum of these ∆tk then yields both the reaction (given by the index
of the minimum) and the time until the next reaction takes place.

Algorithm 4. (Next Reaction Method)
Initialize: Set the initial number of molecules of each species. Set t = 0. For each
k ∈ {1, . . . ,M}, set Pk = ln(1/rk), where rk are independent uniform(0,1) random
variables, and set Tk = 0.

1. Calculate the intensity function, λk, for each reaction.

2. For each k, set

∆tk =

{
(Pk − Tk)/λk, if λk 6= 0

∞, if λk = 0
.

3. Set ∆ = mink{∆tk}, and let µ be the index where the minimum is achieved.

4. Set X(t+ ∆) = X(t) + ζµ.

5. For each k ∈ {1, . . . ,M}, set Tk = Tk + λk ·∆.

6. Set Pµ = Pµ + ln(1/r), where r is uniform(0,1).

7. Set t = t+ ∆.

8. Return to step 1 or quit.

Note that after initialization the Next Reaction Method only demands one random
number to be generated per step.
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Time dependent intensity functions

Due to changes in temperature and/or volume, the rate constants of a chemical system
may change in time. Therefore, the intensity functions will no longer be constant
between reactions. That is, we may have λk(t) = λk(X(t), t), and the random time
change representation is

X(t) = X(0) +
∑
k

Yk

(∫ t

0

λk(X(s), s)ds

)
ζk, (5.13)

where the Yk are independent, unit rate Poisson processes. The next reaction method
as presented in Algorithm 4 is easily modified to incorporate this time dependence.
The only step that would change is step 2., which becomes:

2. For each k, find ∆tk satisfying∫ t+∆tk

t

λk(X(s), s)ds = Pk − Tk.

Note, in particular, that the integral ranges from t to t+ ∆tk. The remainder of the
algorithm stays the same.

5.2.3 Euler’s method

We briefly review Euler’s method, termed tau-leaping in the chemical kinetic literature
[18], as applied to the models (5.3). The basic idea of tau-leaping is to hold the
intensity functions fixed over a time interval [tn, tn + h] at the values λk(X(tn)),
where X(tn) is the current state of the system, and, under this assumption, compute
the number of times each reaction takes place over this period. Analogously to (5.3),
a path-wise representation of Euler tau-leaping defined for all t ≥ 0 can be given
through a random time change of Poisson processes:

Zh(t) = Zh(0) +
∑
k

Yk

(∫ t

0

λk(Zh ◦ η(s))ds

)
ζk, (5.14)

where the Yk are as before, and η(s)
def
=
⌊ s
h

⌋
h. Thus, Zh ◦ η(s) = Zh(tn) if tn ≤ s <

tn+1. Noting that ∫ tn+1

0

λk(Zh ◦ η(s))ds =
n∑
i=0

λk(Zh(ti))(ti+1 − ti)

explains why this method is called Euler tau-leaping.
The following algorithm simulates (5.14) up to a time of T > 0. Below and in

the sequel, for x ≥ 0 we will write Poisson(x) to denote a sample from the Poisson
distribution with parameter x, with all such samples being independent of each other
and of all other sources of randomness used.
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Algorithm 5. (Euler tau-leaping)
Initialize: Fix h > 0. Set Zh(0) = x0, t0 = 0, n = 0 and repeat the following until
tn = T :

1. Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

2. For each k, let Λk = Poisson(λk(Zh(tn))h).

3. Set Zh(tn+1) = Zh(tn) +
∑

k Λkζk.

4. Set n← n+ 1.

Several improvements and modifications have been made to the basic algorithm
described above over the years. Some concern adaptive step-size selection along a
path [7, 19]. Others focus on ensuring non-negative population values [2, 6, 8, 34].
We also note that it is straightforward to incorporate time dependence of the intensity
functions λk in the above algorithm; simply change step 2 to read

Λk = Poisson

(∫ t+h

t

λk(Z(tn), s)ds

)
,

or
Λk = Poisson (λk(Z(tn), tn)h) ,

with the choice depending upon the specific problem.
Historically, the time discretization parameter for Euler’s method has been τ ,

leading to the name “τ -leaping methods.” We break from this tradition so as not to
confuse τ with a stopping time, and we denote our time-step by h to be consistent
with much of the numerical analysis literature.

5.3 First order reaction networks

We briefly discuss first order reaction networks. A system is said to be a first order
reaction network if each intensity function λk is linear. In the chemical context with
mass-action kinetics, the system is linear if and only if each reaction is either unary,
Si → ∗, where “∗” could refer to any linear combination of the species, or of the form
∅ → ∗. Note that in this case we have the identity

E[λk(X(s))] = λk(E[X(s)]),

for each k. Therefore, Dynkin’s formula gives

E[X(t)] = E[X(0)] +
∑
k

ζk

∫ t

0

E [λk(X(s))] ds

= E[X(0)] +
∑
k

ζk

∫ t

0

λk(E[X(s)])ds.

This gives a very easy method for solving for the means: just solve the associated
ordinary differential equation implied by the above integral equation.
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Example 5.10. We consider a model of gene transcription and translation

G
2→ G+M, M

10→M + P, M
k→ ∅, P

1→ ∅, (5.15)

where a single gene is being translated into mRNA, which is then being transcribed
into proteins. The final two reactions represent degradation of the mRNA and protein
molecules, respectively. Assuming that there is a single gene copy, the stochastic
equation for this model is

Xk(t) = Xk(0) + Y1(2t)

(
1
0

)
+ Y2

(∫ t

0

10Xk
1 (s)ds

)(
0
1

)
+ Y3

(∫ t

0

kXk
1 (s)ds

)(
−1
0

)
+ Y4

(∫ t

0

Xk
2 (s)ds

)(
0
−1

)
,

(5.16)

where Xk
1 (t) and Xk

2 (t) give the number of mRNA and protein molecules at time t,
respectively, and Yi, i ∈ {1, 2, 3, 4}, are independent unit-rate Poisson processes. The
differential equations governing the mean values are

ẋ1(t) = 2− kx1(t)

ẋ2(t) = 10x1(t)− x2(t).

Solving this system yields

x1(t) = x1(0)e−kt +
2

k

(
1− e−kt

)
x2(t) = e−t

(
x2(0)− 10

kx1(0)− 2k

k (1− k)

)
+ 10

x1(0)e−ktk + 2− 2 k − 2 e−k t

k (1− k)
.

4

For the calculation of second moments of first-order systems, see [14].
We note that if λk is non-linear, then E[λk(X(s))] 6= λk(E[X(s)]), and the mean

value of the stochastic process does not satisfy the ordinary differential equation

ẋ(t) =
∑
k

λk(x(t))ζk. (5.17)

In the next section we will show, however, when a scaled version of the stochastic
process can be shown to be well approximated by the solution to the differential
equation (5.17).

Stationary distributions can also be calculated for a class of first order reaction
networks.

Definition 5.11. A chemical reaction network, {S, C,R}, is called weakly reversible
if for any reaction yk → y′k ∈ R, there is a sequence of directed reactions beginning
with y′k as a source complex and ending with yk as a product complex. That is, there
exist complexes y1, . . . , yr such that y′k → y1, y1 → y2, . . . , yr → yk ∈ R. A network
is called reversible if y′k → yk ∈ R whenever yk → y′k ∈ R.
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Note, for example, that the reaction network

S + E � SE � P + E, E � ∅,

is reversible, and hence weakly reversible, whereas the network

S + E � SE → P + E, E � ∅,

is neither reversible nor weakly reversible. The network

A −→ B

↖ ↙
C

(5.18)

is weakly reversible, but not reversible.
A proof of the following theorem can be found in [3].

Theorem 5.12. Let {S, C,R} be a chemical reaction network and let {κk} be a
choice of rate constants. Suppose that the network is weakly reversible and first order.
Then, there is an equilibrium, c ∈ RN

>0, for the associated deterministic model with
mass-action kinetics and rate constants {κk}. Further, the stochastic model with
mass-action kinetics with parameters {κk} has a stationary distribution consisting of
the product of Poisson distributions,

π(x) =
N∏
i=1

cxii
xi!
e−ci , x ∈ ZN≥0. (5.19)

If ZN≥0 is irreducible, then (5.19) is the unique stationary distribution, whereas if ZN≥0 is
not irreducible then the unique stationary distribution on any irreducible component,
Γ ⊂ ZN≥0, is given by the product-form stationary distribution

πΓ(x) = MΓ

N∏
i=1

cxii
xi!
, x ∈ Γ,

and πΓ(x) = 0 otherwise, where MΓ is a positive normalizing constant.

Example 5.13. Consider the reaction network

∅
λ

�
µ
S,

where λ, µ > 0. This network is weakly reversible, and is first-order. The equilibrium
of the corresponding deterministically modeled system is c = λ/µ and the state space
is all of Z≥0. Hence, the stationary distribution of the stochastic model is Poisson
with parameter λ/µ > 0. Note that this model is identical to the simplest model of
an infinite server queue, whose stationary distribution was solved in (4.21). 4
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Example 5.14. Consider the network

S1

κ1

�
κ2

S2,

where κ1, κ2 > 0. Suppose that X1(0) + X2(0) = n so that X1(t) + X2(t) = n for
all t ≥ 0. This system is weakly reversible and is first-order. An equilibrium for the
deterministically modeled system is

c =

(
κ2

κ1 + κ2

,
κ1

κ1 + κ2

)
,

and the product-form stationary distribution for the stochastic system is therefore

π(x) = M
cx1

1

x1!

cx2
2

x2!
,

where M > 0 is a normalizing constant. Using that X1(t) +X2(t) = n for all t yields

π1(x1) = M
cx1

1

x1!

cn−x1
2

(n− x1)!
=

M

x1!(n− x1)!
cx1

1 (1− c1)n−x1 ,

for 0 ≤ x1 ≤ n. After setting M = n!, we see that X1 is binomially distributed.
Similarly,

π2(x2) =

(
n

x2

)
cx2

2 (1− c2)n−x2 ,

for 0 ≤ x2 ≤ n. Note that due to the conservation relation, X1 and X2 are not
independent under this stationary distribution. 4

5.4 Relationship with Deterministic Model: the

Law of Large Numbers

We will explore the relationship between the stochastic and deterministic models for
biochemical systems. Recall that the associated ordinary differential equation for the
stochastic process (5.3) is

ẋ(t) =
∑
k

λ̂k(x(t))ζk,

where λ̂k is deterministic mass-action kinetics. That is,

λ̂k(x) = κ̂k
∏
i

xykii ,

where κ̂k is the rate constant, and we recall that yki is the number of molecules
required of species Si for the kth reaction.
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5.4.1 Conversion of rate constants

To understand the relationship between the stochastic and deterministic models, we
must first note that they differ in how they are representing the abundance of each
species. In the stochastic model, the abundance is an integer representing the number
of molecules present. However, in the usual deterministic model it is the concentration
of the species that are being modeled, for example in moles per liter. Therefore,
we begin trying to understand the relationship between the two models by explicitly
taking the volume into account in the stochastic system, and will do so by introducing
a scaling parameter V , which is defined to be the volume multiplied by Avogadro’s
number.

Consider the stochastic rate constants, κk, used in mass-action kinetics. Explicitly
thinking of V as proportional to the volume of the system, we see that for a binary
reaction the rate constant κk should satisfy

κk =
1

V
κ̂k,

for some constant κ̂k. This follows since κk is assumed to be proportional to the
probability that a particular pair of molecules interact within a small time window,
and this probability should intuitively scale inversely with the volume. For unary
reactions the volume should not affect the associated probability of a reaction, and
so κk = κ̂k. In general, we have

κk = V −(
∑
i yki−1)κ̂k. (5.20)

See, for example, [23].
We will show the relation (5.20) in a second way that follows [36]. Note that if x

gives the concentration of a particular species in moles per unit volume, then V x gives
the total number of molecules present. We first consider the zeroth order reaction

∅ → S.

The rate of change induced by this reaction for the deterministic model is κ̂ Ms−1.
Thus, if X represents the number of molecules of species S, this reaction increases X
at a rate of

κ̂V

molecules per second. Because the stochastic rate law is κ molecules per second, we
have that

κ = V κ̂.

Now consider the first order reaction

S → ∗,

where “∗” can represent any linear combination of the species. The deterministic rate
is κ̂x Ms−1. Multiplying the rate κ̂x by V , we see that X, the number of molecules
of S, is changing at a rate of

κ̂xV,
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molecules per second. However, since X = xV , we have that X is changing at a rate
κ̂X. Since the stochastic rate law for this reaction is κX molecules per second, we
see κ = κ̂.

Finally, consider the binary reaction

S1 + S2 → ∗.

The deterministic rate is cx1x2 Ms−1, implying the rate of change is κ̂x1x2V molecules
per second. Since X1 = x1V and X2 = x2V give the number of molecules of S1 and
S2, respectively, we see that the rate of change of the Xi is

κ̂x1x2V = κ̂
1

V
X1X2,

implying κ = V −1κ̂.
The above arguments again confirm the relation (5.20) for the most common types

of reactions. Similar arguments work for all higher order reactions.

5.4.2 The classical scaling

The following scaling argument is commonly referred to as the classical scaling. It
shows how to understand the relationship between the stochastic and deterministic
models. See [23] or [26] for technical details and full statements of the requisite
theorems.

Again let V be the volume of the system multiplied by Avogadro’s numbers. If X
is the solution to the stochastic system, which counts the numbers of molecules, then

XV (t)
def
= X(t)/V,

gives the concentration of the different species in moles per unit volume. Therefore,
the stochastic equation governing the concentrations is

XV (t) = XV (0) +
∑
k

1

V
Yk

(∫ t

0

λk(V X
V (s))ds

)
ζk,

where we divided each instance of X by V .
Letting λk be stochastic mass-action kinetics, and using the relation (5.20), we

have

λk(X) = V −(
∑
i yki−1)κ̂k

(∏
i

yki!

)∏
i

(
Xi

yki

)
= κ̂kV

∏
i

V −ykiXi · · · (Xi − yki + 1)

≈ V κ̂k
∏
i

(XV
i )yki ,
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where the approximation is valid for large V . For vectors u, v, define

uv
def
=
∏
i

uvii ,

where we take 00 = 1. Now, the stochastic equation governing XV is

XV (t) = XV (0) +
∑
k

1

V
Yk

(∫ t

0

λk(V X
V (s))ds

)
ζk

≈ XV (0) +
∑
k

1

V
Yk

(
V

∫ t

0

κ̂kX
V (s)ykds

)
ζk. (5.21)

Recalling that

lim
V→∞

1

V
Y (V u) = u,

for any unit-rate Poisson process Y , we see that in the limit as V →∞, XV satisfies
the integral equation

x(t) = x(0) +
∑
k

ζk

∫ t

0

κ̂kx(s)ykds, (5.22)

which in differential form is

ẋ(t) =
∑
k

λ̂k(x(t))ζk,

where λ̂k is deterministic mass-action kinetics with rate parameter κ̂k. That is, for
large V , we have that XV ≈ x, and XV is well approximated by the solution to the
deterministic model.

We were quite loose with the above scaling. The correct technical result, which
can be found in [23] states that if the rate constants for the stochastic model satisfy
the above scaling assumptions, and if XV (0) = O(1), then for any ε > 0 and any
t > 0

lim
V→∞

P

{
sup
s≤t
|XV (s)− x(s)| > ε

}
= 0.

See also [12, 24, 26]. For practical purposes, this result say that if XV (0) = O(1)
for some large V , and if the systems satisfies mass-action kinetics, then it is plau-
sible to use the deterministic model, with deterministic mass-action kinetics, as an
approximation for the stochastic model that governs the concentrations of the molec-
ular abundances. This result has been used for decades to justify the use of ordinary
differential equation models in chemistry and, more generally, population processes
(though such models were used well before such a rigorous justification was available).

Example 5.15. Consider the dimerization of a certain protein

2P
κ1

�
κ2

D.
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Note that we have the conservation relation 2XD +XP = M , for some M > 0, where
XD and XP give the numbers of dimers and proteins, respectively. The stochastic
model for this system is

XP (t) = XP (0)− 2Y1

(∫ t

0

κ1XP (s)(XP (s)− 1)ds

)
+ 2Y2

(∫ t

0

κ2
1

2
(M −XP (s))ds

)
,

where we made use of the conservation relation. The corresponding deterministic
model is

xp(t) = xp(0)− 2

∫ t

0

κ̂1xp(s)
2ds+ 2

∫ t

0

κ̂2
1

2
(M̂ − xp(s))ds, (5.23)

where κ̂2 and M̂ are the normalized rate constant and conservation relation, respec-
tively. Taking expectations of the stochastic version yields

E[XP (t)] = E[XP (0)]− 2

∫ t

0

κ1E[XP (s)(XP (s)− 1)]ds+ 2

∫ t

0

κ2
1

2
(M − E[XP (s)])ds

= E[XP (0)]− 2

∫ t

0

κ1(E[XP (s)])2ds+ 2

∫ t

0

κ2
1

2
(M − E[XP (s)])ds (5.24)

− 2

∫ t

0

κ1(Var(XP (s))− E[XP (s)])ds. (5.25)

Note that the portion of the above integral equation given by (5.24) is the same form
as (5.23). Further, the part given by (5.25) is, in general, non-zero.1 Therefore, we
see that the equation for the mean of the stochastic process is not the same as the
equation for the associated deterministic model. In general, only linear systems have
the property that the mean of the stochastic process satisfies the equations of the
associated deterministic model. 4

5.5 Exercises

Exercise 5.1. Consider the reaction network

∅ κ1→ S1
κ2→ S2

κ3→ ∅.

Supposing that (X1(0), X2(0)) = (x1, x2) ∈ Z2
≥0 are fixed, use Dynkin’s formula to

compute the expectations E[X1(t)], E[X2(t)].

Exercise 5.2. Consider the reaction network for a pure birth process

S
λ→ 2S,

where λ > 0. Supposing that X(0) = x ≥ 1 is fixed, compute E[X(t)] and Var(X(t)).
1To see this, take XP (0) = 10 with a probability of one.
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Exercise 5.3. Consider the reaction network for a birth and death process

∅ µ← S
λ→ 2S,

where λ, µ > 0. Compute E[X(t)] and Var(X(t)).

Exercise 5.4. Consider the reaction network

∅
λ

�
µ
S,

where λ, µ > 0. Derive the equations for the time evolution of the mean of the
process by noting that E[X(t)] =

∑∞
k=0 kP (X(t) = k), differentiating, and using the

Kolmogorov forward equation (5.9).

Exercise 5.5. Simulate the model of foxes and rabbits in Example 5.8 in order
to output a plot similar to that in Figure 5.5. Do this two ways, using Gillespie’s
algorithm and the next reaction method.

Exercise 5.6. Consider the model found in Example 5.4 with κ1 = 200, κ2 =
10, dM = 25, dp = 1, κ3 = 0.01, and dd = 1, and X(0) = (1, 10, 50, 10)T . For this
problem you will estimate E[X4(5)] and Var(X4(5)) in two different ways.

1. Write a script that implements Algorithm 3. Average over 10,000 sample paths
to estimate both E[X4(5)] and Var(X4(5)).

2. Write a script that implements Algorithm 4. Average over 10,000 sample paths
to estimate both E[X4(5)] and Var(X4(5)).

Exercise 5.7. Let {κA→B, κB→C , κC→A} be the rate constants for the reaction net-
work (5.18). Find the stationary distribution of this model under the assumption
that xA(0) + xB(0) + xC(0) = n for some n ≥ 1.



Chapter 6

Brownian motion and stochastic
integration

6.1 Brownian Motions

We wish to construct a process, W , satisfying the following four properties.

1. W (0) = 0;

2. For any s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sn ≤ tn, the random variables W (t1) −
W (s1), . . . ,W (tn)−W (sn) are independent;

3. For any s < t, the random variable W (t)−W (s) is normal with mean zero and
variance λ(t− s).

4. The function t→ W (t) is a continuous function of t.

Any process satisfying the four conditions above is termed a Brownian motion or
Wiener process, with variance parameter λ > 0. A standard Brownian motion is one
in which λ = 1.

There are a number of ways to construct such a process, with the most common
method using symmetric random walks. We choose a different method. Consider a
homogeneous Poisson process, Yλ, with rate λ > 0. Viewed as a counting process, the
holding time is exponential with mean µ = 1/λ and variance σ2 = 1/λ2. Therefore,
from Theorem 3.4

Yλ(V t)− λV t
λ−1λ3/2

√
V t

=
Yλ(V t)− λV t
λ1/2
√
V t

≈ N(0, 1),

implying
V −1/2 [Yλ(V t)− V λt] ≈ N(0, λt).

Letting Y be a unit rate Poisson process, the above is equivalent to

V −1/2 [Y (V λt)− λV t] ≈ N(0, λt).

184
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Define
W (V )(t)

def
= V −1/2 [Y (V λt)− λV t] .

The following four properties of the process W (V ) all follow from the corresponding
properties of the Poisson process.

1. W (V )(0) = 0;

2. For any s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sn ≤ tn, the random variables W (V )(t1) −
W (V )(s1), . . . ,W (V )(tn)−W (V )(sn) are independent;

3. For any s < t, the random variable W (V )(t)−W (V )(s) is approximately normal
with mean zero and variance λ(t− s).

4. W (V ) is constant except for jumps of size 1/
√
V .

It can be shown that as V → ∞, the above process converges to a process, W ,1

written W (V ) ⇒ W , satisfying the conditions of a Brownian motion. Note that in
this scaling/limit above, a standard Brownian motion arises from scaling a unit-rate
Poisson process.

Note that if we wish the process to start at x ∈ R as opposed to zero, then item 1
becomes W (0) = x and all other items remain the same. Further, note the important
fact that for any s < t,

W (t)−W (s)

has a normal distribution with mean zero and variance λ(t− s), and so, for example,

E[W (t)−W (s)] = 0, and E
[
|W (t)−W (s)|2

]
= λ(t− s).

We will not rigorously study Brownian motions in these notes.

6.1.1 Markov property and generator of a Brownian motion

The Brownian motion W has theMarkov property by condition (ii) in its definition.
That is, the future behavior of the process only depends upon its current value. We
may therefore ask: is there a generator for the process?

Let W be a Brownian motion with variance parameter σ2. We attempt to find a
generator in the sense of (4.19):

(Af)(x)
def
= lim

h→0

Exf(W (h))− f(x)

h
.

Letting ρ = N(0, σ2h), we note

E[ρ] = 0

E[ρ2] = σ2h

E[ρ3] = 0

E[ρ4] = O(h2).

1The type of convergence is beyond the scope of this book. Technically, it is convergence in
distribution and we write W (V ) ⇒W .
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Assuming W (0) = x, we have that

W (h) = W (0) +W (h)−W (0) = x+ ρ,

and so

(Af)(x) = lim
h→0

Exf(W (h))− f(x)

h

= lim
h→0

Exf(x+ ρ)− f(x)

h
.

Taking a Taylor expansion of f (we are assuming that f is smooth enough for all the
derivatives needed to exist) yields

(Af)(x) = lim
h→0

Ex[f ′(x)ρ+ (1/2)f ′′(x)ρ2 + (1/3!)f ′′′(x)ρ3 + · · · ]
h

=
1

2
σ2f ′′(x).

Said differently, the operator A is the second derivative times σ2/2:

A =
1

2
σ2 ∂

2

∂x2
. (6.1)

We return to our construction of the Brownian motion as a limit of a properly
scaled Poisson processes to see if we can understand this generator in a different way.
Let Y be a unit rate Poisson process. Then, Y (σ2·) is a Poisson process with rate σ2.
We have that for large V ,

1√
V

[
Y (V σ2t)− σ2V t

]
≈ W (σ2t),

where W is a standard Brownian motion. Consider now the generator of the process

ZV (t) = ZV (0) +
1√
V

[
Y (V σ2t)− σ2V t

]
.

Denoting the generator of ZV by AZ , we have

(AZf)(x)
def
= lim

h→0

1

h

[
Exf(ZV (h))− f(x)

]
.

Further,

Ex[f(ZV (h))] = f

(
x+

1√
V

[
1− σ2V h

])
V σ2h

+ f
(
x− σ2

√
V h
)

(1− V σ2h) + o(h)

= f

(
x+

1√
V

)
V σ2h

+
(
f(x)− f ′(x)

√
V σ2h+ o(h)

)
(1− V σ2h) + o(h)

= f

(
x+

1√
V

)
V σ2h+ f(x)(1− V σ2h)− f ′(x)

√
V σ2h+ o(h).
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Therefore,

(AZf)(x) = lim
h→0

1

h

[
Ex[f(ZV (h))]− f(x)

]
= f(x+ 1/

√
V )V σ2 − f(x)V σ2 − f ′(x)

√
V σ2

= V σ2
(
f(x+ 1/

√
V )− f(x)

)
−
√
V σ2f ′(x).

Note that this generator can be understood by first considering the jump portion,

V σ2
(
f(x+ 1/

√
V )− f(x)

)
,

followed by the deterministic portion −
√
V σ2f ′(x) (recall Section 5.1.6). Taking a

Taylor approximation of AZf now yields:

(AZf)(x) = V σ2

(
f ′(x)√
V

+
1

2

1

V
f ′′(x) +

1

3!

1

V 3/2
f ′′′(x) +O(V −2)

)
−
√
V σ2f ′(x)

=
1

2
σ2f ′′(x) +O(V −1/2)

≈ (Af)(x),

where A is the generator for the Brownian motion as given by (6.1). Thus, not
unexpectedly, the generator of the Brownian motion can be obtained via the generator
of the scaled Poisson process simply by truncating the Taylor expansion of AZf .

6.2 Integration with Respect to Brownian Motion

Before discussing how to integrate with respect to Brownian motion, we consider how
to integrate with respect to a more standard function. Consider two functions, g and
U . We will discuss what we mean by “integration of g with respect to U .” That is,
we will define ∫ t

0

g(x)dU(x).

Letting ti = it/n, this integral basically means∫ t

0

g(x)dU(x) =
n−1∑
i=0

∫ ti+1

ti

g(x)dU(x) ≈
n−1∑
i=0

g(ti)(U(ti + ∆t)− U(ti)), (6.2)

where ∆t = ti+1 − ti, where the definition of the integral is in the limit ∆t→ 0. The
most common type of such integration is when U is absolutely continuous. If you are
not sure what this means, just think of U as being differentiable, with derivative (or
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density), u. In this case, (6.2) yields∫ t

0

g(x)dU(x) ≈
n−1∑
i=0

g(ti)(U(ti + ∆t)− U(ti))

≈
n−1∑
i=0

g(ti)u(ti)∆t

≈
∫ t

0

g(ti)u(ti)dt.

As discussed in the previous section, a Brownian motion is not differentiable, and
it can be shown to not be absolutely continuous. However, you can still make sense
of ∫ t

0

g(s)dW (s) = lim
∆t→∞

n−1∑
i=0

g(ti)(W (ti + ∆t)−W (ti)), (6.3)

where g is some function and W is a (standard) Brownian motion, in a similar manner.
This integral is termed an Itô integral. The reason that constructing such an integral
is actually difficult is because W (ti + ∆)−W (ti) ≈ O(

√
∆), and so∫ t

0

g(s)dW (s) ≈
n−1∑
i=0

g(ti)
√

∆t
(W (ti + ∆t)−W (ti))√

∆t
,

appears to blow up as ∆t → 0 since n = 1/∆t. However, using the properties of a
Brownian motion,

E

(
n−1∑
i=0

g(ti)(W (ti + ∆t)−W (ti))

)2

=
n−1∑
i=0

g(ti)
2E(W (ti + ∆t)−W (ti))

2

=
n−1∑
i=0

g(ti)
2∆t

≈
∫ t

0

g(s)2ds,

(6.4)

where the first equality holds because all the cross terms are zero since for j > i

E(W (tj+1)−W (tj))(W (ti+1)−W (ti)) = E(W (tj+1)−W (tj))E(W (ti+1)−W (ti)) = 0.

Thus, the right hand side of (6.3) at least does not blow up as ∆t → 0. To see
that such an integral is actually well defined, with all technical details provided, see,
for example, [30]. However, the basic construction implied above is correct and, as
implied by equation 6.4 above,

E
(∫ t

0

g(s)dW (s)

)2

=

∫ t

0

g(s)2ds,
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which is called the Itô isometry. Even more generally, if g(s, ω) depends upon W
only up through time s (that is, g(s, ω) is contained in Fs, or is Fs measurable), then
the Itô isometry still holds,

E
(∫ t

0

g(s, ω)dW (s)

)2

=

∫ t

0

E[g(s, ω)2]ds.

This follows from only a slight reworking of (6.4)

E

(
n−1∑
i=0

g(ti, ω)(W (ti + ∆t)−W (ti))

)2

=
n−1∑
i=0

E[g(ti, ω)2]E(W (ti + ∆t)−W (ti))
2

=
n−1∑
i=0

Eg(ti, ω)2∆t

≈
∫ t

0

E[g(s, ω)2]ds,

where the first equality holds since g(ti, ω) and W (ti + ∆)−W (ti) are independent.
For example,

E
(∫ t

0

W (s)dW (s)

)2

=

∫ t

0

E[W (s)2]ds =

∫ t

0

s ds =
t2

2
.

We will not give a comprehensive introduction to stochastic integration. The
interested reader is instead pointed towards [28]. However, we will point out a few
things, and solve two integrals explicitly. First, we note that

E
[∫ t

0

g(s, ω)dW (s)

]
≈
∑
i

E[g(ti, ω)]E[(W (ti+1)−W (ti))] = 0,

and so all such integrals have a mean of zero. This is in stark departure from standard
Riemannian integration where g(s) > 0 implies

∫ t
0
g(s)ds > 0.

We now solve two examples explicitly. First, for constant σ > 0, we have that∫ t

0

σdW (s) = σ
∑
i

(W (ti+1)−W (ti)) = σW (t).

This agrees with our intuition that comes from integrating deterministic functions:∫ t

0

σdf(s) = σ(f(t)− f(0)).

Second, we consider the integral above:
∫ t

0
W (s)dW (s). A first (incorrect) guess

would be to argue as follows: since for differentiable f we have∫ t

0

f(s)df(s) =

∫ t

0

f(s)f ′(s)ds =
1

2
(f(t)2 − f(0)2),
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it must be that ∫ t

0

W (s)dW (s) =
1

2
W (t)2.

However, we can instantly see this is incorrect by simply checking the moments of
(1/2)W (t)2:

E
[

1

2
W (t)2

]
=

1

2
t 6= 0

E
(

1

2
W (t)2

)2

=
1

4
E[W (t)4] =

1

4
3t2 6= 1

2
t2.

Thus, it has incorrect first and second moments, and so we must be more careful. Let

Z∆t(t) =
∑
i

W (ti)(W (ti+1)−W (ti)),

where ∆t = ti+1 − ti. Then,

Z∆t(t) =
∑
i

1

2
(W (ti+1) +W (ti))(W (ti+1)−W (ti))

−
∑
i

1

2
(W (ti+1)−W (ti))(W (ti+1)−W (ti))

=
∑
i

1

2
(W (ti+1)2 −W (ti)

2)−
∑
i

1

2
(W (ti+1)−W (ti))

2

=
1

2
W (t)2 − 1

2

∑
i

(W (ti+1)−W (ti))
2. (6.5)

Note that we have recovered our first guess of: W (t)2/2, though there is now a
correction in the form of the sum on the far right hand side of (6.5)? Let

Qi = (W (ti+1)−W (ti))
2.

Qi has a mean of ∆t and variance of O(∆t2). Therefore, the random variable
∑

iQi

has a mean of t and a variance of O(∆). Thus, for an appropriate constant C,∑
iQi − t
C
√

∆
≈ N(0, 1).

In particular, ∑
i

Qi − t = O(
√

∆t)→ 0, as ∆t→ 0,

implying ∑
i

Qi → t, as ∆t→ 0.

Hence,
1

2

∑
i

Qi →
1

2
t.
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Collecting the above shows that∫ t

0

W (s)dW (s) ≈ Z∆t(t)→
1

2
W (t)2 − 1

2
t, as ∆t→ 0.

Hence, we conclude ∫ t

0

W (s)dW (s) =
1

2
W (t)2 − 1

2
t.

Note that, as expected, we have

E
[

1

2
W (t)2 − 1

2
t

]
= 0,

and

E
[∫ t

0

W (s)dW (s)

]2

= E
[

1

2
W (t)2 − 1

2
t

]2

=
1

4
E[W (t)4]− 1

2
t · E[W (t)2] +

1

4
t2

=
3

4
t2 − 1

2
t2 =

1

2
t2.

We now construct another process from a Brownian motion that is in many ways
equivalent to the one constructed above, and will be of use to us. Let W be a standard
Brownian motion and consider the process

Z(t)
def
= W

(∫ t

0

g(s, ω)2ds

)
,

where, again, g(s, ω) may depend upon W , but only up until time τ =
∫ t

0
g(s, ω)ds.

That is, it is contained within Fτ . The above is a time-changed Brownian motion.We
have

Z(t+ h)− Z(t) = W

(∫ t+h

t

g(s, ω)2ds+

∫ t

0

g(s, ω)2ds

)
−W

(∫ t

0

g(s, ω)2ds

)
,

which by the independent increments of W is approximately normal with mean zero
and variance g(t, ω)2h, which is exactly the same distribution as the infinitesimal
increment∫ t+h

0

g(s, ω)dW (s)−
∫ t

0

g(s, ω)dW (s) ≈ g(t, ω)(W (t+ h)−W (t)).

This implies that the two processes∫ t

0

g(s, ω)dW (s) and W

(∫ t

0

g(s, ω)2ds

)
(6.6)

are distributionally equivalent (thought not equal for a given Brownian path). The
representation on the left of (6.6) is termed an Itô integral, whereas the process on
the right is the time changed process, and can be traced back to Wolfgang Doeblin.
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6.3 Diffusion and Linear Noise Approximations

We are in position to give two approximations to the process (5.3) which use Brownian
motions.

6.3.1 Diffusion approximation

Define the function F via
F (x) =

∑
k

κ̂kx
ykζk, (6.7)

which is deterministic mass-action kinetics. Returning to (5.21), the scaled model
satisfies

XV (t) = XV (0) +
∑
k

1

V
Yk

(
V

∫ t

0

κ̂kX(s)ykds

)
ζk,

which, after centering the counting processes2 yields

XV (t) = XV (0) +
∑
k

1

V

(
Yk

(
V

∫ t

0

κ̂kX
V (s)ykds

)
− V

∫ t

0

κ̂kX
V (s)ykds

)
ζk

+

∫ t

0

F (XV (s))ds.

Using that
1√
V

[Yk(V u)− V u] ≈ Wk(u), (6.8)

where W is a standard Brownian motion, we then have that

XV (t) ≈ XV (0) +

∫ t

0

F (XV (s))ds+
∑
k

1√
V
Wk

(∫ t

0

κ̂kX
V (s)ykds

)
ζk,

where the Wk are independent standard Brownian motions. This implies that a good
approximation to XV would be the process ZV satisfying

ZV (t) = XV (0) +

∫ t

0

F (ZV (s))ds+
∑
k

1√
V
Wk

(∫ t

0

κ̂kZ
V (s)ykds

)
ζk.

Considering (6.6), an equivalent way to represent ZV is via the Itô representation

ZV (t) = ZV (0) +

∫ t

0

F (ZV (s))ds+
∑
k

1√
V
ζk

∫ t

0

√
κ̂kZV (s)ykdWk(s).

This equation is often represented in differential form

dZV (t) = F (ZV (t))dt+
∑
k

1√
V
ζk
√
κ̂kZV (t)ykdWk(s). (6.9)

2The centered version of Y (u) is Y (u)− u. that is, it arrises simply by subtracting off the mean.
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Note that the portion of the system that is stochastic, often termed the “noise” in
the system, is O(1/

√
V ), and hence assumed small. This equation is known as the

Langevin approximation in the biology literature, and as the diffusion approximation
in probability. There is actually an issue related to this approximation that is still
not completely resolved in the chemical setting pertaining to the non-negativity of
the system. Therefore, perhaps a more reasonable representation would be

dZV (t) = F (ZV (t))dt+
∑
k

1√
V
ζk
√
κ̂k[ZV (t)yk ]+dWk(s),

where [x]+ = max{x, 0}.
Note that there is no limit taking place in the derivation of the diffusion ap-

proximation. In fact, the system satisfying (6.9) converges to the solution of the
deterministic process with mass-action kinetics in the limit V →∞.

Example 6.1. Consider the system

A
κ1

�
κ2

B.

Letting XV
A , X

V
B denote the normalized abundances of the species A and B, respec-

tively, we have that XV
A (t) +XV

B (t) = M , for some M > 0, and

XV
A (t) = XV

A (0) +
1

V
Y2

(
V

∫ t

0

κ2(M −XV
A (s))ds

)
− 1

V
Y1

(
V

∫ t

0

κ1X
V
A (s)ds

)
.

Therefore, the diffusion approximation is the solution to

ZV (t) = ZV (0) + κ2

∫ t

0

(M − ZV (s))ds− κ1

∫ t

0

ZV (s)ds

+
1√
V
W2

(∫ t

0

κ2[M − ZV (s)]+ds

)
− 1√

V
W1

(∫ t

0

κ1[ZV (s)]+ds

)
,

or, equivalently, the solution to the stochastic differential equation

dZV (t) =κ2(M − ZV (t))dt− κ1

∫ t

0

ZV (s)ds

+
1√
V

√
κ2[M − ZV (t)]+dW1(t)− 1√

V

√
κ1[ZV (t)]+dW2(t).

4

6.3.2 Linear noise approximation

Let x(t) be the solution to the limiting deterministic system (5.22), and recall that
F is the deterministic kinetics defined in (6.7). Since by (6.8), V −1/2 [Yk(V u)− V u]
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is approximately a Brownian motion,

LV (t)
def
=
√
V (XV (t)− x(t))

= LV (0) +
√
V

(∑
k

1

V
Yk

(
V

∫ t

0

λ̂k(X
V (s))ds

)
ζk −

∫ t

0

F (x(s))ds

)
= LV (0) +

∑
k

1√
V

[
Yk

(
V

∫ t

0

λ̂k(X
V (s))ds

)
− V

∫ t

0

λ̂k(X
V (s))ds

]
ζk

+

∫ t

0

√
V (F (XV (s))− F (x(s)))ds

≈ LV (0) +
∑
k

Wk

(∫ t

0

λ̂k(x(s))ds

)
ζk +

∫ t

0

∇F (x(s)) · LV (s)ds.

The limit as V goes to infinity gives LV ⇒ L where

L(t) = L(0) +
∑
k

Wk

(∫ t

0

λ̂k(x(s))ds

)
ζk +

∫ t

0

∇F (x(s)) · L(s)ds. (6.10)

For more details, see [22, 25, 35] and Chapter 11 of [12]. Note that an alternative
representation of (6.10) is

L(t) = L(0) +
∑
k

ζk

∫ t

0

√
λ̂k(x(s))dWk(s) +

∫ t

0

∇F (x(s)) · L(s)ds,

where now positivity of the term in the square root is guaranteed as x is the solution
to the deterministic model and stays positive for all time (so long as each xi(t) > 0).
The above limit suggests the approximation

XV (t) ≈ X̂V (t)
def
= x(t) +

1√
V
L(t),

which is often called the linear noise approximation to XV , and is used quite exten-
sively. Note that, once again, the “noise” scales like 1/

√
V .

Example 6.2. Consider the system

A
κ1

�
κ2

B.

The ordinary differential equation governing xA(t), the concentration of A, is

ẋA(t) = F (x(t))
def
= κ2(M − xA(t))− κ1xA(t), (6.11)

where M = xA(t) + xB(t). Therefore,

F ′(x) = −κ2 − κ1.
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Assuming XV
A (0) = xA(0), the equation for L is then

L(t) =

∫ t

0

√
κ2(M − xA(s))dW1(s)−

∫ t

0

√
κ1xA(s)dW2(s)− (κ1 + κ2)

∫ t

0

L(s)ds,

or
dL(t) =

√
κ2(M − xA(t))dW1(t)−

√
κ1xA(t)dW2(t)− (κ1 + κ2)L(s)dt.

Solving this equation yields,

L(t) =

∫ t

0

e−(κ1+κ2)(t−s)
√
κ2(M − xA(s))dW1(s)−

∫ t

0

e−(κ1+κ2)(t−s)
√
κ1xA(s)dW2(s).

Finally, we set

X̂V (t) = xA(t) +
1√
V
L(t).

4

6.4 Numerical methods for stochastic differential

equations

Consider the stochastic equation

X(t) = X(0) +

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dW (s), (6.12)

where X ∈ R, b : R → R, and σ : R → R≥0. The differential form of the above
equation is

dX(t) = b(X(t))dt+ σ(X(t))dW (t),

where we do not use the notation dX(t)/dt since W is not differentiable, and hence
dW (t)/dt is problematic; therefore, it is better to think in terms of the differentials
dX or dW . Note, however, that this is all just notation and no matter what we write,
we mean that X satisfies the integral equation above.

The most common numerical method, by far, to solve for the solution to (6.12) is
Euler’s method. That is, we use

X(t+ h) = X(t) +

∫ t+h

t

b(X(s))ds+

∫ t+h

t

σ(X(s))dW (s)

≈ X(t) + b(X(t))h+ σ(X(t))(W (t+ h)−W (t))

dist
= X(t) + b(X(t))h+ σ(X(t))

√
hρ,

where ρ ∼ N(0, 1). This observation leads to the following algorithm. In the algo-
rithm below, all random variables generated are assumed to be independent of all
previous random variables. The constructed process will be denoted by Z so as to
differentiate it and the exact process X.
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Algorithm 6. Fix Z(0) and h > 0. Set n = 0. Repeat the following steps.

1. Let ρ ∼ N(0, 1).

2. Set
Z((n+ 1)h) = Z(nh) + b(Z(nh))h+ σ(Z(nh))

√
hρ

Note that one way to represent Z (at least at the points nh), is as the solution to

Z(t) = Z(0) +

∫ t

0

b(Z ◦ η(s))ds+

∫ t

0

σ(Z ◦ η(s))dW (s),

where η(s) = nh for nh ≤ s < (n+ 1)h. This follows since if Z is so generated then

Z((n+ 1)h) = Z(nh) +

∫ (n+1)h

nh

b(Z(nh))ds+

∫ (n+1)h

nh

σ(Z(nh))dW (s)

= Z(nh) + b(Z(nh))h+ σ(Z(nh))(W ((n+ 1)h)−W (nh)),

and W ((n+ 1)h)−W (nh) ∼ N(0, h).
Note also that (6.12) is distributionally equivalent to the time changed represen-

tation

X(t) = X(0) +

∫ t

0

b(X(s))ds+W

(∫ t

0

σ2(X(s))ds

)
. (6.13)

This can be seen by noting that for (6.13), Euler’s method reduces to

Z(t) = Z(0) +

∫ t

0

b(Z ◦ η(s))ds+W

(∫ t

0

σ2(Z ◦ η(s))ds

)
,

yielding

Z((n+ 1)h) = Z(nh) +

∫ (n+1)h

nh

b(Z(nh))ds

+W

(∫ (n+1)h

nh

σ2(Z ◦ η(s))ds+

∫ nh

0

σ2(Z ◦ η(s))ds

)

−W
(∫ nh

0

σ2(Z ◦ η(s))ds

)
= Z(nh) + b(Z(nh))h+W

(
σ2(Z(nh))h+

∫ nh

0

σ2(Z ◦ η(s))ds

)
−W

(∫ nh

0

σ2(Z ◦ η(s))ds

)
,

where

W

(
σ2(Z(nh))h+

∫ nh

0

σ2(Z ◦ η(s))ds

)
−W

(∫ nh

0

σ2(Z ◦ η(s))ds

)
,

is normally distributed with mean zero and variance σ2(Z(nh))h.
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Solving linear difference equations

A.1 Linear Difference Equations

Difference equations come up naturally in the study of discrete time Markov chains,
and it is important that we are able to solve them.

For real valued constants a and b consider the following system of equations,

f(n) = af(n− 1) + bf(n+ 1), valid for A < n < B, (A.1)

where f is a function defined on the integers {A, . . . , B}, and the value B can be
chosen to be infinity.

Note that if f1 and f2 are two solutions of (A.1), then for real numbers c1 and
c2, the function g = c1f1 + c2f2 is also a solution. This can be easily checked. Let
A < n < B be an integer and let f1 and f2 be two solutions to (A.1). Then,

g(n) = c1f1(n) + c2f2(n)

= c1 [af1(n− 1) + bf1(n+ 1)] + c2 [af2(n− 1) + bf2(n+ 1)]

= ag(n− 1) + bg(n+ 1).

It is a fact that if f1 is not a multiple constant of f2, then functions of the form
c1f1 +c2f2 make up all possible solutions to (A.1). (This last statment is true because
the solution space to (A.1) is a two-dimensional vector space, but we will not dwell
on this.) Our goal is therefore clear: find two solutions to (A.1) that do not differ by
a multiple constant. Once we have two such solutions, we can solve for our specific
solution, i.e. determine the constants c1 and c2 above, via any boundary conditions
provided.

Solving equations of the form (A.1) turns out to be relatively straightforward. We
will simply look for solutions of the form f(n) = αn, for some α 6= 0. By plugging αn

into equation (A.1) we find that f(n) = αn is a solution if and only if α solves the
following algebraic equation,

αn = aαn−1 + bαn+1, valid for A < n < B.

197
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After dividing by αn−1, we have α = a+ bα2. Solving the quadratic for α yields

α =
1±
√

1− 4ba

2b
. (A.2)

There are three cases that need handling based upon whether or not the discrim-
inant, 1− 4ba, is positive, negative, or zero.

Case 1: If 1−4ba > 0, we find two real solutions, α1 and α2, and see that the general
solution to the difference equation (A.1) is

c1α
n
1 + c2α

n
2 ,

with c1 and c2 found depending upon any boundary conditions given.

Case 2: If 1− 4ba < 0, then the roots are complex and the general solution is found
by switching to polar coordinates. That is, we let α = reiθ be one solution of (A.2)
and find

f(n) = rneinθ = rn cos(nθ)± irn sin(nθ), (A.3)

is a solution to (A.1). However, this implies that the real and imaginary parts of
(A.3) are also solutions to (A.1). Therefore, the general solution to (A.1) is

c1r
n cos(nθ) + c2r

n sin(nθ),

with c1 and c2 found depending upon any boundary conditions given.

Case 3: If 1 − 4ba = 0, then there is only one solution to (A.2). Therefore, we
have only found one solution to (A.1), namely f1(n) = (1/2b)n. However, let f2(n) =
n(2b)−n. We will check that f2 is also a solution. For A < n < B we have

af2(n− 1) + bf2(n+ 1) = a(n− 1)(2b)−(n−1) + b(n+ 1)(2b)−(n+1)

=

(
1

2b

)n [
a(n− 1)2b+ b(n+ 1)

1

2b

]
=

(
1

2b

)n [
(n− 1)

1

2
+ (n+ 1)

1

2

]
(since, 4ab = 1)

=

(
1

2b

)n
n

= f2(n).

Note that f2 is not a multiple constant of f1. Thus, when 4ab = 1, the general form
of the solution to (A.1) is

f(n) = c1

(
1

2b

)n
+ c2n

(
1

2b

)n
,

with c1 and c2 found depending upon the boundary conditions given.
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Example A.1. Find a function f(n) satisfying

f(n) = 2f(n− 1) + 1
10
f(n+ 1), 0 < n <∞,

with f(0) = 8 and f(1) = 2.
Comparing the above equation with (A.1), we have a = 2, b = 1

10
, A = 0 and

B =∞. Finding α via (A.2) yields

α = 5±
√

5,

and the general solution to the difference equation is

f(n) = c1

(
5 +
√

5
)n

+ c2

(
5−
√

5
)n
.

Using the boundary conditions yields

8 = f(0) = c1 + c2

2 = f(1) = c1(5 +
√

5) + c2(5−
√

5),

which has solution c1 = 4− 19
√

5
5

, c2 = 4 + 19
√

5
5

. Thus, the particular solution is

f(n) =

(
4− 19

√
5

5

)(
5 +
√

5
)n

+

(
4 +

19
√

5

5

)(
5−
√

5
)n
.

�

The most form of difference equation we will see in this book are of the form

f(n) = q · f(n− 1) + p · f(n+ 1), with p+ q = 1, p, q ≥ 0.

Supposing that p 6= q, the roots of the quadratic formula (A.2) can be found:

1±
√

1− 4qp

2p
=

1±
√

(q − p)2

2p
=

1± |q − p|
2p

=

{
1,
q

p

}
.

Thus, the general solution when p 6= 1
2

is

f(n) = c1 + c2

(
q

p

)n
.

For the case that p = q = 1
2
, the only root is 1. Hence, when p = q = 1

2
, the general

solution is
f(n) = c1 + c2n.
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A.2 Exercises

Problems A.1 through A.3 require basic linear algebra, which is not explicitly covered
in these notes. They are provided to ensure that you have the minimum required
knowledge of linear algebra. If the concepts being presented are foreign to you, I
strongly encouraged you to consult a text on basic linear algebra, for example, [11],
and get in touch with your instructor.

Some of the problems require you to use MATLAB. You must always turn in your
MATLAB code when a problem is solved using MATLAB.

Exercise A.1. Let

A =

[
−2 1
2 −1

]
, B =

[
0 −1
1 0

]
, v =

[
1
3

2
3

]

Calculate (by hand) the following:

(a) A2.

(b) AB.

(c) BA.

(d) Av.

Exercise A.2. Redo Problem A.1 using MATLAB. Sample code showing how to
multiply two matrices is provided on the course website.

Exercise A.3. Find the eigenvalues and left eigenvectors of the matrix A in Problem
A.1. Do this in two ways: by hand and by using MATLAB.

Exercise A.4. Solve the following difference equation by finding a formula for f(n),
valid on n = 0, . . . , 100.

f(n) = 2
5
f(n− 1) + 3

5
f(n+ 1), n = 1, . . . , 99,

and f(0) = 1, f(1) = 0.



Appendix B

Some probability basics

In this section, we collect a few topics from probability theory that are most pertinent
to the subject matter of this text. Namely, we discuss exponential random variables,
transformations of random variables, and Monte Carlo methods. We assume the
reader already has a basic knowledge of probability theory at the level of [4] or [32].

B.1 Exponential random variables

A random variable X has an exponential distribution with parameter λ > 0 if it has
probability density function

f(x) =

{
λe−λx x ≥ 0

0 else
.

We write X ∼ Exp(λ).
If X ∼ Exp(λ), then

E[X] =
1

λ
and Var(X) =

1

λ2
.

The exponential random variable satisfies the memoryless property.

Proposition B.1 (Memoryless property). Let X ∼ Exp(λ), then for any s, t ≥ 0,

P (X > (s+ t) | X > t) = P (X > s). (B.1)

One important role the exponential random variable plays in these notes is as the
inter-event time of Poisson processes.

Proposition B.2. Consider a Poisson process with rate λ > 0. Let Ti be the time
between the ith and i+ 1st events. Then Ti ∼ Exp(λ).

The following properties of independent exponential random variables play a large
role in simulation methods for continuous time Markov chains.

201
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Proposition B.3. Suppose that Xi ∼ Exp(λi), 1 ≤ i ≤ n, are independent. Then

X0 = min
1≤i≤n

{Xi} ∼ Exp(λ0), where λ0 =
n∑
i=1

λi.

Proof. Let X0 = mini{Xi}. Set λ0 =
∑n

i=1 λ. Then,

P (X0 > t) = P (X1 > t, . . . , Xn > t) =
n∏
i=1

P (Xi > t) =
n∏
i=1

e−λit = e−λ0t,

where the second equality follows by the independence of the random variables.

Proposition B.4. Suppose that Xi ∼ Exp(λi), 1 ≤ i ≤ n, are independent. Let
j = argmin1≤i≤n{Xi} be the index of the smallest Xi. Then, for k ∈ {1, . . . , n},

P (j = k) =
λk∑n
i=1 λi

.

Proof. We first consider the case of n = 2. Let X ∼ Exp(λ) and Y ∼ Exp(µ) be
independent. Then,

P (X < Y ) =

∫∫
0<x<y

λe−λxµe−µydxdy =

∫ ∞
0

∫ y

0

λe−λxµe−µy dx dy =
λ

µ+ λ
.

Returning to the general case, let Yk = mini 6=k{Xi}. By Proposition B.3, Yk ∼
Exp

(∑
i 6=k λi

)
. We have already proven the case when n = 2, so we may conclude

P (j = k) = P (Xk < Yk) =
λk

λk +
∑

i 6=k λi
=

λk∑n
i=1 λi

,

which is the desired result.

One interpretation of the above two propositions is the following. If you have
n alarm clocks, with the ith set to go off after an Exp(λi) amount of time, then
Proposition B.3 tells you when the first will go off, and Proposition B.4 tells you
which one will go off at that time.

B.2 Transformations of random variables

Most software packages have very good and efficient methods for the generation of
pseudo-random numbers that are uniformly distributed on the interval (0, 1). These
pseudo-random numbers are so good that we will take the perspective throughout
these notes that they are, in fact, truly uniformly distributed over (0, 1). We would
then like to be able to construct all other random variables as transformations, or
functions, of these uniform random variables. The method for doing so will depend
upon whether or not the desired random variable is continuous or discrete. In the
continuous case, Theorem B.5 will often be used, whereas in the discrete case Theorem
B.7 will be used.
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Theorem B.5. Let U be uniformly distributed on the interval (0, 1) and let F be an
invertible distribution function. Then X = F−1(U) has distribution function F .

Before proving the theorem, we show how it may be used in practice.

Example B.6. Suppose we want to generate an exponential random variable with
parameter λ > 0. The distribution function on [0,∞) for this random variable is

F (t) = 1− e−λt, t ≥ 0.

Therefore, F−1 : [0, 1)→ R≥0 is given by

F−1(u) = −1

λ
ln(1− u), 0 ≤ u ≤ 1.

If U is uniform(0, 1), then so is 1−U . Thus, to simulate a realization of X ∼ Exp(λ),
we first simulate U from uniform(0, 1), and then set

x = −1

λ
ln(U) = ln(1/U)/λ.

�

Proof. (of Theorem B.5) Let U ∼ Unif[0, 1] and set X = F−1(U). Then,

P (X ≤ t) = P (F−1(U) ≤ t) = P (U ≤ F (t)) = F (t).

Theorem B.7. Let U be uniformly distributed on the interval (0, 1). Suppose that
pk ≥ 0 for each k ∈ {0, 1, . . . , }, and that

∑∞
k=0 pk = 1. Define

qk =
k∑
i=0

pi,

and let X = min{k : qk ≥ U}. Then, P (X = k) = pk.

Proof. Taking q−1 = 0, we have

P (X = k) = P (qk−1 < U ≤ qk) = qk − qk−1 = pk

for any k ∈ {0, 1, . . . }.

In practice, the above theorem is typically used by repeatedly checking whether
or not U ≤

∑k
i=0 pi, and stopping the first time the inequality holds. We note that

the theorem is stated in the setting of an infinite state space, though the analogous
theorem holds in the finite state space case.
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B.3 Estimation via simulation: Monte Carlo

Let X be a random variable and suppose that we can generate independent copies of
X via simulation. How can we estimate µ = E[X]?

The law of large numbers provides the answer. Generate a sequence of independent
realizations of the random variable, X1, X2, . . . , and then set

µ̂n =
1

n

n∑
i=1

Xi, (B.2)

for some n ≥ 1. We call µ̂n an estimator. In fact, µ̂n is an unbiased estimator,

E[µ̂n] =
1

n
E

[
n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = µ.

By the strong law of large numbers we know that

P
(

lim
n→∞

µ̂n = µ
)

= 1.

Knowing that µ̂n → µ, as n → ∞, does not tell us how large of an n we need in
practice. This brings us to the next logical question: how good is the estimate for a
given, finite n. To answer this question, we will apply the central limit theorem.

Let µ = E[X] and σ2 = Var(X). We know from the central limit theorem that
the distribution of the standardized random variable

X1 +X2 + · · ·+Xn − nµ
σ
√
n

=

√
n

σ
(µ̂n − µ)

is approximately that of a Gaussian with mean zero and variance one. Therefore, if
Z ∼ N(0, 1) is a standard normal random variable and z ∈ R,

P (−z ≤ Z ≤ z) ≈ P

(
−z ≤

√
n

σ
(µ̂n − µ) ≤ z

)
= P

(
− σz√

n
≤ (µ̂n − µ) ≤ σz√

n

)
= P

(
µ̂n −

σz√
n
≤ µ ≤ µ̂n +

σz√
n

)
.

In words, the above says that the probability that the true value, µ, is within
±σz/

√
n of the estimator µ̂n is approximately P (−z ≤ N(0, 1) ≤ z). The inter-

val (µ − σz/
√
n, µ + σz/

√
n) is called our confidence interval and the probability

P (−z ≤ Z ≤ z) is our confidence.
We now turn to finding the value z for a desired level of confidence. Again letting

Z ∼ N(0, 1), we let

Φ(z) = P (Z ≤ z) =
1√
2π

∫ z

−∞
e−t

2/2dt,
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and have

P (−z ≤ Z ≤ z) = P (Z ≤ z)− P (Z ≤ −z) = Φ(z)− (1− Φ(z)) = 2Φ(z)− 1.

Therefore, if for some δ > 0 we want to have a probability of 1− δ that the true value
is in the constructed confidence interval, then we must choose z so that

2Φ(z)− 1 = 1− δ, or Φ(z) = 1− δ

2
.

For example, if δ = 0.1, so that a 90% confidence interval is desired, then we want

Φ(z) = 1− 0.05 = 0.95,

and z = 1.65. If, on the other hand, we want δ = 0.05, so that a 95% confidence
interval is desired, then

Φ(z) = 1− 0.025 = 0.975

and z = 1.96.
There is a major problem with the preceding arguments. If we do not know µ,

then we most likely do not know σ. Hence, we can not provide the confidence interval.
We must estimate σ from our independent samples.

Theorem B.8. Let X1, . . . , Xn be independent and identical samples with mean µ
and variance σ2. Let

σ̂2
n =

1

n− 1

n∑
i=1

(Xi − µ̂n)2,

where µ̂n is defined in (B.2). Then,

E[σ̂2
n] = σ2.

Proof. We have

(n− 1)E[σ̂2
n] = E

[
n∑
i=1

(Xi − µ̂n)2

]
=

n∑
i=1

E[X2
i ]− 2E

[
µ̂n

n∑
i=1

Xi

]
+ nE

[
µ̂2
n

]
=

n∑
i=1

E[X2
i ]− 2E [µ̂nnµ̂n] + nE

[
µ̂2
n

]
= nE[X2]− nE

[
µ̂2
n

]
.

However,

E
[
µ̂2
n

]
= Var(µ̂n) + (E [µn])2 = Var

(
1

n

n∑
i=1

Xi

)
+ µ2 =

1

n
σ2 + µ2.

Therefore,

n− 1

n
E[σ̂2

n] = E[X2]− E[µ̂2
n] =

(
σ2 + µ2

)
−
(

1

n
σ2 + µ2

)
=
n− 1

n
σ2,

completing the proof.
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Therefore, we can use
σ̂n =

√
σ̂2
n

as an estimate for the standard deviation in the confidence interval and[
µ̂n −

σ̂nz√
n
, µ̂n +

σ̂nz√
n

]
is an approximate (1− δ)100% confidence interval for µ = E[X].

We note that there are two sources of error in the development of the above
confidence interval: the accuracy of the central limit theorem, and the statistical
error in σ̂n. We will not explore these errors in these notes.

We have the following algorithm for producing a confidence interval for an expec-
tation when the number of realizations, n, is fixed.

Algorithm for producing a confidence interval when n is fixed.

1. Select n, the number of experiments to be run, and δ > 0.

2. Perform n independent replications of the experiment, obtaining the observa-
tions X1, X2, . . . , Xn of the random variable X.

3. Compute the sample mean and sample variance

µ̂n =
1

n
(X1 + · · ·+Xn), σ̂2

n =
1

n− 1

n∑
i=1

(Xi − µ̂n)2.

4. Select z such that Φ(z) = 1−δ/2. Then an approximate (1−δ)100% confidence
interval for µ = E[X] is [

µ̂n −
σ̂nz√
n
, µ̂n +

σ̂nz√
n

]
.

If a level of precision is desired, and n is allowed to depend upon δ and a tolerance
ε, then the following algorithm is most useful.

Algorithm for producing confidence intervals to a given tolerance.

1. Select δ > 0, determining the desired confidence, and ε > 0 giving the desired
precision. Select z so that Φ(z) = 1− δ/2.

2. Perform independent replications of the experiment, obtaining the observations
X1, X2, . . . , Xn of the random variable X, until

σ̂nz√
n
< ε.
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3. Report

µ̂n =
1

n
(X1 + · · ·+Xn)

and the (1− δ)100% confidence interval for µ̂ = E[X],[
µ̂n −

σ̂nz√
n
, µ̂n +

σ̂nz√
n

]
≈ [µ− ε, µ+ ε] .

There is normally a minimal number of samples generated, n0 say, before one
checks whether or not σ̂nz/

√
n < ε. This is to avoid the possibility of an artificially

low σ̂n being produced from only a few samples.

B.4 Exercises

Some of the problems require you to use MATLAB. You must always turn in your
MATLAB code when a problem is solved using MATLAB.

Exercise B.1. Verify the memoryless property, Equation (B.1), for exponential ran-
dom variables.

Exercise B.2. MATLAB exercise. Perform the following tasks using Matlab. Report
your findings.

1. Using a FOR LOOP, use the etime command to time how long it takes Matlab
to generate 100,000 exponential random variables with a parameter of 1/10
using the built-in exponential random number generator.

2. Again using a FOR LOOP, use the etime command to time how long it takes
Matlab to generate 100,000 exponential random variables with parameter 1/10
using the transformation method given in Theorem B.5.

Exercise B.3. MATLAB exercise. Let X be a random variable taking values on
{−10, 0, 1, 4, 12} with probability mass function

P (X = −10) = 1
5
, P (X = 0) = 1

8
, P (X = 1) = 1

4
,

P (X = 4) = 1
3
, P (X = 12) = 11

120
.

Using Theorem B.7, generate N independent copies of X and use them to estimate
E[X] via

E[X] ≈ 1

N

N∑
i=1

X[i],

where X[i] is the ith independent copy of X and N ∈ {100, 103, 104, 105}. Compare
the result for each N to the actual expected value. A helpful sample MATLAB code
has been provided on the course website.
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