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Summary. We review a selection of essential techniques for constructing computational mul-
tiscale methods for highly oscillatory ODEs. Contrary to the typical approaches that attempt
to enlarge the stability region for specialized problems, these lecture notes emphasize how
multiscale properties of highly oscillatory systems can be characterized and approximated in
a truly multiscale fashion similar to the settings of averaging and homogenization. Essential
concepts such as resonance, fast-slow scale interactions, averaging, and techniques for trans-
formations to non-stiff forms are discussed in an elementary manner so that the materials can
be easily accessible to beginning graduate students in applied mathematics or computational
sciences.

1 Introduction

Oscillatory systems constitute a broad and active field of scientific computations.
One of the typical numerical challenges arises when the frequency of the oscillations
is high compared to either the time or the spatial scale of interest. In this case, the

of sampling oscillations adequately by numerical discretizations over a relatively
large domain. Several general strategies for dealing with oscillations can be found
in literature, for example, asymptotic analysis [5, 22, 23], averaging [20, 29], enve-

tions, which are not oscillatory in the domain of interests. For example, the center
or frequency of oscillators may vary slowly in time. Indeed, it is often the case that
the quantities of interest are related to these non-oscillatory structures. Reduction in
the computational costs is thus possible by avoiding direct resolution of the oscilla-

the wave equation of the form A(x,t)exp(S(x,t)/ε) is computed via solutions of an
eikonal equation for the phase S and transport equations for the amplitude A. Since
eikonal and transport equations do not depend on the ε-scale oscillations, the cost of

Multiscale Computations for Highly Oscillatory
Problems

lope tracking [27, 28], explicit solutions to nearby oscillatory problems [25, 30, 31].
These strategies typically utilize some underlying structures, related to the oscilla-

cost for computations can typically become exceedingly expensive due to the need

tions. Take geometrical optics [13, 21] for instance. The high frequency solution of
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computation is formally independent of the fast scale as well. These current lecture
notes focus on building efficient multiscale numerical methods that only sample the
fast oscillations. The sampled information is used to describe an effective time evo-
lution for the system at longer time scales. The general approach underlying these
methods come from the theory of averaging.

In these notes, we consider systems of ordinary differential equations (ODEs)
which evolve on two widely separated time scales. Common examples are

1. Perturbed linear oscillations:

εx′ = Ax + εg(x), (1)

where A is diagonalizable and has purely imaginary eigenvalues. The class of
examples include Newton’s equation of motion for perturbed harmonic oscilla-
tors

εx′′ = −Ω 2x + εg(x),

which are found in many applications. Here, the parameter ε , 0 < ε � 1, char-
acterizes the separation of time scales in the system.

2. Fully nonlinear oscillations induced from dissipation in the systems. Examples
include Van der Pol oscillators and other relaxation oscillators.

3. Weakly coupled nonlinear oscillators that are close to a slowly varying periodic
orbits. Examples include Van der Pol (with small damping) and Volterra-Lotka
oscillators.

Efficient and accurate computations of oscillatory problems require significant
knowledge about the underlying fast oscillations. Using either analytical or numer-
ical methods, our general underlying principle is to model oscillations and sample
their interactions. Very often, analytical methods do not yield explicit solutions, and
suitable numerical methods need to be applied.

One of the current major thrusts is in developing numerical methods which allow
long time computation of oscillatory solutions to Hamiltonian systems. The interest
in such systems comes from molecular dynamics which attempts to simulate some
underlying physics on a time scale of interest. These methods typically attempt to
approximately preserve some analytical invariance of the solutions; e.g. the total
energy of the system, symplectic structures, or the reversibility of the flow. Detailed
reviews and further references on this active field of “geometric integration” can be
found in [18] and [26].

The Verlet method and other similar geometric integrators are the methods of
choice for many highly oscillatory simulations. They require, however, time steps
that are shorter than the oscillatory wavelength ε and therefore cannot be used when
ε is very small.

wavelength ε but they apply only to restricted classes of differential equations [18].
In a way that resembles the discussion of geometrical optics above since these meth-
ods explicitly use the exponential function to represent the leading terms in the os-
cillations. They work well for problems that are smooth perturbations of problems
with constant coefficients.

Exponential integrators allow for time steps that are longer than the oscillatory



Multiscale computations for highly oscillatory problems 239

Another general approach for dealing with multiscale phenomena computation-
ally can be referred to as boosting [33]. The general idea is to artificially “twig” or
“boost” the small parameter ε so that the stiffness of the problem is reduced. Known
methods that fall into this category are Chorin’s artificial compressibility [7] and the
Car-Parrinello method used in molecular dynamics [6].

This tutorial deviates from previous texts in that we do not rely or assume some
specific properties or a special class of ODEs such as harmonic oscillations or Hamil-
tonian dynamics. Instead, the multiscale methods discussed here compute the effec-
tive behavior of the oscillatory system by integrating the oscillations numerically in
short time windows and sampling their interactions by suitable averaging. Indeed,
one of the main goals of this text is to make the ideas discussed above mathemat-
ically meaningful. Subsequent sections will define what we mean by the effective
behavior of a given highly oscillatory system, describe the theory of averaging, the
structure of our multiscale algorithms and its computational complexity.

The objectives of multiscale computations

One of the major challenges in problems involving multiple scales is that an accurate
computations, attempting to resolve the finest scales involved in the dynamics may be
computationally infeasible. In the classical numerical analysis for ODEs, the impor-
tant elements are stability, consistency and ultimately convergence. In the standard

size goes to zero. The errors depend on powers of the eigenvalues of the Jacobian
of the ODE’s right hand side and the step size. However, in our multiscale setting,

consider the asymptotic cases when the frequency of the fastest oscillations, which

need to rethink what consistency and convergence means in the multiscale setting.
One possibility is the following: let E(t;4,ε) denote the error of the numerical ap-
proximation at time t, using step size 4 and for problems with ε−1 oscillations, we
consider the convergence of E for 0 < ε < ε4

lim
4−→0

(
sup

0<ε<ε4

E(t;4,ε)

)
.

In other words, with a prescribed error tolerance E , the same step size ∆ can be used
for small enough ε . While this notion of convergence may not be possible for the
solutions of many problems, we may ask for the convergence of some functions or
functionals of the solutions. Throughout the notes we discuss results from the pre-
spective of a few key questions: what is the motivation for constructing a multiscale

A first example, suggested by Germund Dahlquist, is the drift path of a mechan-
ical alarm clock, moving due to fast vibrations when it is set off on a hard surface. If
the drift path depends only locally in time on the fast oscillations, then it is reasonable

is proportional to 1/ 

similar to the high frequency wave propagation or homogenization, we would like to

ε, tends to infinity, before the step size is sent to zero. Hence, we

theory, any stable consistent method converges to the analytical solution as the step

from traditional numerical computations?
algorithm? What is being approximated? How does our multiscale approach differ
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to design a scheme that evolves the slowly changing averaged drift path by measur-
ing the effects of the fast solutions only locally in time. Herein lies the possibility of
reducing the computational complexity.

A second example is Kapitza’s pendulum — a rigid pendulum whose pivot is
attached to a strong periodic forcing is vibrating vertically with amplitude ε and fre-
quency 1/ε . When the oscillations are sufficiently fast, the pendulum swings slowly
back and forth, pointing upwards, with a slow period that is practically independent
of ε . Obviously, in the absence of the oscillatory forcing, the pendulum is only sta-
ble pointing downwards. Pyotr Kapitza (physics Nobel Laureate in 1978) used this
example to illustrate a general stabilization mechanisms [17]. This, and similar sim-
ple dynamical systems are often used as example benchmark problems to study how
different methods approximates highly oscillatory problems.

The following assumptions are made throughout these notes: in the fastest scale,
the given system exhibits oscillations with amplitudes independent of ε , and that at a
larger time scale, some slowly changing quantities can be defined by the oscillatory
solutions of the system. To facilitate our discussion, we now present our model sce-
nario described by the following two coupled systems. Consider a highly oscillatory
system in Rd1 coupled with a slow system in Rd2 :

εx′ = f (x,v,t)+ εg(x,v,t), (2)

v′ = h(v,x,t), x(0) = x0 ∈ R
d1 , v(0) = v0 ∈ R

d2 . (3)

We assume that x is highly oscillatory, and v is the slow quantity of interest. However,
without proper information about x, v cannot be found. We are also interested in some
slowly varying quantity that is being defined along the trajectories of x:

β ′ = ψ(β ,t;x( · )). (4)

In a following section, we shall see that for very special initial conditions, the so-
lutions of (2) may be very smooth and exhibit no oscillations. The problem of ini-
tialization, i.e. finding the suitable initial data so that the slowly varying solutions
can be computed appear in meteorology. We refer the readers to the paper of Kreiss
and Lorenz [25] for further reading on the theory for the slow manifolds. However,
in many autonomous equations, e.g. linear equations, the only slowly varying solu-
tions in the system are the equilibria of the system. For problems like the inverted
pendulum, it is clear that the slowly varying solutions are not of interest. Then some
complicated interactions between the oscillations must take place, and one must look
into different strategies in order to characterize the effective influence of the oscilla-
tions in x in the evolution of v.

Our objective is to accurately compute the slowly changing quantity v in a long
time scale (i.e. 0 ≤ t ≤ T, for some constant T independent of ε). Furthermore, we
wish to compute it with a cost that is at least sublinear to (ideally independent of ) the
cost for resolving all the fast oscillations in this time scale. In general, our objective
may be achieved if fast oscillations are computed only in very short time intervals and
yet the dynamics for those slowly changing quantities is consistently evolved. Figure
1 depicts two possible schematic structures for such an algorithm. In this section, we
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give a few examples of where such type of slowly changing quantities occur; these
consist of systems with resonant modes and weakly perturbed Hamiltonians systems
so that invariances are changing slowly. Furthermore, we shall see in the next section
that these slowly changing quantities may be evaluated conveniently by short time
averaging with suitable kernels.

h
x(0)

x

ξ

η

micro−solver

Macro−solverH

{ δt
*

T=tn t +ηn

Fig. 1.

Let us briefly comment on the relation of these notes to the standard stiff ODE
solvers for multiscale problems with transient solutions, [8, 19]. A typical example

possible as in the macro-solver in Fig. 1. Special properties of stiff ODE methods

modes are present for all times and may interact to give contributions to the slower
modes.

1.1 Example oscillatory problems

Linear systems with imaginary eigenvalues

x′ = iλ x, λ ∈ R.

The solution is readily given by x(t) = x(0)eiλ t . Note that this system is equivalent
to the system in R2: (

x
y

)′
=
(

0 λ
−λ 0

)(
x
y

)
.

suppress the fast modes and only the slower modes need to be well approximated.

of such stiff problems is equation (1) where the eigenvalues of A are either negative or

the type of the micro-solver in Fig. 1. After the transient, much longer time steps are

Problems with highly oscillatory solutions are much harder to simulate since the fast

zero. The initial time steps are generally small enough to resolve the transient and of
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Hamiltonian systems

Hamiltonian dynamics are defined by the partial derivatives of a Hamiltonian func-
tion H(q, p) which represent the total energy of the system. Here, q is a generalized
coordinate system and p the associated momentum. The equations of motion are
given by

q′ = Hp(q, p),
p′

q (5)

where Hp and Hq denote partial derivatives of H with respect to p and q, respectively.
In Hamiltonian mechanics, H(p,q) = 1

2 p2 +V (q) and the dynamics defined in (5)
yield Newton’s equation of motion q′′

q

then the solutions of this equation are typically oscillatory. An important class of
equations of this type appear in molecular dynamics with pairwise potentials

H(p,q) =
1
2

N

∑
i=1

1
mi

pT
i pi +

1
2

N

∑
i, j=1

Vi j i j

Notable examples are

Vi j(r) =
−Gmim j

r
(electric or gravitational potential)

and

Vi j(r) = 4εi j

((σi j

r

)12
−
(σi j

r

)6
)

, (Lennard-Jones potential)

for all i 6= j, etc.

Volterra–Lotka

This is a simplified model for the predator-prey problem in population dynamics.
In this model, x denotes the population of a predator species while y denotes the
population of a prey species

x′ = x
(

1 − y
ν

)
, (6)

′ =
y
ν

(x − 1).

An example trajectory is depicted in Fig. 2.

Relaxation oscillators

The Van der Pol oscillator is another typical example of nonlinear oscillators. One
version of the equation for a Van der Pol oscillator takes the form

= −∇ V (q). If V (x) is a convex function

where pi and qi are components of the vectors p and q.

y

= −H (q, p),

(|q − q |),
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Fig. 2. The trajectory of the Volterra–Lotka oscillator (6) with ν = 0.01, x(0) = 0.5 and y(0) =
1.

x′ = y − (x2 − 1)x,
y′ = −x.

resistor, inductor, and a capacitor; the state variable x corresponds to the current in
the inductor and y the voltage in the capacitor. It can be shown that there is a unique
periodic solution of this equation and other non-equilibrium solutions approach it
as time increases. This periodic solution is called the limit cycle or the invariant
manifold of the system. A general result for detecting periodic solutions for such

periodic trajectory of a solution.

x′ = −1 − x + 8y3, (7)

y′ =
1
ν
(
−x + y − y3) ,

where 0 < ν � 1. For small ν , trajectories quickly come close to the limit cycle
defined by −x + y − y3 = 0. The upper and lower branches of this cubic polynomial
are stable up to the turning points at which dx/dy = 0. For any initial condition, the
solution of (7) is rapidly attracted to one of the stable branches on an O(ν) time
scale. The trajectory then moves closely along the branch until it becomes unstable.
At this point the solution is quickly attracted to the other stable branch. The trajectory
is depicted in Fig. 3.

type of systems on a plane is the Poincaré–Bendixson theorem, which says that if a

As a second example, consider [9]

This equation can be interpreted as a model of a basic RLC circuit, consisting of a

compact limit set in the plane contains no equilibria, it is a closed orbit; i.e. it is a
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Fig. 3. The trajectory and slow manifold of the relaxation oscillator (7)

1.2 Invariance

Hamiltonian systems:

is the energy H(p,q)

d
dt

H(p(t),q(t)) = Hp p′ + Hqq′ = 0

=⇒ H(p(t),q(t)) = H(p0,q0) = const.

Let us prove Liouville’s theorem on volume preservation of Hamiltonian systems.
Consider a smooth Hamiltonian H(p,q). Let

ϕt(p0,q0) =
(

p(t; p0,q0)
q(t; p0,q0)

)
.

Hence,

d
dt

∂ϕt

∂ (p0,q0)
=
(

−Hpq Hqq

Hpp Hqp

)( ∂ϕt
∂ (p,q)

(p(t),q(t))

)
, q, p ∈ R

=⇒ d
dt

det
∂ϕt

∂ (p0,q0)
= 0. (8)

Consider t as a parameter for the family of coordinate changes (diffeomorphisms)
φt : (p0,q0) 7→ (p(t; p0,q0),q(t, p0,q0)). Then we have the following change of co-
ordinates formula, for any fixed t,

∫

V
f (p,q)dqd p =

∫

U
f (φt (p0,q0))Jd p0dq0,

The Hamiltonian equations of motion (5) admit several invariances. First and foremost
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where V = φt(U) and

J := det
∂φt

∂ (p0,q0)
.

Thus, (8) implies that
dJ
dt

≡ 0

In particular, taking f ≡ 1 implies that U and V have the same volume in the phase
(p,q)-space.

Volterra-Lotka oscillators

Let I(u,v) = logu−u+2logv−v. Substituting (6) yields (d/dt)I(u(t),v(t)) = 0 for
t > 0.

Let u(t) = (cos(t),sin(t)) and v(t) = (cos(t + φ0),sin(t + φ0)) be the solutions of
some oscillators. Then

ξ (t) = u(t) · v(t) = cosφ0

measures the phase difference between u(t) and v(t) and remains constant in time.
In view of the above examples, the following questions naturally appear:

• Can one design numerical schemes so that the important invariances are pre-
served?
What is the computational cost or benefit?
How well do common numerical approximations preserve known invariances of
interest and for what time scale?

• What is the importance of preserving invariances? How can this notion be quan-
tified?

• How do small perturbations affect the invariances? For example, in the following
linear system which conserves energy for ε = 0: x′′ = −ω2x + ε cos(λ t). How
does weak periodic forcing affect the energy? At what time scale does the forcing
become important? Can these effects be computed efficiently?

1.3 Resonance

Resonances among oscillations appear in many situations. For example, in pushing
a child on a playground swing. It is intuitively clear that unless the swing is pushed
at a frequency which is close to the natural oscillation frequency of the swing, the
child will be annoyed. However, when the swing is pushed at the right frequency, the
amplitude of the swing is gradually increasing. In this subsection, we review a few
basic examples of resonance.

Relative phase between two linear oscillators

Some aspects of these issues and others are discussed in [18] and [26].
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Resonance in a forced linear spring

We start with a linear spring under periodic forcing,

x′′ = −ω2x + cosλ t.

d
dt

(
x
x′

)
=
(

0 1
−ω2 0

)(
x
x′

)
+
(

0
cosλ t

)
,

with initial condition

(
x0

x′
0

)
. One can show that the solution operator for the homo-

geneous problem is

St =
(

cosωt ω−1 sinωt
−ω sinωt cosωt

)

so that the solution for the inhomogeneous problem is
(

x
x′

)
= St

(
x0

x′
0

)
+
∫ t

0
St−s

(
0

cosλ s

)
ds

=⇒
(

x
x′

)
= St

(
x0

x′
0

)
+
∫ t

0

(
ω−1 sin(ωt − ωs) cosλ s

cos(ωt − ωs) cosλ s

)
ds.

When λ = ω , resonance happens. More precisely, we see that

x(t) = x0 cosωt +
x′

0

ω
sin ωt +

1
ω

∫ t

0
sin(ωt − ωs) cosωsds

=⇒ x(t) = x0 cosωt +
x′

0

ω
sinωt +

t
2

sinωt.

In addition,
∫ t

0
sin(ωt − ωs)cosωsds =

∫ t

0
(sinωt cosωs− sinωscosωt)cosωsds

= sin(ωt)
∫ t

0
cos2(ωs)ds − cos(ωt)

∫ t

0
sin(ωs)cos(ωs)ds

= sin(ωt)
∫ t

0

1
2
(1 + cos2ωs)ds− cos(ωt)

∫ t 1
2

sin(2ωs)ds

=
t
2

sinωt
︸ ︷︷ ︸
result of resonance

+
1
2

∫ t

0

=
t
2

sinωt
︸ ︷︷ ︸

+
1
2

∫ t

0
sin(ωt − 2ωs)ds

︸ ︷︷ ︸
.

If λ 2 6= ω2,we have

x =
(

x0 −
1

ω2 − λ 2

)
cosωt +

x′
0

ω
sin ωt +

1
ω2 − λ 2 cosλ t.

Rewriting into a first order system, we obtain

(sin ωt cos(2ωs  −cos ωt sin 2ωs ds)( ) ) ( () )

result of resonance

0

= 0
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Exercise 1. Compute the solution of the forced oscillation under friction: for µ > 0

x′′ = −2µx′ − ω2x + cosλ t.

Show that if λ = ω , the amplitude of the oscillations remains bounded and is largest
when λ =

√
ω2 − 2µ2.

Resonance in first order systems

Consider,

x′ =
i
ε

Λx + f
(

x,
t
ε

)
, x(0,ε) = x0,

where Λ is a diagonal matrix. We make the substitution:

x(t) = e
i
ε Λt w(t), w(0) = x0,

and obtain the corresponding equation for w:

w′ = e− i
ε Λt f

(
e

i
ε Λtw,

t
ε

)
, w(0) = x0.

The simplest type of resonance can be obtained by taking f (x,t/ε) = x, i.e., w′ = w.
We see that the resonance occurs due to the linearity of f in x, and that it results in |x|
changing at a rate independent of ε . If f (x,t/ε) = fI(x)+ exp(it/ε) and one of the
diagonal elements of Λ is 1, then similar to the resonance in the forced linear spring,
the resonance with the forcing term contributes a linear in time growth of |x|.

Resonances may occur due to nonlinear interaction. Following the above exam-
ple, take

Λ =
( )

and f (x,t) =
(

0
−x4

1x−1
2

)
.

Hence,

x =
(

eit/ε w1

e2it/ε w2

)
=⇒

w′ =
(

e−it/ε

e−2it/ε

)(
0

−e4it/ε e−2it/ε w4
1w−1

2

)
=
(

0
−w4

1w−1
2

)
.

Again, due to the resonance in the system, |x2| is changing at a rate that is indepen-
dent of ε .

2 Slowly varying functions of the solutions

In this section we shall study the effect of non-linear interactions. We excerpt impor-
tant results from [24] and [1, 2, 14].

1 0
0 2

0
0
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2.1 Problems with dominant fast linear oscillations and nonlinear interactions

We start with a number of examples.

x′ =
iλ
ε

x + x2, x(0) = x0. (9)

The solution of (9) can be obtained explicitly. Introducing a new variable x by

x = e
iλ
ε tw

gives us a new equation whose right hand side is bounded independent of ε

w′ = e
iλ
ε tw2, w(0) = w0 = x0.

w(t) =
1

1
w0

+ iε
λ (e

iλ
ε t − 1)

=
w0

1 + iε
λ w0(e

iλ
ε t − 1)

.

As a result,

w(t) = w0

(
1 − iε

λ
w0(e

iλ
ε t − 1)

)
+O(ε2). (10)

Thus, the nonlinear term changes the solution only by O(ε) in arbitrarily long time

w̄′ = f̄ (w), f̄ (w) =
∫ 1

0
eitw2dt = 0.

Hence, w̄(t) = w0. Indeed, we see that |w(t)− w̄(t)| = |w(t)−w0| ≤ C0ε for 0 ≤ t ≤
T1.

An alternative solution method involves a procedure which is easier to generalize.
From (9) we have,

w(t)− w0 =
∫ t

0
e

iλ
ε sw2ds = −

iε
λ

e
iλ
ε sw2|t0 +

2iε
λ

∫ t

0
e

iλ
ε sww′ds

= − iε
λ

(
e

iλ
ε tw2(t)− w2

0

)
+

2iε
λ

∫ t

0
ei 2λ

ε sw3ds. (11)

Integrating by parts again yields an integral equation for w(t)

w(t)+
iε
λ

e
iλ
ε tw2(t)−

4ε2

λ 2 ei 2λ
ε w3(t) = w0 +

iε
λ

w2
0 −

4ε2

λ 2 w3
0 +

4ε2

λ 2

∫ t

0
ei 3λ

ε sw4(s)ds.

The solution w(t) can then be constructed using fixed point iterations

w(k+1)(t) = F(w(k),w0,t)+
4ε2

λ 2

∫ t

0
ei 3λ

ε sw4
(k)(s)ds, k = 0,1,2, · · · , (12)

averaging:

The solution is readily given by

intervals. In Sect. 3.2, we will show that w(t) is close to an effective equation from
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where w(0) = w0 and

F(w,w0,t) = w0 − iε
λ

e
iλ
ε tw2(t)+

iε
λ

w2
0 +

4ε2

λ 2 ei 2λ
ε w3(t)− 4ε2

λ 2 w3
0.

By induction, one can show that the iterations converge for t ≥ 0, 0 ≤ ε ≤ ε0 and

w(t)+
iε
λ

e
iλ
ε tw2(t) = w0 +

iε
λ

w2
0 +O(ε2).

From (11), we have w(t) = w0 +O(ε). Hence,

w(t) = w0

(
1 − iε

λ
w0

(
e

iλ
ε t − 1

))
+O(ε2). (13)

Now, consider

x′ =
iλ1

ε
x + y, y′ =

iλ2

ε
y + y2.

Changing variables to

x = e
iλ1
ε t u,

iλ2
ε tw

yields

u′ = , w′ = e
iλ2
ε tw2.

w = w0 +
∞

∑
j=1

ε jβ jei
jλ2
ε t .

u = e
i
ε (λ2−λ1)t

0 +
∞

∑
j=1

ε jβ je
i
ε (( j+1)λ2−λ1)t .

If νλ2 − λ1 6= 0 for all ν = 1,2, . . ., then

u(t) = u0 +O(ε).

However, if νλ2 = λ1, then resonance occurs and

u(t) =
{

u0 + εν−1β ν−1t, if ν > 1,
u0 + tw0, if ν = 1.

Thus, the solution is not bounded for all time.
As a generalization, consider the system

x′ =
i
ε

Λx + P(x), x(0) = x0, (14)

where

Therefore:
′ w

e i ( w1

y = e

2−λ + λ )t+ ε

From (10), we can obtain an asymptotic expansion for w:
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Λ =





λ1

λ2
. . .

λd



 , λ1, · · · ,λd ∈ R,

and P = (p1(x), · · · , pd(x)) is a vector of polynomials in x = (x1, · · · ,xd). Let

x = e
i
ε Λtw.

We then have
w′ = e− i

ε ΛtP
(

e
i
ε Λt w

)
, w(0) = w0 = x0. (15)

The right hand side of (15) consists of expressions of the form

e
i
ε (∑mjλ j)t p(w), (16)

where the m j are integers and p is a polynomial in w. There are two possibilities.

1. τ = ∑m jλ j = 0 for some terms. We call these terms the resonant modes. In this
case (15) has the form

w′ = Q0(w)+ Qε

( t
ε
,w
)

, (17)

where Q0 contains the terms corresponding to resonant modes, and Qε the re-
maining terms involving oscillatory exponentials. One can show that the solution
of

w̄′ = Q0(w̄), w̄(0) = w0 = x0, (18)

is very close to w for a long time; i.e.

|w(t)− w̄(t)| ≤ C0ε, 0 ≤ t ≤ T1, (19)

and in general w(t) does not stay close to the initial value w0.
2. τ = ∑m jλ j 6= 0 for all terms. No resonance occurs in the system. The solution

stays close to the initial value:

w(t) = w0 +O(ε). (20)

We remark here that the term

f
( t

ε
,w
)

= e− i
ε Λt P

(
e

i
ε Λtw

)

is in general not strictly periodic, even though it is composed of many highly oscilla-
tory terms. Nonetheless, the self averaging effect of the highly oscillatory terms can
be observed using integration by parts:
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w(t) = w0 +∑
τ

∫ t

0
e

iτ
ε ξ pτ(w)dξ

= w0 − iε ∑
τ

1
τ

e
iτ
ε ξ pτ(w)|t0 + iε ∑

τ

1
τ

∫ t

0
e

iτ
ε ξ ∂ pτ

∂ p
w′dξ

= w0 − iε ∑
τ

1
τ

e
iτ
ε ξ pτ(w)|t0 + iε ∑

τ

1
τ

∫ t

0
e

iτ
ε ξ p̃τ(w)′dξ . (21)

The integrals in (21) are over terms of type (16) and we can therefore repeat the
above arguments. If some of the terms are not of exponential type, then they will, in
general, be of order O(εt). For εt � 1 we can replace (21) by

w̃(t) = w0 − iε ∑
τ

1
τ

e
iτ
ε ξ pτ(w̃)|t0,

i.e.,
w̃(t) = w0 +O(ε) forεt � 1.

A more accurate result is

w̃(t) = w0 − iε ∑
τ

1
τ

(
e

iτ
ε ξ − 1

)
pτ(y0)+ iε p̃0(y0)t +O(ε2t2).

If all the terms are of exponential type, then we can use integration by parts to reduce
them at least to order O(ε2t). We obtain the following theorem.

Theorem 1. Assume that for all integers α j the linear combinations

∑α jλ j 6= 0.

Then
w̃ = w0 +O(ε)

in time intervals 0 ≤ t ≤ T. T = O(ε−p) for any p.

There are no difficulties in generalizing the result and techniques to more general
equations

x′ =
1
ε

Λ(t)x + P(x,t).

Here Λ(t) is slowly varying and P(x,t) is a polynomial in x with slowly varying
coefficients in time.

Remark 1. We see that without the presence of resonance, the highly oscillatory so-
lution x of system (14) stays closely to

ei Λ
ε t x0,

for a very long time. Regarding to our ultimate goal of developing efficient algo-
rithms, we may conclude that if no resonance occurs in the system, no computation
is needed, since ei Λ

ε tx0 is already a good approximation to the solution.
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However, if resonance occurs, then the “envelop” of the oscillations in the solu-
tion, x(t) changes non-trivially. In this case, efficient algorithms can be devised from
solving the initial value problem of equation (17):

w′ = Q0(w)+ Qε

( t
ε
,w
)

, w(0) = x0.

As we showed above, one may even simply drop the oscillatory term and solve an
equation that is completely independent of the fast scale:

w′ = Q0(w), w(0) = x0

and still obtain accurate approximations. We refer the readers to the paper of Scheid

side. In a later part of these notes, we shall first show that the term Qε can be easily
“averaged” out without even using its explicit form. This may prove to be very useful
for designing our multiscale algorithms for more complicated systems.

trary time intervals. Follow the steps:

1. For 0 ≤ t < T, the difference ek(t) := w(k)(t) − w(k−1)(t) converge to 0 as k
approaches infinity.

(k) is uniformly bounded for k = 1,2, . . . .
3. Establish the estimate in (13).
4. Arguments in the previous steps can be repeated to extend the solution to larger

time intervals.

2.2 Slowly varying solutions

Consider

εx′ = (A(t)+ εB(x,t))x + F(t), (22)

x(0) = x0,

where 0 < ε � 1 and A(t), F(t) satisfy the same conditions as in the linear case, i.e.
A,A−1,F and their derivatives are of order one. Also, for x of order one, B and its
derivatives with respect to x and t are of order one, and

|B| ≤ C|x|,

for some constant C > 0. Formally, taking ε = 0, yields the leading order equation
Ax + f = 0. Denoting the solution Φ0 = −A−1F we substitute

x = Φ0(t)+ x1,

and obtain by Taylor expansion

Exercise 2. Show that the fixed-point iterations defined in (12) converge for arbi-

[31] for an interesting algorithm that explores this special structure of the right hand

2. Show that w



Multiscale computations for highly oscillatory problems 253

εx′
1 = (A(t)+ εB(x1 + Φ0,t)) (x1 + Φ0)+ F(t)− εΦ ′

0

= (A1(t)+ εB1(x1,t))x1 + εF1(t),

where B1 has the same properties as B and

A1(t) = A(t)+O(ε), F1 = B(Φ0,t)Φ0 − Φ ′
0.

Thus the new system is of the same form as the original one with the forcing function
reduced to O(ε). Repeat the process p times yields

x =
p−1

∑
ν=0

εν Φν + xp,

εx′
p = (Ap(t)+ εBp(xp,t))xp + ε pFp, Ap = A +O(ε), (23)

xp(0) = x(0)−
p−1

∑
ν=0

εν Φν(0).

Therefore, we have

Theorem 2. The solution of (22) has p derivatives bounded independently of ε if and
only if

x(0) =
p−1

∑
ν=0

εν Φν(0)+O(ε p),

i.e. x(0) is, except for terms of order O(ε p), uniquely determined.

x(0) = 0

εv′
p = Ap(t)v,

is bounded, then xp = O(ε p− j) in time intervals of length O(ε− j).
Generalizing (22), consider

εx′ = (A(t)+ εC(v,t)+ εB(v,x,t))x + F(t), (24)

v′ = D(v,x,t)x + G(v,t).

Here A,A−1, B,C,D,F,G and their derivatives with respect to x,v,t are of order O(1),
if x,v,t are of order O(1). Following the same reasoning as before, substitute

−1(t)F(v,t)+ x1

If F and all its derivates vanish at t = 0, then the initial condition

provided we can extend F smoothly to negative t. If the solution operator of the line-

defines a solution for which any number of derivatives are bounded independent of ε .

arized problem,

x = –A

We can construct such a solution even if F and its derivatives do not vanish at t=0,
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1

εx′
p = (A(t)+ εCp(v,t)+ εBp(v,xp,t))xp + ε pFp(t),

v′ = Dp(v,xp,t)xp + Gp(v,t). (25)

We conclude the following:

dently of ε if we choose
xp(0) = O(ε p),

i.e., x(0) is, except for terms of order O(ε p), uniquely determined by v(0).

Generalizations. More generally, we can consider systems

εw′ = h(w,t).

If there is a solution w(t) with w′(t) = O(1), then h(w(t),t) = O(ε). This suggests
the existence of a C∞-function φ(t) with

h(φ(t),t) = 0, t ≥ 0.

Introducing the new variable
w̃ = w− φ ,

one obtains

εw̃′ = h(w̃+ φ ,t)− h(φ ,t)− εφ ′(t)
= (M(t)+ N(w̃,t)) w̃− εφ ′(t)

where
M(t) = hw(φ(t),t), |N(w̃,t)| ≤ const. |w̃|.

If we further assume that

w̃(0) = w(0)− φ(0) = εz0, z0 = O(1),

then we can rescale the equation for w̃ by introducing a new variable, z = ε−1w̃. One
obtains for z(t)

εz′ = (M(t)+ εZ(z,t))z− φ ′(t).

Since we are interested in highly oscillatory problems, assume that M(t) has m purely
imaginary eigenvalues which are independent of t. Denote

κ j = iµ j, |µ j| ≥ δ > 0, j = 1, . . . ,m,

and n eigenvalues
κm+1 = . . . = κm+n = 0.

to obtain a system of the same form with F replaced by εF . Repeating the process
p

Theorem 3. The solution of (24) has p time derivative which are bounded indepen-

 times yields
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Without loss of generality, assume

M =
(

A 0
0 0

)
, |A−1| = O(1),

where A is an m × m matrix with eigenvalues κ j, j = 1, . . . ,m. If we partition z
accordingly,

z =
(

x
v

)
,

then we obtain

εx′ =
(
A + εZI(v,x,t)

)
x −
(
φ ′)I

,

v′ = ZII(v,x,t)− 1
ε
(
φ ′)II

.

If (φ ′)II = O(ε), then the resulting system has the form (24).

εx′ = (A(t)+ εC(v,t)+ εB(v,x,t))x,

v′ = D(v,x,t)x + G(v,t), (26)

x(0) = x0, v(0) = v0.

We obtain the slow solution vs, if we set x0 = 0, i.e.,

v′
S = G(vS,t), vS(0) = v0, x ≡ 0. (27)

Let us make the following assumption.

Assumption 1. The solution operators S ,S2 of

v′
L =

∂G
∂v

(vS)vL

and
εx′

L = (A(t)+ εC(vS,t))xL,

respectively, are uniformly bounded.

If x0 6= 0, then the slow solution will be perturbed and we want to estimate v − vS.
We start with a rather crude estimate. We assume that x0

S 0
2

0

in time intervals 0 ≤ t ≤ T with T � |x0|−1. We linearize (26) around v = vs and
x = 0. Let v = vS + vL, x = xL, then the linearized equations have the form

2.3 Interaction between the fast and the slow scales

Continuing our discussion and ignoring the terms that are higher order in ε , we con-
sider the following model equation:

1

|v − v | = O(|x | t + ε|x |)

Here, the solution operator S1(t, s) for t > s maps VL(s) to VL(t), and S2(t, s) acts the 

is small and want to show

same way for XL.
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εx′
L = (A(t)+ εC(vS,t))xL,

v′
L = D̃(vS,t)xL +

∂G
∂v

(vS)vL, D̃ = D(vS,0,t),

xL(0) = x0, vL(0) = v0.

By assumption
|xL| ≤ const.|x0|.

Duhamel’s principle and integration by parts gives us

vL(t) =
∫ t

0
S1(t,ξ )D̃xLdξ

= ε
∫ t

0
S1(t,ξ )D̃(A + εC)−1x′

Ldξ

= εS1(t,ξ )D̃(A + εC)−1xL|t0 − ε
∫ t

0

∂
∂ξ

(S1(t,ξ )D̃(A + εC)−1)x′
Ldξ .

The last integral can be treated in the same way. Therefore, Assumption 1 gives us,
for any p,

|vL(t)| ≤ const.(ε|x0|+O(ε pt)) .

Assume now that A is constant, has distinct purely imaginary eigenvalues and
that B,D are polynomials in x. Our goal is to give conditions such that our estimate
will be improved to

|v − vS| = O(εx0) in time intervals 0 ≤ t ≤ T,T � (ε|x0|)−1. (28)

Without restriction we can assume that the system has the simplified form

εx′ = (iΛ + εΛ1(t)+ εB(x,t))x, (29)

v′ = D(x,t)x + G(v,t), (30)

where Λ ,Λ1 are diagonal matrices and Λ1 +Λ∗
1 ≤ 0. We introduce new variables

x = e
i
ε Λt z.

Then (29) becomes
z′ = Λ1(t)z+ B̃z, (31)

where
B̃ = e− i

ε ΛtB
(

e
i
ε Λt z,t

)
e

i
ε Λt .

We split
B̃ = B1 + B2,

where B1 is a polynomial in z without exponentials, and all terms of B2 contain
exponentials. B2 produces a O(ε|x0|2t)-change of z and, therefore, we neglect it.
Thus, we can simplify (31) to
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z′ = Λ1z+ B1(z,t)z.

If B1 6= 0, then we can in general not expect that |z| ≤ K|x0| holds in time intervals
T � |x0|−1. We proved that the solution of (29) is of the form

x(t) = e
i
ε Λt z(t), (32)

where z(t) is varying slowly. We introduce (32) into (30). We can also split

D(x,t)x = D1 + Dε , (33)

where D1 does not contain any exponentials and all terms of Dε contain exponen-
tials. Observe that D1 is quadratic in z, i.e. D1 = O(|x0|2). We can further deduce
that d

dt D1(x(t),t) is independent of ε , while d
dt Dε ∼ O(ε−1). We have the following

important conclusion:

• If D1 6= 0, then in general

|v − vS| = O(|x0|2t).

• If D1 = 0, then
|v − vS| = O(ε|x0|),

and (28) holds.

We should look at the above result together with what we obtained in Sect. 2.1, in
particular, the estimate (19) for the case when resonance occurs in the equation for
x, and (20) for the case without resonance in the system.

2.4 Slow variables and slow observables

Consider the following ODE system

x′ = −ε−1y + x, x(0) = 1,
y′ = ε−1x + y, y(0) = 0.

(34)

The solution of this linear system is (x(t),y(t)) = (et cosε−1t,et sinε−1t) whose

t

be decomposed into “fast and slow constituents”: a fast rotational phase and a slowly
changing amplitude. Denoting ξ = x2 2

ξ ′ =
d
dt

ξ (x(t),y(t)) = 2xx′ + 2yy′ = 2x2 + 2y2 = 2ξ .

Three important points call attention:

• ξ ′ is bounded independent of ε . Accordingly, we refer to the function ξ (x,y) as
a slow variable for (34).

trajectory forms a slowly expanding spiral: i.e. the solution rotates around

time by e . Although both x(t) and y(t) change on the ε time scale, the system can

+ y , we have

the origin with a fast frequency 2π/ε and the distance to the origin grows in
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• ξ ′ can be written into a function of the slow variable ξ only. Accordingly, we say
that the equation for the slow variable ξ is closed.

• Suppose that there is another (slow) function ζ (x,y) such that d
dt ζ (x(t),y(t)) =

ζxx′ + ζyy′ is bounded independent of ε . Then, away from the origin, ∇ζ (x,y)
is parallel to ∇ξ (x,y). Otherwise, at every point away from the origin, ∇ζ and
∇ξ form a local basis for the two dimensional vector space. Consequently, the
velocity field Φ(x,y;ε) := (−ε−1y+ x,ε−1x+ y) can be written as a linear com-
bination of ∇ζ and ∇ξ ; we write Φ = a∇ξ + b∇ζ . From the hypotheses on the
slowness of ξ and ζ , Φ ·∇ξ and φ ·∇ζ are both bounded independent of ε , im-
plying that the coefficients a and b are also bounded. However, this leads to Φ
being bounded which contradicts with the given equation (34).

The three observations described above are essential for building the multiscale nu-
merical methods introduced in the next section.

More generally, consider the ODE systems

x′ = ε−1 f (x)+ g(x), x(0) = x0, (35)

where x ∈ Rd . We assume that for 0 < ε < ε0, and for any x0 in a region A ⊂ Rd ,

0

0 whenever it is clear from context.

Definition 1. Let U be a nonempty open subset of A . A smooth function ξ : Rd 7→ R

is said to be slow with respect to (35) in U, if there exists a constant C such that

max
x0∈U, t∈[0,T ]

∣∣∣∣
d
dt

ξ (x(t;ε,x0))
∣∣∣∣≤ C.

Otherwise, ξ (x) is said to be fast. Similarly, we say that a quantity or constant is of
order one if it is bounded independent of ε . It is also no problem generalizing this
notion to time dependent slow variables ξ (x,t).

Loosely speaking, ξ (x) being slow means that, to leading order in ε , the quantity

from a macroscopic domain (radius does not shrink with ε).

x = f
( t

ε
,x
)

, f bounded,

each scalar component of the state variables x is considered a slow variable. In-

previous discussion that x(t) stays very close to its initial value for all 0 ≤ t ≤ T .
Furthermore, in the case of resonance discussed in Sect. 1.3, x(t) drifts away from

1

the unique solution of (35), denoted x(t;ε ,x ), exists in t ∈ [0,T ] and stays in some 

ε and x
bounded region D. For brevity, we will omit the explicit dependence of the solution on

′

As another example, in Sect. 2.3 function D (y,t) may be considered as a slow
variable for (29).

deed, for those functions f that are periodic in the first argument, we know from our

Following Definition 1, for systems of the form

Hamiltonian systems, the action variables are the slow variables for the systems.
the initial value in an average distance that is growing linearly in time. For integrable

ξ (x(t)) is evolving on a time scale that is ε independent for all trajectories emanating
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At this point, it is natural to ask how many slow variables exist for a given highly
oscillatory system? The obvious answer is infinitely many, since any constant multi-
plication of a found slow variable yield another new one. A more reasonable ques-
tion is to ask what the dimension of the set of all slow variables is. In preparation
to answering this question, we need to make concrete a few more concepts. In the
following sections this question is answered for some specific cases.

Definition 2. Let α1, · · · ,αk:A ⊂Rn 7→R be k smooth functions, k ≤ n. α1(x), . . . ,αk(x)
are called functionally independent if the Jacobian has full rank; i.e.

rank

(
∂ (α1, · · · ,αk)

∂x

)
= k.

Let α(x) = (α1(x), . . . ,αk(x))T be a vector containing k functionally independent
components.

When coupled with system (35), α(x) is called a maximal vector of functionally
independent slow variables if, for any other vector of size ν whose components are
functionally independent, then k ≥ ν .

Our objective is to use an appropriate set of slow variables together with some other
smooth functions to provide a new coordinate system for a subset of the state space
of system (35). Such a coordinate system separates the slow behavior from the fast
oscillations and provides a way to approximate a large class of slow behavior of (35).
See Fig. 4 for an illustration; locally near the trajectory, the space is decomposed into
three special directions, ∇φ defines the fast direction, and the two slow variables ξ1

and ξ2 help gauging the slow behavior of a highly oscillatory system.

ξ1

ξ2

φ

Fig. 4. Illustration of a slow chart. The slow variables ξ1 and ξ2 provide a local coordinate
system near a trajectory.
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Definition 3. Let ξ = (ξ1(x), . . . ,ξk(x)) denote a maximal vector of functionally in-
dependent slow variables with respect to (35) in A , and φ : A ⊂ Rd 7→ Rd−k be
some smooth functions. If the Jacobian matrix ∂ (ξ , )/∂x is nonsingular in A , one
obtains a local coordinate systems, i.e., a chart of the states space. We refer to such
a chart as a slow chart for A with respect to the ODE (35).

In other words, a slow chart is a local coordinate system in which a maximal
number of coordinates are slow with respect to (35).

Lemma 1. Let (ξ , ) denote a slow chart for A ⊂ Rd and α(x) : A → R a slow
variable. Then, there exists a function α̃(ξ ) : Rk → R such that α(x) = α̃(ξ (x)).

Proof. Otherwise, α(x) is a new slow variable that is functionally independent of the
coordinates of ξ , in contradiction to the maximal assumption.

Another type of slow behavior can be observed through integrals of the trajectory,
referred to as slow observables.

Definition 4. A bounded functional β : C1(A × [0,T ]) ∩ L1(A × [0,T ]) 7→ R is
called a (global) slow observable if

β (t) =
∫ t

0
β̃(x(τ;ε,x0),τ)dτ.

Differentiation with respect to time shows that global observables are slow.

From the discussion in Sect. 4.2, we deduce that with an appropriate choice of kernel

β (t) =
∫ +∞

∞

1
η

K

(
t − τ

η

)
β̃ (x(τ;ε,x0),τ)dτ,

can also be slow. We refer to these as local observables.
We observe that along the trajectory passing through y0, a slow variable defines

a slow changing quantity ϑ . We first consider the unperturbed equation

εy′ = f (y,t),

and a slow variable α .

d
dt

α(y(t)) = ∇α|y(t) · y′(t) =
1
ε

∇α|y(t) · f =: φα , f (t;y0). (36)

f 0 1

0

ε ỹ′ = fε (ỹ,t)+ εg(ỹ,t).

d
dt

ϑ = φα , fε (t;y0), ϑ(0) = ϑ0.

We may directly consider integrating a slow observable ϑ(t) satisfying

and η , local averages of the form

|φ
0 < ε ≤ ε , then ∇α · f = 0

,α

for a neighborhood of y(t). Now consider

φ

Notice that since  is  a slow variable,

φ

α (t;y )| ≤ C . If this bound is valid for
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Notice that

φ fε =
1
ε

∇α|ỹ(t) · f (ỹ(t),t)+ ∇α|y(t) ·g(ỹ(t),t) = ∇α|y(t) ·g(ỹ(t),t).

So ϑ(t) is slowly varying in O(1) time scale.

2.5 Building slow variables by parametrizing time

The time variable may be used to create slow variables that couple different oscil-
lators if we can locally use the coordinates of the state space to parametrize time
so that time is treated as a dependent variable. Consider the equations of the form
εy′ = f (y,t) and assume that there exists a function τ , independent of ε , such that
ετ(y(t)) = t. The function τ by its definition is not slow since

d
dt

τ(y(t)) =
t
ε
.

However, if we have ετ̃(z(t)) = t for the solutions, z(t), of another oscillatory prob-
˜

d
dt

θ (y(t),z(t)) ≡ 0.

hold globally. In many problems, even though the inverse function τ does not exist

integrate a slow quantity. For example, the derivative of arctan(z) is defined on the
whole real line. Similarly, on the complex plane, the derivative of the arg function

defining a continuous θ (t) on the Riemann sheet.
One advantage of using time as a slow variable is in defining relative phase be-

tween two planar oscillators. Consider

εz′
k = iλkzk, k = 1,2.

We formally define
α(z1,z2) := arg(z1)− arg(z2)

and obtain the equation for the slow observable. Through this approach, we can de-
fine and integrate the slowly changing relative phase between two oscillators.

2.6 Effective closure

Let U(t) ∈ Rn and V (t) ∈ Rm be two smooth functions. Assume that, for all 0 ≤ t ≤
T , both U(t) and V (t) are bounded above by C0 and that

The existence of inverse functions depend on the monotonicity in time of any

is defined everywhere except at the origin. In the latter case, (36) can be regarded

lem, then the function θ (y,z) := τ(y)− τ(z) is a slow variable since

coordinate of the trajectories. For oscillatory problems, the monotonicity cannot

globally, its derivative can be defined globally. In this case, we may employ (36) to
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dU
dt

= G(U)+ εH(U,V,t),

for some bounded smooth function H : Rn ×Rm ×R+ 7→ [−C1,C1]. We say that the
dynamics of U is effectively closed. This means that for 0 ≤ t ≤ T and ε sufficiently
small, one can ignore the influence of V (t) and compute instead

dŨ
dt

= G(Ũ), Ũ(0) = U(0),

as an approximation of U(t); i.e.

|U(t)−Ũ(t)| ≤ C1ε.

In the spiral example (34), the equation for the single slow variable ξ = x2 +y2 is
effectively closed. The following gives an example of slow variables whose dynamics
along the trajectories are not effectively closed. In the complex plane, consider the
system

x′ =
i
ε

x + x∗y,

y′ =
2i
ε

y. (37)

Here the x∗ denotes the complex conjugate of x. Evidently, ξ1 := xx∗ and ξ2 := yy∗

are two slow variables. However, the differential equation for ξ1 along the non-
equilibrium trajectories of (37) is given by ξ ′

1 = 2Re((x∗)2y), which cannot be de-
scribed in terms of ξ1 and ξ2 alone. Hence, the equation for ξ1 is not effectively
closed. In fact, it is easily verified that ξ3 = (x∗)2y is also a slow variable and that

1 2 2

Later, we will see that in many oscillatory systems, the effective equations for
the slow coordinates in a slow chart are effectively closed.

3 Averaging

One of the most important analytic tools for studying highly oscillatory systems are
averaging methods, see e.g. [5, 20, 29] . In this section we present a few key results
and discuss them using simplified examples.

3.1 Time averaging and integration by parts

1

I(t) =
∫ t

0
cos
( s

ε

)
a(s)ds = ε sin

( t
ε

)
a(t)− ε

∫ t

0
sin
( s

ε

)
a′(s)ds.

function whose derivative is boun-

(ξ ,ξ ,ξ ,argx) is a slow chart.

ded on the real line. Consider the integral
We start with a simple example. Let a(t) be a C
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Then |I(t)| ≤ C0(1 + t)ε for some constant C0 coming from the maximum value
of a and a′ in [0,t]. Let a(t) be a λ -periodic function in Cp, p ≥ 1; and let a∞ :=
max0≤t≤λ |a(t)|. If a(t) has zero average,

∫ λ
0 a(s)ds = 0, then for all T ≥ 0,

∣∣∣∣
∫ T

0
a(t)dt

∣∣∣∣≤ λ a∞.

We define a particular anti-derivatives of a(t) as follows

a[0](t) = a(t) and a[k](t) =
∫ t

0
a[k−1](s)ds+ ck, k = 1,2,3, . . . (38)

where the constant ck is chosen such that
∫ λ

0 a[k](s)ds = 0. As a result, a[k](t) are also
λ -periodic since

a[k+1](t +λ )−a[k+1](t) =
∫ t+λ

t
a[k](s)ds =

∫ λ

0
a[k](s)ds = 0, k = 1,2,3, · · · . (39)

Consequently, all anti-derivatives are uniformly bounded:

|a[k](t)| ≤ λ a∞, ∀t. (40)

∫ T

0
a
( s

ε

)
f (s)ds =

[
εa[1]

( s
ε

)
f (s)
]T

s=0
− ε

∫ T

0
a[1]
( s

ε

)
f (1)

• If f (T ) = f (0) = 0, and f ∈ C , then
∣∣∣∣
∫ T

0
a
( s

ε

)
f (s)ds

∣∣∣∣ ≤ sup
0≤t≤T

| f (p)(t)|a∞ · ε p.

• If f is in C∞, we can further obtain a formal asymptotic expansion approximation
for the integral

∫ T

0
a
( s

ε

)
f (s)ds = ∑

k

[
(−1)k−1εka[k]

( s
ε

)
f (k−1)(s)

]T

s=0
.

• If ā :=
∫ λ

0 a(ξ )dξ 6= 0, then

Iε :=
∫ T

0
a
( s

ε

)
f (s)ds −→ Ī := ā

(∫ T

0
f (s)ds

)
as ε → 0. (41)

• Similar averaging results can be obtained for functions a(t) which are not neces-
sarily periodic but whose anti-derivatives are nonetheless bounded.

Exercise 3. Prove (41).

(s)ds,

p

If f is differentiable, we can perform integration by parts

where f (k) is the k-th derivative of f .  The process can be repeated depending on the
differentiability of f .
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3.2 How does averaging in an oscillatory system appear?

Consider
x′ = f

( t
ε
,x
)

, x(0) = x0, (42)

where f (t,x) is Lipschitz in both t and x with constant L and is λ -periodic, f (t +
λ ,x) = f (t,x). In addition, consider

y′ = f̄ (y), y(0) = y0, where f̄ (x) =
1
λ

∫ λ

0
f (t,x)dt. (43)

We call (43) the averaged, or effective equation derived from (42). The following
ε 1

Observe that

x(t)− x0 =
∫ t

0
f
(τ

ε
,x(τ)

)
dτ

=
∫ t

tM
f
(τ

ε
,x(τ)

)
dτ +

M−1

∑
j=0

∫ ( j+1)ελ

jελ
f
(τ

ε
,x(τ)

)
dτ,

where t − tM < ελ . In each interval t j = jελ ≤ t ≤ t j+1 = ( j + 1)ελ ,

∫ ( j+1)ελ
f
(τ

ε
,x(τ)

)
dτ =

∫ ( j+1)ελ

jε p
f
(τ

ε
,x(t j)

)
+O(ε)dτ

=
∫ ( j+1)ελ

jελ
f
(τ

ε
,x(t j)

)
dτ +O(ε2)

= ε p · 1
λ

∫ λ

0
f (s,x j)ds+O(ε2)

= ελ f (x j)+O(ε2).

Hence,

x(t)− x0 =
∫ t

0
f
(τ

ε
,x(τ)

)
dτ

=
∫ t

tM
f
(τ

ε
,x(τ)

)
dτ +

M−1

∑
j=0

∫ ( j+1)ελ

jελ
f
(τ

ε
,x(τ)

)
dτ

=
∫ t

0
f (x(τ))dτ +O(ε).

Now, since

y(t)− x0 =
∫ t

0
f̄ (y(τ))dτ,

∫ t

0
|x(τ)− y(τ)|dτ +Cε.

by Gronwall's lemma we have

|x(t)− y(t)| ≤ L

jελ

|x (t)− y(t)|≤ C ε for a long time which is independent of ε .calculation shows that
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This result can be generalized as follows. Let

x′ =
M

∑
j=1

f j

( t
ε
,x
)

, x(0) = x0,

where f j is λ j-periodic in the time. Then, a calculation similar to the above shows
that the solution of

y′ = f̄ (y), y(0) = x0,

with

f̄ (x) = ∑
j

1
λ j

∫ λ j

0
f j(τ,x)dτ,

is close to x(t) on a time segment.

Theorem 4. For t ∈ [0,T ], T < ∞ and independent of ε (assume x(t),y(t) exist in
such interval)

|x (t)− y(t)| ≤ C1ε.

Note that y′ = f (y) is independent of ε . While xε (t) is highly oscillatory, there are
no ε-scale oscillations in y(t). We conclude that the cost of integrating the averaged
equation is independent of ε and is in general much more efficient than computing
xε . If we just pick an arbitrary t∗, z′ = f (t∗,z), z(0) = x0 in general we can not expect
that x(t) = z(t)+O(ε).

Averaging over oscillations may appear in many different ways and should be

which harmonic averages are derived as parameters for an effective equation.

Exercise 4. In the following problem, high frequency oscillations in aε interact with
those in d

dx uε and creates low frequency behavior of uε(x):





d
dx

(
aε(x) d

dx uε
)

= f (x), 0 < x < 1,

uε(0) = uε(1) = 0,

aε(x) = a( x
ε ) > 0.

We derive an effective equation for uε(x) by performing the following steps.

1. Integrate the equation with respect to x and show that
{

aε
duε
dx =

∫ x
0 f (ξ )dξ +C,

uε(x) =
∫ x

0 (aε(ξ ))−1F(ξ )dξ , where F(ξ ) =
∫ ξ

0 f (η)dη +C.

Determine C from boundary conditions.
2. Show that

lim
ε→0

∫ x

0
a

(
ξ
ε

)−1

F(ξ )dξ =
∫ 1

0
a(y)−1dy

∫ x

0
F(ξ )dξ , F ∈ C[0,1].

handled with caution. The following problem presents a case in homogenization, in
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3. Show that

uε −→ ū = A−1
∫ x

0

(∫ ξ

0
F(η)dη +C

)
dξ as ε −→ 0,

where

A =
1

∫ 1
0 a(y)−1dy

A
d2ū
dx2 = f (x), 0 < x < 1, ū(0) = ū(1) = 0

In summary, we present the following facts about averaging, whose proof can be
found, for example, in [20] and [29].

Theorem 5. Let x,y,x0 ∈ D ⊂ Rn, ε ∈ (0,ε0]. Suppose

1. f ,g, and |∇ f | are bounded by M which is independent of ε .

3. f (t,x) is λ -periodic in t, λ independent of ε .

Then, the solution of

x′ = f
( t

ε
,x
)

+ εg
( t

ε
,x,ε

)
, x(0) = x0 (44)

is close to the solution of the averaged equation

y′ = f̄ (x), y(0) = x0, f (y) =
1
λ

∫ λ

0
f (t,y)dt

on a time scale of order one. More precisely, for all t ∈ [0,T ], T < ∞ independent of
ε ,

|x(t)− y(t)| ≤ CεTeεLt ,

where C > 0 and L denotes a Lipschitz constant for f̄ .

Moreover, equation (44) can be written in the form [20]

x′ = f̄ (x)+ ε f1

( t
ε
,x,ε

)
, x(0) = x0, (45)

where f1(t,x,ε) is λ -periodic in t and f1 → 0 as ε → 0.

We conclude that ū(x) satisfies the effective equation:

2. g is Lipschitz in a bounded domain D.
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3.3 Effective closure in coupled oscillators

Given the system (35), and in a neighborhood of the trajectory starting from x0, let
(ξ ,φ) be a slow chart in which φ is a fast angular coordinate on the unit circle S1,
i.e., 0 < C1/ε < φ ′

2

ξ ′ = gI(ξ ,φ),
φ ′ = ε−1gII(ξ ,φ), (46)

where C1 < gII(ξ ,φ) < C2. Applying the averaging result (45), Equation (46) can be
rewritten as

ξ ′ =
∫

gI(ξ ,φ)dφ + εgIII(ξ ,φ) = ḡI(ξ )+ εgIII(ξ ,φ),
φ ′ = ε−1gII(ξ ,φ).

Hence, the equation for ξ is effectively closed.

4 Computational considerations

In this section we will describe a few computational methods which gain efficiency
by taking into account some of the special properties of the system discussed in
previous sections. We will mostly be concerned with equations of the form

x′
ε = g

( t
ε
,xε

)
, x(0) = x0,

where g(t,x) is λ -periodic, and its averaged form

x̄′ = ḡ(x̄), x̄(0) = x0.

By the averaging principle, we have that

|xε(t)− ¯x(t)| ≤ Cε, 0 ≤ t ≤ T.

4.1 Stability and efficiency

Suppose uniform time stepping is used in the computations.4 The typical local trun-
cation error of a p’th-order method is O((4tL)p), where L is a uniform bound for
the p + 1 derivative of the right hand side. Applied to the two equations above, the
error varies tremendously. For xε , the error term is

E1 = O

([
4t
ε

]p)
,

4 With oscillatory systems, variable time step algorithms are not as advantageous in improv-
ing efficiency as in stiff, dissipative systems.

< C /ε . Then, by these hypotheses, we know that
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while for x̄, the truncation error is

E2 = O(4t p).

Thus, in order for the solution to be reasonably accurate, the step size 4t has to be
small compared to ε . In addition, typical explicit non-multiscale numerical schemes
suffer from linear instabilities when using step sizes that are too large compared to
the Lipschitz constant of the right hand size. This constraint restricts the step size of

ε. On the other hand, the efficiency of solving an ODE

more efficient to solve the averaged equation for x̄ than the original one for xε .

to construct a multiscale algorithm that solves the averaged equation without actually
deriving it. Instead, the idea of the Heterogenous Multiscale Method is to approxi-
mate the averaged equation on the fly using short time integration of the equation for
xε .

4.2 Averaging kernels

In many numerical calculations involving oscillations with different frequencies, the
right hand side may not be strictly periodic. As an example see (15). For this reason,
as well as for efficiency considerations, it is convenient to average using some general
purpose kernels. In the previous section, we see the need to compute the average of
f (t,x) over a period in t

f̄ (x) :=
1
λ

∫ λ

0
f (τ,x)dτ.

In this section, we show that f̄ (x) can be accurately and efficiently approximated by
averaging with respect to a compactly supported kernel whose support is larger, but
independent of λ . For simplicity, we shall ignore the x dependence in f .

We will use Kp,q to denote the function space for kernels discussed in this paper.

Definition 5. Let K p,q(I) denote the space of normalized functions with support in I,
q continuous derivatives and p vanishing moments, i.e., K ∈ Kp,q(I) if K ∈ Cq

c (R),
supp(K) = I , and

∫

R

K(t)trdt =

{
1, r = 0;

0, 1 ≤ r ≤ p.

Furthermore, we will use Kη (t) to denote a scaling of K as

Kη (t) :=
1
η

K

(
t
η

)
.

For shorthand, we will also use K p,q to denote a function in Kp,q([−1,1]) .

Kexp ∈ K1,∞([−1,1]) :

such a method to be of order

In the following we will develop and discuss some of the tools and ideas required

to time T using step size 4t is O(T/4t). Hence, it is clear that it is usually much

tial kernel
Most of the numerical examples in this manuscript are obtained using the exponen-
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For convenience, we write f (t) = f̄ + g(t) where

f̄ =
1
λ

∫ λ

0
f (s)ds.

Hence, g(t) is λ -periodic with zero average.
The following analysis shows that the convolution Kη ∗ f well approximates the

¯

∫

R

1
η

K

(
t − s

η

)
f (

s
ε
)ds =

∫ t+η

t−η

1
η

K

(
t − s

η

)(
f̄ + g

( s
ε

))
ds

= f̄
∫ t+η

t−η

1
K

(
t − s

η

)
ds+

1
η

∫ t+η

t−η
K

(
t − s

η

)
g
( s

ε

)
ds

= f̄ +
1
η

∫ t+η

t−η
K

(
t − s

η

)
g
( s

ε

)
ds.

Integrating by parts, we have

1
η

∫ t+η

t−η
K

(
t − s

η

)
g
( s

ε

)
ds

=
ε
η

K

(
t − s

η

)
G
( s

ε

)
|t+η
s=t−η − ε

η2

∫ t+η

t−η
K′
(

t − s
η

)
G
( s

ε

)
ds

= − ε
η2

∫ t+η

t−η
K′
(

t − s
η

)
G
( s

ε

)
ds,

where G is the anti-derivative of g given by (38). Hence,
∣∣∣∣

1
η

∫ t+η

t−η
K

(
t − s

η

)
g
( s

ε

)
ds

∣∣∣∣≤
ε
η

||K′||∞||G||∞.

Since g is periodic and bounded, its anti-derivative is also a bounded function. For
example, taking η =

√
ε , f̄ is approximated to order

√
ε . Repeating this process q

times yields ∣∣∣∣
∫

η (t − s) f (s)ds− f̄

∣∣∣∣≤ CK,g

(
ε
η

)q

. (48)

f ,average

η

K

For convenience, we shall denote byKη ∗ f (t) f (t)< >η

Kexp(t) = C0χ[−1,1](t)exp(5/(t2 (47)

exp||L1(R)

Kcos(t) =
1
2

χ[−1,1](t)(1 + cos(πt)) ∈ K1,1(I).

χ[−1,1] 0C
normalization constant such that ||K =1. A second commonly used kernel is 
Here,             is  the characteristic function of the interval [–1, 1] and        is a

−1)).
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4.3 What does a multiscale algorithm approximate?

Loosely speaking, our goal is to construct an algorithm that approximates the slow
behaviour of a highly oscillatory ODE system. An important observation is that the
slow behavior of a system can be a result of internal mutual cancellation of the os-
cillations. This, for example, is the case with resonances. Hence, it may not be clear
what these slow aspects are. For this reason, we take a wide approach and require
that our algorithm approximates all variables and observables which are slow with
respect to the ODE.

How is this possible? We now prove that an algorithm which approximates the
slow coordinates in a slow chart (ξ ,φ) approximates all slow variables and observ-
ables.

Slow variables: Let α(x) denote a slow variable. From Lemma 1 we have that
α(x) = α̃(ξ (x)) for some function α̃ . Therefore, values of α(x) depend only on ξ .
Furthermore, it is not necessary to know α̃ , for suppose ξ = ξ (x(t)) at some time t.
Then, α(x(t)) = α̃(ξ ) = α̃(ξ (x(t)))). In other words, all points x which correspond

Slow observables – global time averages: We observe that for any smooth
functions α(x,t), we have that ᾱ(t) =

∫ t
0 α(x(s),s)ds is slow since |(d/dt)ᾱ(t)| =

|α(x(t),t)|, which is bounded independent of ε . In ODE form, we have

ᾱ ′ = α(x,t)

which complies to the form required by the averaging theorem. Therefore, ᾱ can be
integrated as a passive variable at the macroscopic level. In other words, it can be
approximated by

ᾱ(t) =
∫ t

0
< α(x(s),s) >η ds

Slow observables – local time averages: Consider time averages of the form
< α(x(s)) >η . Since (ξ ,φ) is a chart, we have that α(x(s)) = α̃(ξ ,φ) for some
function α̃ . However, as proven in Sect. 4.2, convolution with kernels approximates
averaging with respect to the fast angular phase φ . Here,

< α(x(s)) >η=< α̃(ξ ,φ) >η=
∫

α̃(ξ ,φ)dφ + error = ᾱ(ξ (t))+ error,

where the error is evaluated in Sect. 4.2. Hence, a consistent approximation of ξ
implies a consistent approximation of < α(x(s)) >η . Moreover, in Sect. 5 we will
show that the explicit form of α̃ or ᾱ are not required since all local time averages

4.4 Boosting methods

In the context of averaging, the idea of boosting is particularly simple. Consider, for
example, the averaging Theorem 5 which states that, with functions f (t,x), which
are 1-periodic in time, the solution of

to the same ξ yield the same value for α(x).

can be calculated as a by product of micro-solver steps in the algorithm.

< α(x(s)) >η

d
ds
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x′ = f
( t

ε
,x
)

, x(0) = x0 (49)

and

y′ = f̄ (y), y(0) = x0, f̄ (y) =
∫ 1

0
f (s,y)ds, (50)

are close to order ε:
|x(t)− y(t)| < Cε,

on a time scale of order one. Suppose we are interested in solving (49) with a pre-
scribed accuracy ∆ which is small, but not as small than ε , i.e., ε � ∆ � 1. Consider
the modified equation

z′ = f
( t

∆
,z
)

, z(0) = x0. (51)

Following the same averaging argument, z(t) is close, to order ∆ , to the averaged
equation (50). Hence, by the triangle inequality

|z(t)− x(t)| ≤ |z(t)− y(t)|+ |y(t)− x(t)| < C(ε + ∆) < 2C∆ . (52)

which is of order ∆ . On the other hand, the stiffness of the equation is much reduced.
The discussion in Sect. 4.1 shows that the efficiency of solving the boosted equation
(51) is O(∆−1), which can be a considerable improvement over the O(ε−1) required
to solve (49). Moreover, (51) has the exact same form as (49) and preserves the
same invariance. For example, if the original system is Hamiltonian, that the boosted
version is also Hamiltonian.

Despite their simplicity, boosting suffers from two major drawbacks. The first is
related to the nature of the asymptotic expansion used to obtain the averaged equa-
tion. Similar to expanding functions in power series, the asymptotic expansion in the
averaging Theorem 5 has a “radius of convergence”. This implies that the averaged
equation may provide a poor approximation for (49) if ε is not small enough. In

0

is usually unknown. Hence, the error estimate (52) fails if ∆ > ε0.
−1),

no matter what the order of the integrator is. This is not the case with HMM, as will

benchmark to test and evaluate the efficiency of our algorithm.

5 Heterogeneous Multiscale Methods

other words, the proximity between x(t) and y(t) “kicks in” at some value ε , which

Solving the boosted equation (51) instead of the original one, (49) introduces an error

Another drawback is that the efficiency of the method is bound to be O(∆

be discussed in the following section. Nonetheless, boosting serves as an important

The Heterogeneous Multiscale Method (HMM) is a general framework for systems

averaged equation, and a micro-solver, approximating the averaged equation using
HMM consists of two components: a macro-solver, integrating a generally unknown

evolving on multiple, well separated time scales. We will focus on problems with

short time integration of the full ODE system.

two time scales which are referred to as slow/fast, or macro/micro scales. An 
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5.1 A vanilla HMM example

Consider, for example, equations of the form

x′ = f
( t

ε
,x
)

, x(0) = x0,

where x ∈ Rd and f (t,x) is a smooth function which is 1-periodic in t. We rewrite
the system as an homogeneous equation on Rd × [0,1],

x′ = f (φ ,x), x(0) = x0,
φ ′ = ε−1, s(φ) = 0,

(53)

1

in x are slow with respect to (53) while φ is fast. Hence, (x,φ) is a slow chart for
(53). Furthermore, from Sect. 3, the solution for x is close (to order ε) to an effective
equation which is effectively closed:

x̄′ = f̄ (x̄), x̄(0) = x0,

where

f̄ (z) =
∫ 1

0
f (τ,z)dτ.

the averaged forcing f̄ (·) is usually unknown. For this reason, following Sect. 4.2
we approximate f̄ (·) as 〈 f (t,x(t)〉η . Applying a forward Euler scheme for x with a
macroscopic step size H implies taking xn+1 = xn + H 〈 f (t,x(t)〉η
rized in the following algorithm. Let xn denote our approximation of (53) at time
tn = nH.

1. n = 0
n η,

tn n

3. Force evaluation: calculate Fn = 〈 xn 〉η .
4. Macro-step (forward Euler example): take xn+1 = xn + HFn.
5. n = n + 1. Repeat steps 2–4 to time T .

The efficiency of the algorithm is O(Tη/Hh). It is further analyzed in Sect. 5.4.

5.2 Systematically constructing heterogeneous multiscale methods

du
dt

= fε (u,t), (54)

where u : (0,T ) 7→ Rd , and a subset of the eigenvalues of ∂ fε/∂u are inversely pro-
portional to a small positive parameter ε . When ε is very small, the complexity of

Earlier we saw that it is much favorable to solve for x̄ rather than for x. However,

is isomorphic to the unit circle S . By Definition 1, it is clear that all the coordinates

. This is summa-

Consider stiff ordinary differential equations (ODEs) of the form

Denote the solution x (t).+ η ] with step size h and    xn0x replaced by
f .

ε( ),, (·)

where φ is an angular variable defined on the quotient space R/[0,1]. The latter space

2. Micro-simulation: approximate (53) numerically in a reduced time segment [t −



Multiscale computations for highly oscillatory problems 273

numerically solving such systems becomes prohibitively high. However, in many
situations, one is interested only in a set of quantities U that are derived from the
solution of the given stiff system (54), and typically, these quantities change slowly
in time; i.e. both U and dU/dt are bounded independent of ε . For example, U could
be the averaged kinetic energy of a particle system u.

Our objective is to construct and analyze ODE solvers that integrate the system

d
dt

U = F(U,D), (55)

where D is the data that can be computed by local solution of (54). U is called
the slow (macroscopic) variable that is also some function or functional of u; i.e.
U = U(u,t).

strategy involves setting up a formal numerical discretization for (55), and evaluates
F from short time history of u with properly chosen initial condition.

Φ(U,D) = 0, (M) (56)

which may not be explicitly given, but can be evaluated from a given microscopic
model,

ϕ(u,d) = 0, u ∈ Ω(m) (57)

where u are the microscopic variables. D = D(u) and d = d(U) denote the set of
data or auxiliary conditions that further couple the macro- and microscopic models.
Model (56) is formally discretized at a macroscopic scale, and the adopted numerical
scheme dictates when the necessary information D(u) should be acquired from solv-
ing (57), locally on the microscopic scale with auxiliary conditions d(U). As part of
d(U) and D(u), the macro- and microscopic variables are related by reconstruction
and compression operators:

R(U,DR) = u, Q(u) = U, Q(R(U,DR)) = U,

where DR are the needed data that can be evaluated from u. Errors of this type of
schemes generally take the structure [10, 14]

Error = EH + Eh,

where EH is the error of the macroscopic model (56), and Eh contains the errors
from solving (57) and the passing of information through R and Q. This approach
has been used in a number of applications, such as contact line problems, epitaxial
growth, thermal expansions, and combustion. See the review article [12].

Figure 1 shows two typical structures of such ODE solvers. An ODE solver for U
lies on the upper axis and constructs approximations of U at the grid points depicted

If F is well-defined and has a convenient explicit mathematical expression, then

U ∈ Ω

many situations, the dependence of F on U is not explicitly available. Our proposed

multiscale methods. In this framework, one assumes a macroscopic model

there is no need to solve the stiff system (5 4) — one only needs to solve (55). In

We will follow the framework of E and Engquist [11] in constructing efficient
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there. The fine meshes on the lower axis depict the very short evolutions of (54)
with initial values determined by R(U(tn)). The reconstruction operator then takes
each time evolution of u and evaluates F and U . The algorithms in [10, 16, 15], and
[28] are also of a similar structure. As a simple example, the forward Euler scheme
applied to (55) would appear to be

Un+1 = Un + H · F̃(Un), (58)

where F̃ contains the passage of QΦtR(Un) — reconstruction R, evolution Φt , and

• With the system for u, and a choice of U(u), is F well-defined by the procedure
defined above? If not, how can it be properly defined?

• What are R and Q?
• How long should each evolution be computed?
• What does consistency mean?
• What about stability and convergence?

For a fixed given ε > 0, all well known methods will converge as the step-size H → 0,
and there is no difference between stiff and non-stiff problems. In [11], convergence
for stiff problems (ε � H) is defined by the following error:

E(H) = max
0≤tn≤T

( sup
0<ε<ε0(H)

|U(tn)−Un|). (59)

Here, ε0(H) is a positive function of H, serving as an upper bound for the range of ε ,
and U(tn) and Un denote respectively the analytical solution and the discrete solution
at tn
varying property of U and generate accurate approximation with a complexity that is
sublinear in ε−1.

The problems we are interested in can be described as follows. A full scale sys-
tem (54) written in the unknown variable u is given, and the oscillations in u have
frequency of order ε−1

assumed that the fine scale system describes the full behavior of the problem. We
want to compute the effective behavior of the given full scale system using a number

functionals of u, and their governing equations may have no
explicit analytical for

use numerical solutions of u to extract the missing information
needed to evaluate the formal discretization of the governing equations.

Notation 1. Let u(t;α) denote the solution of the initial value problem:

du
dt

= fε (u,t), u(t∗) = α, (60)

Essential questions that need to be resolved for such a scheme include:

mula. Our approach is to discretize the effective equations for
(U,V ) formally and

of slowly changing quantities, (U,V ). These slowly changing quantities generally
defined as functions or

compression Q, and H is the step size. If each evolution of the full scale system (54)
is reasonably short, the overall complexity of such type of solvers would be smaller

R5.1 uses the identity operator for both  and      .Q

than solving the stiff system (54) for all time. The vanilla HMM presented in Sect. 

= nH. With this notion, it is clear that a sensible method has to utilize the slowly

. We shall also call this system the fine scale system. It is
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for some arbitrary initial condition at time t∗.
The notation u(t) or u will be reserved for the solution of the same ODE, Equa-

tion (60), for t > 0 with the given initial condition u0.

Definition 6. Let G (·,t) be a functional of u. The initial data α is said to be consis-
tent with u under G if G (u( · ;α),t) = G (u,t)+O(εr), for some r > 0.

In Kapitza’s pendulum problem, the pivot of a rigid pendulum with length l is at-
tached to a strong periodic forcing, vibrating vertically with period ε . The system
has one degree of freedom, and can be described by the angle, θ , between the pen-
dulum arm and the upward vertical direction:

lθ ′′ =
(

g +
1
ε

sin
(

2π
t
ε

))
sin(θ ), (61)

with initial conditions θ (0) = θ0,θ ′(0) = ω0. With large ε , the only stable equilibria
are θ0 = nπ , corresponding to the pendulum pointing downward. When ε is suffi-
ciently small and both θ0 and ω0 are close to 0, the pendulum will oscillate slowly
back and forth, pointing upward, with displacement θ < θmax. The set up of the
pendulum and an example solution are depicted in Fig. 5. The period of the slow
oscillation is, to leading order in ε , bounded independent of the forcing period ε .
On top of the slow motion around the stable θ = 0 configuration, the trajectory of θ
exhibits fast oscillations with amplitude and period proportional to ε .

In [32], the second order equation is written as a first order system using u =
(θ ,ω), where ω is the derivative of θ . The slow variable U = (Θ ,Ω) consists of
the weak limit of the angle θ and its derivative θ̇ , and the effective force for U can
be adequately approximated by the time averaging of the right hand side of (61).
However, the reconstruction operator R can no longer be the identity operator. The
initial values of u at tn for each fine scale evolution should be carefully constructed
such that the averages of θ matches with Θ in order to keep the correct resonance
between the terms sin(2πt/ε) and sin(θ ). To this end, the reconstruction operator
must carry a correction term when setting up ω at tn :

ω0
n = Ωn − 1

ε

∫ tn+ε/2

tn−ε/2

∫ t

tn
aε

( s
ε

)
sin(θn(s))dsdt.

Consistency of the described multiscale solver to this type of system is thus estab-
lished.

d ×Rs, whose

the solution U(t) of the ODE

d
dt

U =
d
dt

(
V
W

)
= F (U,t)+O(ε), (62)

is equivalent to its evaluation using the whole scale solution u, i.e,

 
7

Problem 1 (Closure). Given V which consists of a set of slow variables or functionals
U = (V,W ) : [0,T ] → Rof u, determine the set of extended variables

dent of   such that
components are functions or functionals of u, so that there exists a function F indepen-

ε
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Fig. 5. (a) Kapitza’s pendulum; (b) The slow scale solutions to equation (61); Three orders
of magnitude (ε = 10−6) separate the period of the slow oscillation apparent in the graphs
from the fast oscillation.

U(t) = U(u,t) =
(

V (u,t)
W (u,t)

)
,

where U(t) denotes the ODE solution, and U(u,t) the functional evaluation using
u(t), and similarly for V and W .

When these functions are composed of u(t) and viewed as functions of time,
αε (t) = α(u(t)) and ψε(t) = ψ(u(t)), they should satisfy the following conditions:

1. α and ψ are linear combinations of some simple functions of u;
2. dαε/dt is bounded independent of ε;
3. dν 〈ψε〉/dtν > > 0 for some 0 ≤ ν and for some independent of ε;
4. αε (t) converges pointwise to a smooth function ᾱ(t), and ψε weakly to a con-

tinuous function Ψ .

Here, 〈ψε〉 denotes a moving average with respect to a kernel, as described in
Sect.4.2. These approaches are motivated by the analysis of resonance, the averaging
methods, see e.g. [25, 5, 1, 3], and our previous work on Kapitza’s pendulum and a
few other model problems. Another interesting point of view makes use of the idea
of Young measures [4].

In practice, we do not have u(t), since we do not solve the stiff equation for a
long time interval independent of ε . However, the solution U to the closure problem
defines an equivalence class for the initial conditions for u. As long as an initial data
is selected such that it is consistent to u(t) with respect to U(t), U(t) is properly
evolved. Instead, our strategy is to compute the solution u(·;a) for a duration that
vanishes with ε , starting from a specified time and using some initial values a. Once
U(t) is approximated, we can approximate dU/dt numerically without explicitly

W (u,t).
One of our strategies is to look for algebraic functions α and ψ when constructing

δ δ

(a)

0 5 10 15

−0.4

−0.2

0

0.2

0.4

0.6

t

(b)
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to the functional U(u,t):

Un at tn that specifies a set of constraints.

Find an ∈ R
d such that U(u(·;an),tn) = Un +O(ε p) for some p > 0.

Note that unlike the common constraints of conserved integrals in the computations

j) is
known at t = t j,

1. Find a j that solves U(u(·;a j),t ) ' U(t j) (Reinitialization);
2. Solve the given stiff equation and obtain u(t;a j) for t j ≤ t ≤ t j +ηε (Microscale

solution);
3. Evaluate F (t j) = dU/dt at t j using u(t;a j);
4. Use F (t j) and U(t j) to get U at t j + ∆ t. (Macroscale solution)

Note that ∆ t should be independent of ε and ηε vanish with ε.
In the following examples the slow behavior is approximated using functions

only (the slow chart) and not functionals.

5.3 Example: an expanding spiral

Consider the system (34) describing the expanding spiral

x′ = −ε−1y + x, x(0) = 1,
y′ = ε−1x + y, y(0) = 0.

(63)

Previously, in Sect. 2.4, it was shown that (ξ ,φ) = (x2 + y2, tan−1(y/x)) is a slow
chart for (63). The time evolution of the only slow variable ξ takes the form

ξ ′ =
〈
ξ ′〉

η +O(ε) =
〈
2xx′ + 2yy′〉

η . (64)

This motivates the following multiscale algorithm for approximating ξ ′(t). For sim-

We denote tn = nH and by
xn, yn and ξn our n n n n

and yn do not have n n

The algorithm is depicted in Fig. 6.

1. Initial conditions: (x(0),y(0)) = (x0,y0), n = 0.
2. Micro-simulation: Solve (63) in [tn − η/2,tn + η/2] with initial conditions

(x(tn),y(tn)) = (xn,yn).

evaluating F . Naturally, this initial value α should be consistent with u with respect

by the
components of U , that can be slowly varying in time.

Problem 2 (Reintialization/reconstruction). Given a functionalU(u,t) and its value

In summary, our multiscale method is outlined as follow: Assuming U(t

j

sistent and stable integrator can be used as micro-solver.
plicity, we apply a macroscopic forward Euler solver with step size H. Any con-

approximation for x(t ), y(t ) and ξ (t ), respectively. Note that x
to be close to x(t ) and y(t ). We only require that the slow vari-

able is approximated.

of Hamiltonian systems, we consider constraints, such as those specified
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micro−solver

micro−solver

H

H

x1

x2

Fig. 6. Two macroscopic steps for the HMM algorithm in the expanding spiral example (63).

3. Force estimation: Approximate ξ ′ by ∆ξn = 〈2xx′ + 2yy′〉η . The step involves
convoluting 2xx′ + 2yy′ with an averaging kernel as discussed in Sect. 4.2.

4. Macro-step (forward Euler): ξn+1 = ξn + H∆ξn.
5. Reconstruction (second order accurate): (xn+1,yn+1) = (xn,yn)+HFn, where Fn

is the least squares solution of the linear system

Fn ·∇ξ (xn,yn) = ∆ξn

6. n = n + 1. Repeat steps 2–5 to time T .

5.4 HMM using slow charts

Suppose an ODE system of the form (35) admits a slow chart (ξ ,φ), where ξ =
(ξ 1, . . . ,ξ k) ∈ Rk are slow and φ ∈ S1 is fast. In the next section we will see that
many highly oscillatory systems indeed admit a slow chart of that form. Then, the
algorithm suggested in the previous section can be easily generalized as follows.
As before, for simplicity we concentrate on the forward Euler case. Higher order
methods are considered in [1]. Approximated quantities at the n‘th macroscopic time
step are denoted by a subscript n.

1. Initial conditions: x(0) = x0, n = 0.
2. Micro-simulation: Solve (35) in [tn − η/2,tn + η/2] with initial conditions

x(tn) = xn

3. Force estimation: Approximate ξ ′ by ∆ξn = 〈∇ξ · x′〉η using convolution with
an averaging kernel.

4. Macro-step (forward Euler): ξn+1 = ξn + H∆ξn.
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5. Reconstruction (second order accurate): xn+1 = xn + HFn, where Fn is the least
squares solution of the linear system

Fn ·∇ξ (xn) = ∆ξn. (65)

6. n = n + 1. Repeat steps 2–5 to time T .

Complexity

In this section we analyze the accuracy of the suggested method outlined above.
Each step of the approximations preformed in our algorithm introduces a numerical
error. In order to optimize performance, the different sources of errors are balanced
to a fixed prescribed accuracy ∆ . We show how the different parameters: ε , η , h
and H scale with ∆ in order to have a global accuracy of order ∆ . Note that the
maximal possible accuracy is ∆ = ε , since this is the error introduced by simulating
the averaged equation rather than the original one. We also study the ∆ dependence
of the complexity of the algorithm.

We begin with estimating the error in our evaluation of the averaged force ∆ξn.
There are several sources of errors:

• Global error in each micro-simulation. Using an m’th order method with step size
h the global error is ηhm/εm+1.

• Quadrature error in K′
η ∗ ξ : Using a quadrature formula of degree r the error is

ηhm/ε(m + 1). However, due to the regularity of the kernel used K ∈ Cq, the
integrand is smooth and periodic. Hence, the coefficients of its Fourier decompo-
sition decay very fast. As a result, it is advantageous to use the trapezoidal rule,
which is exact for e2π ikx, k ∈ N. This implies that the quadrature error is typically
very small and can be neglected.

• Approximating ∆ξn by 〈∇ξ · x′〉η : Using a kernel K ∈ Kp,q the error is the larger
between η p q

(48) since ∆ξn is found through integration by parts (cf. Sect. 5.4). The above two
bounds to the averaging error are equal if η p+q+1 = εq, where, for large η , the
term η p dominates, while for small η the other. Since we would like to optimize
our complexity, it is always preferable to work in the latter regime. Hence, we
can take the averaging error to be (ε/η)q/η .

Balancing all terms yields the optimal scaling of the simulation parameters with ∆ .
The global accuracy of integrating the original full ODE to time T = O(1) using

a macro-solver of order s with step size H is, assuming errors are accumulative,

E ≤ Dmax

{
Hs,

ηhm

εm+1 ,
εq

ηq+1

}
, (66)

For some D > 0. For short hand we drop the constant in all following expressions.
Balancing the different sources of errors to a prescribed accuracy ∆ yields

and (ε/η) /η . Note that we are losing one order of η compared to
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η = ε
q

q+1 ∆− 1
q+1 ,

H = ∆
1
s ,

h = ε1+ 1
m(q+1) ∆

s+1
sm + 1

m(q+1) .

(67)

The complexity is then

C =
η
h

T
H

= ε− m+1
m(q+1) ∆− 1

s − s+1
sm − m+1

m(q+1) . (68)

With a smooth kernel we can consider the q → ∞ limit. In this case the complexity
estimate is reduced to

C(q → ∞) = ∆− 1
s − s+1

sm . (69)

Figure 7 depicts the relative error of the HMM approximation compared to the
analytical solution of the expanding spiral example (34). The kernel was constructed
from polynomials to have exactly two continuous derivatives and a single vanish-
ing moments, i.e., q = 2 and p = 1. Fourth order Runge–Kutta schemes were used
for both the micro- and the macro-solvers. The simulation parameters are chosen to
balance all errors as discussed above.
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Fig. 7. A log-log plot of the relative error of the HMM approximation to a linear ODE com-
pared to the exact solution: E = maxtn∈[0,T ] 100 × |ξHMM(tn) − ξexact(tn)|/|ξexact(tn)|, as a
function of ∆ .

From the parameter scaling (67) it is clear that the step size of the macro-solver,
H, does not depend on the stiffness ε , but only on the prescribed accuracy ∆ . Our

0

[11]. More precisely, denote the sample times of the macro-solver by t0 = 0, . . . ,tN =
T and the corresponding numerical approximations for x by x0, . . . ,xN . The exact
solution is denoted x(t). We have that, for any variable α(x) that is slow with respect
to x(t)

lim
H→0

sup
k=0,...,N

sup
ε<ε0

|α(x(tk))− α(xk)| → 0. (70)

algorithm is therefore multiscale is the sense that it converges uniformly for all ε < ε
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Note that the order of the limits is important.

5.5 Almost linear oscillators in resonance

Consider an ODE system of the form

x′ =
1
ε

Ax + f (x), (71)

where, x ∈ Rd

1 r

i j and ni j, such that mi jωi =
ni jω j.

Theorem 6. There exists a slow chart (ξ ,φ) in Rd \ {ξi 6= 0,∀i} for (71) such that
all the coordinates of ξ are polynomial in x and φ ∈ S1.

The theorem is proven in [1]. As an example, consider (71) with

Changing variables so that A is diagonalized yields the complex system

where z = (z1,z∗
1,z2,z∗

2)
T and z∗ denotes the complex conjugate of z. It is easily

verified that the following are slow variables

ξ1 = z1z∗
1,

ξ2 = z2z∗
2,

ξ3 = z2
1z∗

2.

Transforming back to the original coordinates x = (x1,v1,x2,v2) the slow variables
become the real polynomials

ξ1 = x2
1 + v2

1,
ξ2 = x2

2 + v2
2,

ξ3 = x1x2
2 + 2v1x2v2 − x1v2

2.

1 and ξ2 correspond to the square of the amplitude of the
1 1 2 2

ξ3, corresponds to the relative propagation of phase in the two oscillators.
(x2,v2) increases twice as fast

1 1

ξThe first two variables,
(x ,v ) and (x ,v ), respectively. The thirdtwo harmonic oscillators described by

variable,
It is slow because, to leading order in ε , the phase of

(x ,v ).as that of

z0 = z + ~f(x):

and A is an d × d real diagonalizable matrix with purely imaginary
eigenvalues ±iω , . . . ,±iω , 2r = d. In addition, we assume that all oscillatory
modes are in resonance. This implies that the ratio of every pair of frequencies is 
rational, i.e., for all i, j = 1 . . .r, there exist integers m

A =




1
−1

2
−2


.

0 0 0
0 0 0

0 0 0
0 0 0

1
ε




i
−i

2i
−2i




0 0 0
0 0 0
0 0 0
0 0 0
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Exercise 5. Verify that ∇ξ1, ∇ξ2, and ∇ξ3 are not linearly dependent in any region
in R4 \ Q where Q is the zeros of ξ1, ξ2, and ξ3.

Fully nonlinear oscillators

Dealing with non-linear oscillators is more complicated than linear ones. However,
the slow behavior of weakly coupled systems of oscillators such as Van der Pol,
relaxation and Volterra-Lotka can still be described using some generalization of
amplitude and relative phase. This is beyond the scope of these notes. We refer to [2]
for further reading.

6 Computational exercises

Computer exercise 1. Let u = (x,y,z) and

fε (x,y,z) =




a 1

ε 0
− 1

ε b 0
0 0 − 1

10








x
y
z



+




0
0

x2 + cy2



 . (72)

The equation for u is
u′ = fε (u), u(0) = (1,0,1).

Take ε = 10−4, a = b = 0 and c = 1. Find approximations for z(t) in 0 < t ≤ 1 using
the following schemes and compare with the analytical solution. Plot the trajectories
of your approximations of x(t) and y(t) on the xy-plane, and the graph z(t) as a
function of time. Explain what you observe in each case.

(a) Forward Euler using 4t = ε/50.
(b) Backward Euler for x and y and Forward Euler for z, using 4t = 0.1.
(c) Verlet method or Midpoint rule for x and y, and Forward Euler for z, using 4t =

ε/50.
(d) Solve this problem by the HMM–FE–fe method (see below), with Q = R = I

(see Sect. 5.2). h = ε/50, H = 0.1, and hM = 2 ·10−3.
(e) Derive linear stability criteria on H for HMM–FE–fe, assuming that h = c0ε .
(f) Let a = b = 1 in the system defined above. Solve it by the same HMM–FE–fe

scheme with the same parameters as in (d). Does this scheme correctly approxi-
mate the behavior of z in the time interval 0 < t ≤ 1? Explain.

HMM–FE–fe scheme for u′ = fε (u).

• Macroscale with Forward Euler (FE)

Un+1 = Un + HFn, U0 = Q(u0)
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• Microscale with Forward Euler (fe)

un
k+1 = un

k + h fε(un
k), k = 0,±1, · · · ,±M,

un
0 = R(Un).

• Averaging

Fn :=
1

2M

M

∑
k=−M

Kcos
(

k
2M

)
fε (un

k),

Kcos(t) =
1
2

χ[−1,1](t)(1 + cos(πt)) ,

χ[−1,1](x) =

{
1, −1 ≤ x ≤ 1,

0, otherwise.

Computer exercise 2. Following the previous problem, define the slow variable

ξ (x,y) = x2 + y2 and ξ (t) := x2(t)+ y2(t),

where x(t) and y(t) are defined in (72).

(a) Show that dξ/dt can be approximated by averaging:
∣∣∣∣
dξ
dt

(tn)−
∫ ∞

−∞
− d

dt
Kcos

(
tn − t
2Mh

)(
x2(t)+ y2(t)

)
dt

∣∣∣∣≤ Cη p.

Find p.
(b) Modify your previous HMM–FE–fe code to HMM–FE–rk4 (see below) as fol-

lows and determine if the dynamics of z is accurately approximated by this new
scheme. Plot your approximations as in the previous problem. Explain your find-
ings.

(c) Do the same thing as in the previous problem, but with c = 0. Does your multi-
scale algorithm work? Why?

Constrained HMM–FE–rk4 scheme for u′ = fε (u).

• Macroscale with Forward Euler

Un+1 = Un + HFn, U0 = Q(u0).

• Microscale with Runge–Kutta 4 (rk4)

un
k+1 = rk4(un

k ,h), k = 0,±1, · · · ,±M,

un
0 = R(Un).

Here rk4 is an explicit Runge–Kutta 4 routine using step size h.

rk4(y,h) = y +
1
6
(k1 + 2k2 + 2k3 + k4),

k1 = h fε(y), k2 = h fε(y +
1
2

k1), k3 = h fε(y +
1
2

k2), k4 = h fε (y + k3).
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• Averaging

dzn :=
1

2M

M

∑
k=−M

Kcos
(

k
2M

)(
xn

k · xn
k + cyn

k · yn
k −

zn
k

10

)
.

dξ n :=
1

2M

M

∑
k=−M

G

(
k

2M

)
(xn

k · xn
k + yn

k · yn
k) ,

where G( k
2M ) := −1

2Mh
d
dt Kcos( t

2Mh ).
• Evaluate effective force

Find a unit vector dXn such that

dξ n = ∇x,yξ |xn
k ,yn

k
·dXn.

Fn :=
(

dXn

dzn

)
.

Computer exercise 3. Consider the inverted pendulum equation:

lθ ′′ =
(

g +
1
ε

sin
(

2π
t
ε

))
sin(θ ). (73)

Let ω = θ ′, rewrite it into a system of first order equations for (θ ,ω). Let Ωn+ 1
2

denote the averaged macroscopic angular momentum at time (n + 1
2 )H and Θn be

the averaged macroscopic angle. Compute the inverted pendulum solutions by using
the parameters ε = 10−6, (Θ0,Ω0) = (0.0,−0.4), g = 0.1, l = 0.05. Experiment with
η = 10ε and 30ε.
This problem is analyzed in [32].

HMM for the inverted pendulum problem.

• Macroscale with Verlet
Given Un = (Θ n,Ω n), for n = 0,1,2, ldots

Ω n+ 1
2 = Ω n +

H
2

· F̃n,

Θ n+1 = Θ n + H ·Ω n+ 1
2 ,

Ω n+1 = Ω n+ 1
2 +

H
2

· F̃n+1,

Here, F̃[θ n,ωn] denotes the averaged force using the solutions whose values at
tn = nH are (θ n,ωn).

• Microscale evolution
Solve lθ ′′ = (g+ 1

ε sin(2π t
ε ))sin(θ ) for tn−η ≤ t ≤ tn+η with the “reconstructed

initial”
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θ (tn) = Θ n,

ω(tn) = θ ′(tn) = R(Θ n,Ω n) := Ω n − sin(Θ n)
cos
(
2π tn

ε
)

2π l
.

(
ω(tn) ≈ Ω n −

〈∫ t

tn
aε

( s
ε

)
sin(θ (s))ds

〉)

• Average
Using the solution computed in the microscale evolutions around tn. Evaluate

F̃n =
〈

(g +
1
ε

sin
(

2π
t
ε

)
)sin(θ )

〉

η
= Kη ∗ f (tn),

where

Kη (t) =
422.11

η
exp

[
5

(
4t2

η2 − 1

)−1
]

,

and

f (t) =
(

g +
1
ε

sin
(

2π
t
ε

))
sin(θ (t)).

Use the Trapezoidal rule to approximate the above convolutions.

Computer exercise 4. The following is a well studied system taken from the theory
of stellar orbits in a galaxy

r′′
1 + a2r1 = εr2

2
r′′

2 + b2r2 = 2εr1r2
.

Rewrite the above equation into the standard form (35).

(a) To see how resonances occur, change into polar coordinates and take a = ±2b.
(b) Let a = 2 and b = 1. Find a maximal slow chart.
(c) Apply the HMM algorithm described in Sect. 5.4 to approximate the slow be-

haviour of the system.
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