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Abstract

A multiscale, time reversible method for computing the effee slow behavior of systems of highly
oscillatory ordinary differential equations is present&étie proposed method relies on correctly tracking
a set of slow variables that is sufficient to approximate ayable and functional that are slow under the
dynamics of the system. The algorithm follows the framewairkhe heterogeneous multiscale method.
The notion of time reversibility in the multiple time-scadetting is discussed. The algorithm requires
nontrivial matching between the microscopic state vaealzind the macroscopic slow ones. Numerical
examples show the efficiency of the multiscale method anadvantages of time reversibility.

1 Introduction

The dynamics of Hamiltonian systems are known to have spge@metrical symmetries. Lét(q,p)
denote the Hamiltonian of a system with position coordisgtand momentunp. An important property
of the Hamiltonian dynamics is that {&(¢),p(¢)) is a solution ther{q(—t),—p(—t)) is also a solution.
Time reversible and symplectic schemes have proven to ligyhigluable tools for integrating systems of
ordinary differential equations (ODES) [18, 24] whose $iolus possess similar symmetries. These methods
are particularly useful for integration over long time segts. However, for general systems involving two
or more time scales, most such schemes require a step siZe tfiche order of the fastest scale, typically
due to stability and accuracy considerations. As a respflieation of conventional schemes becomes
prohibitively expensive and inefficient. Accordingly, d&ng a multiscale time reversible algorithm seems
desirable particularly if it can inherit the benefits of bdtle multiscale and the time reversible approaches.

Many challenges of multiscale numerical integration haeerbaddressed by several different ap-
proaches. Stiff problems with fast transients can be ogynsalved by implicit schemes [8, 19, 21]. The
Chebyshev methods [1, 23] as well as the projective integgiproach [16] provide stable and explicit
computational strategies for this class of problems in g@né&or near harmonic oscillatory problems, tra-
ditional numerical approaches attempt to either filter auttdast oscillations to some known functions in
order to reduce the complexity, e.g. [15, 22, 30], or use snot®n of Poincaré map to determine slow
changes in the orbital structure [17, 27].

A general class of approaches aiming at Hamiltonian systaegeometric integration schemes that
preserve a discrete version of certain invariances. We théereaders to [18] and [24] for an extensive
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list of literature. Many schemes specialized for finite dirsienal mechanical systems can be conveniently
derived from the view point of variational integrators [26] certain applications, special considerations are
given to the expensive cost of evaluating non-local potésitn large systems, see e.g. the impulse method
and its derivatives [24]. For a recent review on numericahmés for highly oscillatory systems see [7].

In this paper we propose a multiscale numerical scheme gpabaimates the slowly varying effective
dynamics of highly oscillatory ODE systems. The numericetimod is time reversible in the sense that,
upon time reversal, the algorithm traces back to the ingttaddition with no truncation error. To be more
precise, leth >0 denote the step size used in the algorithm. Then, takingpadsteize h followed by a
step of size—h, the algorithm goes back to the initial state. The only eisoin round-off. We follow
the framework of the Heterogeneous Multiscale Methods (HN® 10, 11, 32], and the general strategy
proposed in [13]. We point out here that it is not entirelyacld@ for general highly oscillatory systems
which are time-reversible in the Hamiltonian sense, theatiffe slow dynamics is also reversible in the
same senséNevertheless, it is reasonable to ask if the multiscalersehean update the fast scale variables
in a (numerically) reversible way, without fully resolviadj the fast oscillations at all time while remaining
consistent with the slow dynamics. Furthermore, it is iesting to see if this additional symmetry brings
any benefit for the overall multiscale approximatiofo this end we give two numerical examples whose
main purpose is to demonstrate that reversible methods mfaci be superior to non-reversible ones. In
the first example of the inverted pendulum, we find that thenmsile method allows bigger macro steps
than a non-reversible method of the same order. In the FBasia-Ulam (FPU) example [14], we show
that energy drift is much smaller with the reversible methdde energy can stay constant over long time
segments and does not increase linearly in time as with eeersible schemes. In this respect, the purpose
of the examples is more than just a proof of concept. They sdsee to demonstrate the advantages of a
reversible macro-solver.

Recently, Calvo and Sanz-Serna suggested an HMM schemis thath time reversible and symplectic
[6]. Their method can be applied to some types of Hamiltosisiems, for example, mechanical systems
that are driven by a single external fast oscillation. Thdsas were further developed for stiff mechanical
systems with constraints [20].

Here, we consider general ODE systems of the form

x=e1f(x)+g(x), x(0)=x0, t€[0,T], (1.1)

where0 < e <ep, x=(z1,...,24) € R? and0 < T < oo is independent of. It is assumed that the solution of
(1.1) remains in a domaiR, C R? which is bounded independentafor all ¢ € [0, 7. For fixede and initial
conditionx, the solution of (1.1) is denoted; ¢,x). For brevity we will writex(¢) when the dependence
on e andxg is not directly relevant to the discussion. Furthermorehia paper we only consider the case
in which the fast dynamics is oscillatory in nature rathartidissipative. In particular, we assume that
the unperturbed system(x) =0, has a continuous family of periodic solutions or an asyriqady stable
periodic limit cycle.

The general approach previously developed in [2, 3, 4, 18][48], is to identify a set of functions in
the state space whose values change slowly along the tsGilkaajectories. The time evolution of these
slow variables is used to guide the slow time-scale dynaniibe ODE (1.1) is then integrated following
the HMM framework: a Macro-solver integrates the effectimat generally unknown evolution equation for
the slow variables under the dynamics of (1.1). The ratehahge for these slow variables are computed
on-the-fly by a micro-solver that integrates the full ODELjXfor short time segments. For a recent review
see [11].

In the typical HMM setting, the macroscopic system evolvagtof slowly changing quantities (slow
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variables in our case), denoted herecby
d
Ef—F(fat), (1.2)

where the right hand sid€'(¢,t) is evaluated by the appropriate averaging of the solutidr(4.@) with
suitable initial conditions. See Section 2 for details. Erone can formally apply any desirable scheme to
discretize (1.2). One possibility includes time revermsisthemes such as the leap-frog scheme

£n+1:£n71+2At'F(fnat)a (13)

where¢,, denotes the numerical approximation foat then’th macroscopic step. However, this is not
the complete story at the level of actual numerical diszagion which involves nontrivial coupling of the
numerical schemes for the macro- and micro-scales, e.geviéleation ofF'(¢,,,t) via suitable solutions
of (1.1). Additional challenges emerge if we want to updae ihicroscopic variables,, in a reversible
way while remaining consistent with the underlying effeetdynamics regulated by the macroscopic slow
variables.

Despite the fact that in general leap-frog is second ordeurate, the slow variables need to be related
to the original fast state variable. In section 3 we show #hadive implementation may lead to a reduction
in accuracy and describe a way to regain the second orderaagcof leap-frog. All these couplings make
time reversibility at both macroscopic and microscopielem an HMM scheme non-trivial.

The organization of the paper is as follows. Section 2 regighe main results and algorithms developed
in [2], [3] and [12] and examines the notion of time reverdipin our multiple time-scale setting. Section 3
describes particular implementations of the method whietiime reversible and analyses their accuracy. A
few examples are presented in Section 4. We end with comguéimarks in Section 5.

2 TheHMM scheme

In order to study the long time properties of (1.1) we needistirijuish between the fast and slow con-
stituents of the dynamics. We say that a real valued smoaittifun (variableq(x) is slow with respect to
(1.1) in an open connected sétif

max
xoEA,tE [O,T]

%a(x(t;e,xo))‘ <y, (2.2)
where() is a constant that is independentcofOtherwisen(x) is said to be fast. Similarly, we say that a
quantity or constant is of order one if it is bounded indeganafe in Dy or [0, 7).

Of course, any function of slow variables is also slow. Thae it is reasonable to look for vari-
ables which are functionally independent, i.e., a vectalof variables = (¢(V (x),...,£() (x)) such that
Ve (x),...,VEM) (x) are linearly independent id. Sincer is bounded by the dimensiod, it is useful
to look at a set with a maximal number of functionally indegent slow variables. Augmenting the slow
variables withd —r fast ones = (z1,...,z4—,) such thad (¢, z) /0x is non-singular in4, one obtains a local
coordinate systems, i.e., a chart of the states space. Weefeit to a chart in which a maximal number of
coordinates is slow as a maximal slow chart fbwith respect to the ODE (1.1). Covering the $&t by
maximal slow charts we obtain a maximal slow atlasZgt

One of the important observations which follow from our digifim of a slow chart is that typical slow
variables do not appear in conjugate pairs of some genedafinsition and momentum. Hence, there is
no clear notion of macroscopic time reversibility in the Homian sense. In [20], the slow behavior of a
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particular class of stiff mechanical systems is studieds ghown that in the limit ot — 0 the dynamics
can be approximated by an effective equation with Holonotoigstraints [5]. As a result, this effective
dynamics is time reversible.

We continue by examining the relations between the origitete variables, which are typically fast,
and the slow coordinates in a maximal slow chart. In pariculve wish to establish the existence of an
effective evolution equation for the slow variablgs(¢)) under the flow of (1.1). The assumption that the
unperturbed dynamics is periodic implies that the only agirdinate is equivalent to rotation on the unit
circle with constant velocity, i.e¢ € S'. This case is quite general since many weakly perturbedriabde
systems in resonance fall into this category through thenaff action-angle variables. Then, an averaging
principle can be used to prove that for smalf(x(;€,x0)) is well approximated if0,7] by an effective
equation of the form

E=F(€), £(0)=¢&(xo). (2.2)

See [2, 5, 28] for details. The requirement th@atp) is a maximal slow chart is critical for the derivation of
(2.2). Without it, there is no guaranty that the right hardksif the averaged equation does not depend on
additional slow variables which may be hidden or unknown.

The effective equation (2.2) may not be available as an exftirmula. Instead, the idea behind the
HMM algorithm is to evaluaté”(£) by numerical solutions of the original ODE (1.1) on signifitg re-
duced time intervals. In this way, the HMM algorithm approgites an assumed effective equation whose
form is typically unknown. This strategy is advantageous () can be approximated efficiently. The ad-
ditional requirement of a time reversibility poses cornisttsaon the way thé”(¢) is evaluated. Furthermore,
integration of (2.2) should be done while keeping the sege@r fast state variables reversible even across
macroscopic steps. The next section describes such aiithigor

2.1 Thealgorithm

Suppose = (€M (x),...,£)(x)) are the slow variables in a slow atlas for (1.1). The systeimtégyrated
using a two level algorithm, each level corresponding toffedint time scale. The first is a Macro-solver
which integrates the effective equation (2.2) for the slaniablest. The second level is a micro-solver that
is invoked whenever the Macro-solver needs an estimaté(©f. The micro-solver computes a short time
solution of (1.1) using suitable initial data. Then, thediderivative of is approximated by

. . n/2
E(t) ~ (€), (1) = / E(x(t-+7)) K, (t—7)dr, (2.3)

-n/2

where, K, (-) denotes a smooth averaging kernel with suppofitag/2,1/2]. Note that is not necessarily
slow. However, it is bounded independentofThe properties of averaging with respect to a kernel will be
reviewed shortly.

To better explain the algorithm, denote the Macro-solverga times byty,...,tx, N=T/H, and its
output at corresponding times hy,...,xy. At then-th Macro-step, the micro-solver can be implemented
using any scheme with step-sizeand initial conditionx(¢,,) =x,. It integrates the full ODE both back-
wards and forward in time to approximate the solutioftin-n/2,t, +n/2]. The structure of the algorithm,
depicted in Figure 1, is as follows [10, 13]

1. Initial conditionsx(0) =xq, {o =£(x0) andn =0.

2. Force estimation:
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(a) micro-simulation: solve (1.1) ift,, —n/2,t,, +n/2] with initial conditionsx(t,,) = x,.
(b) Averaging: approximaté(t,,) by (), (t,).

3. Macro-step (forward-Euler exampl&); ;1 =&, + H (£),,(tr).

4. Reconstruction: fin,, ., consistent witlt,,, | . takex,, ., =x,, + HF,, whereF, is the least squares
solution of the linear system
I (xn
ox

5. n=n+1. Repeat steps (2) and (3) to tiriie

~—

Fn = <f>77(tn)

Here, 0¢/0x is a matrix whosé:'th row is V¢(®). The scheme described above can be generalized to
Macro-solvers with higher order accuracy.

;
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Figure 1: The cartoon depicts the time steps taken by the Higlhéme. At the:-th Macro step, a micro-
solver with step sizé integrates (1.1) to approximatét) in a time segment,, —n/2,t, +n/2]. This data
is used to calculaté& (x)), (t). Then, the Macro-solver takes a big step of giz&,,, whereF,, is consistent
with (£(0)), for all slow variableg*) in the maximal slow chart.

2.2 Updating state variables

At the core of the HMM framework lies the idea that we are altyismlving the effective equatiofi= F (&)
at the macroscopic time scale. Accordingly, one has thedfneeof using an integrator of choice. For
example, applying forward-Euler with step sizeyields a single-step rule

fnJrl :fn+HF(£n)a (24)

where¢,, denotes the approximation fgft,,). Alternatively, one can use the familiar two-step leapgfro
method, which is reversible in time
£n+1:£n71 +2HF(£n) (25)

As in the algorithm described abovE(¢,, ) is approximated by solving the full system for a very shorigi
window.

Once new values for the slow variables are determined, éégssary to find a new set of state variables,
Xn+1, that are consistent with the new slow stag, 1, i.e., {(x,+1) =&.+1. This stage is referred to as
reconstruction. Instead, the algorithm described abopasses this difficulty by evolving the state variables
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x directly [2, 13]. Hence, step (3) of the algorithm above doesneed to be performed. Of course, this
has to be done in a way that is consistent with the slow dynabicsome order irff). With single-step
methods, the Macro-step takes the form

xn+1:xn+Hﬁ'(xn,§n). (2.6)

Comparing with (2.4) we find that, to ordé&f?, F(xn,fn) can be taken to be the least squares solution of
the linear system
98 (xn)

% F(Xnafn):F(fn)

Higher order schemes following Runke-Kutta methods areld@ed in [2].

The main goal of this paper is to develop a time reversiblp-feag scheme for the state variables
which consistently embeds the leap-frog scheme& f@2.5). For example, a naive attempt for a reversible
reconstruction step is to take

xn+1:xn71+2HFna (27)

whereF,, is the least squares solution of the linear system

8€(Xn) o
60) = €y 1),

Although this approach is simple, in section 3 it is showrt this leads to a method which is only first order
accurate ind. This low order accuracy is often too poor and impractical.
More generally, the scheme can be written implicitly in then

G(Xnagn;xn—hxn-‘rl):o? (28)

where we require that,,_; andx,,; are consistent with (2.5) to some known powerFbf In Section 3,
we suggest possible forms faf, which are skew-symmetric ir,,_; andx,, 41, i.e.,

G(Xnafnﬁxnflaanrl) = _G(xnafn;xn+laxnfl)~

As a result, the evolution operator is time reversible. Thecess of finding a microscopic state 1,
consistent with the Macroscopig+1 is under-determined since differentay correspond to the same slow
coordinateg. Using (2.8) one picks a particular possible solution inhsaavay that the entire algorithm
become reversible in time.

Stability of the new scheme is inherited from that of the Ksapmn method for¢, (2.5). Note that the
approximation is only consistent for the slow variakdesnd not for the original state variablessince any
information on the fast coordinate is discarded.

2.3 Averaging using kernels

Let K(-) denote a smooth kernel function with support [erl, 1] with unit mass,fflK(T)drzl, and
vanishing first momentf_llK(r)rdr:O. In this paper we restrict the discussion to kernels whieh ar
symmetric with respect to their mid-point. For example,fiiitowing smooth exponential kernel was found
useful:

_ 5 1
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forte (—1,1) and zero otherwise. Herg, is a normalization constant. Fgr> 0 let,

2 2
Ky(r)=—K(-7

non
We will take ) to bee dependent such théit< e << 1. The convolution of a functiona(t) with K, is

denoted as (recall (2.3))

). (2.10)

n/2
(@), (t) = / a(t+7) K, (t—7)dr. (2.11)
—n/2

Typically, the fast dynamics in equations such as (1.1) & @fitwo types (compare to the linear case,
f(x)=Ax). The first consists of modes that are attracted to a low démeal manifold in a time scale
of order one. These modes are referred to as transient dpatise modes and will not be discussed in
this paper. The second type consists of oscillators wittstzon or slowly changing frequencies. Averaging
of oscillatory modes filters out high frequency oscillasonThe errors introduced by the averaging are
estimated in [2] and [12]. For example, for a functi6ft) with period one and a kernel withcontinuous
derivatives, we have that

q
Ky () B = B < 1Bl 1K Tl (5) , (2.12)
where3 = [' 3(r)dr, ||-||- denotes the sup norm iy,
118]]00 = Sup 1B(x)], (2.13)
and .
1K [yie :/ K (1) dt. (2.14)
-1

Here, K (9 denotes the-th derivative ofK .

3 A consistent and reversible multiscale solver

In this Section we describe our strategy that enables tinersiility in the entire HMM algorithm described
in Section 2.1 while maintaining the consistency betweemtlacro- and micro states. Left) denote the
exact solution of the full ODE system (1.1) with the initiaraitionx(0) = x¢. In addition, letH denote
the Macroscopic step size used in the Macro-solkge= x(nH) andA™x, 1 =x, — X, _1.

For illustration purposes, consider the following linegstem describing a slowly expanding spiral

1 2—67122-1—21
Zy = 67121 + 29,

(3.1)

with initial conditions z1(0)=1 and 22(0)=0. The exact solution of (3.1) ix(t)=(21(t),22(t)) =
(e!coset,efsine1t) and&(x) = 27 + 23 is a slow variable. Figure 2 depicts a forward-Euler type Mac
step for (3.1).

Let v denote a smooth curve connectingandx; =x(H). The change ii§(x) along the curve can be
expressed as

A*é(xo) = £(x1) — £(x0) = / Vé(x)-dx. (32)
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We are interested in two particular curves. The first is althregsolution of the ODE. Taking= {x(¢)|0 <
t<H}, (3.2)yields

H H
Té(x0) = x(7))-xdr = - (x(1))dr.
A&(o)/ovﬁ(())d /Of(())d

For0 < e<n< H, we obtain an estimate

Ate(xo) = H (£(x)) (0)+O(H?+e), (3.3)

n

wheree denotes the error from approximating the averggesing kernels. We assumeis negligible
compared ta72.

An alternative choice of curve follows the straight line imgse space connectisg andx;. Parameter-
izing the segment asx; + (1 — s)xo with s € [0,1] yields

1
A*f(xo):/ Vé(xo+5ATx0)- (x1 —x0)ds = VE(xg) - AT xo+O(H?). (3.4)
0

Comparing (3.3) and (3.4) we deduce that to second ordHr, in
H(£(x))(0) = VE&(x0) - ATxq. (3.5)

Thus, solving forA Txg, (3.5) yields the forward-Euler Macro-step formula usedifie algorithm described
in Section 2.1 with a local truncation error that is secondeorin HH. For larger systems with several
slow variables (3.5) generalizes to a linear system whosgooents comes directly from each of the slow
variables, and (3.5) can be solved using singular valuerdposition.

The derivation above can be generalized to high order Ritugi type methods by improving the
approximation in (3.2) and (3.4). This approach is devaldpd2]. More attention is needed for multistep
methods that uses directly the original variables of thiesfgdtem at the Macroscopic level. In the following,
we discuss our approach for designing such schemes.

Suppose the multiscale algorithm has already producedriieviio Macroscopic steps, =x(0) and
x1 =x(H). We are looking for the next Macro-step =x(2H). In analogy to the leap frog method,
we would like to find the value foks usingxg, x; and the derivative at the middle poirt, <£>U(H).

In particular, any reversible explicit scheme cannot ugedérivatives ak,, (¢),(0). Figure 3 depicts a
reversible Macroscopic two-step solver.

Following the discussion above, we consider the changeliovavariableé betweenx to xo

A% = () — E(x0) = / VE(x)-dx, (3.6)

wherey is a smooth curve starting & and ending ak,. Integrating along the solution of the ODK(t),
yields

2H 2H .
A= | Ex(r)dr = / (E(x))y ()dT+O(He) =2H (E(x)), (H) +O(H?). (3.7

On the other hand, we expafix) around the middle point;

1
E(x1 +0x)=E&(x1)+Vv-Ix+ §5XTA5X+O(|(SX|3),
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wherev = V£(x;) and A = D?¢(x; ) is the Hessian of (x) evaluated ak;. We have
1
§(x2) =&(x1)+ V- (x2 —x1)+ §(X2 —x1)T A(x2 —x1) +O(|x2 —x1°)

and )
§(x0) =&(x1)+ v+ (x0—x1)+ §(X0 —x1)"A(xo —x1) +O(|x0 —x1[%).

Hence,
A =¢(x3) —&(x0) =V (x2—%0) + O(|x2 —x1|* + [x0 —x1 *). (3.8)

Assuming that(t) is Lipshitz in the domain of interesBy, we have thatx,; — x| and|xo —x;| are both
of order H. Note that, in general, the second order term does not camberefore, comparing (3.7) and
(3.8) yields, to ordefi?, .

2H({(x))y(H) =V (x2 —Xo). (3.9)

In order to achieve a local truncation error as small as ptessive look for the solutiow, such thatxs —x; |

is minimal. The reversibility of the algorithm hinges on tlaet that (3.9) is anti-symmetric with respect to

switchingx, andx, and that bothx, — x| and|xo — x| are minimal. Since (3.9) is a linear systexa,

can be easily obtained using singular value decomposifitiis is equivalent to using the naive approach

(2.7). The solution of (3.9) is unique since it is a least sga@roblem. Geometrically,; —xo is the point

on the hyperplane with normal directionshifted fromx, by 2H (£(x)),, (H)v/|v|? which is closest tex.
The numerical scheme is reversible, since, given initialditions,xy, andx;, the micro-solver is used

to approximate the force at;, (£(x)),(H), and we solve (3.9) foxs. The process can be reversed to take

X9 andxy, approximate the force starting at the, and solve (3.9) fok,.

mlcro solver
o o Macro-step
b
V Dy SEr—
A V .A AXq "

Figure 2: A forward-Euler type Macro-step for the expandipgal (3.1).

As discussed above, the sequence of microscopic states,xy is generated in a reversible manner
in the sense that, givexy andxy_1, the algorithm can be traced back to obtajnandx; up to round
off errors. However, the method is not reversible for theesponding slow variables =£(xo), ..., N =
&(xpv). Starting with macroscopic statesy andéy 1, requires identification of new microscopic states,
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micro—solver

"/ Macro—step
VA o + t_ " >><X
.,_>..r"-

Figure 3: A leap-frog type Macro-step for the expandinga(is.1).

xy andxy_1, such thatty =&(xy) andéy_1 =&(xn—1). Tracing back ta =0, the new value fog,
will be different than the initial(xo) by an orderH. The lack of reversibility for the slow variables is
also apparent in the fact that the order of accuracy is evha.s€cond order correction does not vanish, as
expected for reversible schemes.

Using (3.9), the error in each Macro step is of ordEr. Hence, the global error of the Macro-solver is
of order H. In order to obtain a second order method, we expand the soiables(x; + dx) to second
order indx

1
(x4 0x)=¢&(x1)+Vv-0x+ §5X-A5x—|—0(53x). (3.10)
Using (3.6), (3.7) and (3.10) yields an equationsferthat is accurate to ordei >
. 1 1
2H({(x))n(H) = (x2—%0) - (v—Ax1)+ 3%z - Axo — 3%0° Ax. (3.11)

As before, in order to have a reversible scheme, we look falaien that is closest to the middle point
x;. With several slow variablegV,...,£("), x, is the minimum ofix; —x;|? under the constraint (3.11)
for each of the slow variables. Since (3.11) is a quadratehsurface ik, andxg, the sought constrained
minimum exists and is unique unless is on the medial axis of the hypersurface. It can be shownftinat
(&(x)), (H)#0 this is not possible for small enough valuesiéf Hence, the scheme is reversible. Using
Lagrange multipliersx, satisfies

(XQ—XO)'(V—AX1)+%X2'AX2 — %Xo-AXOZAOE(k), k=1...r (3.12)
2x2 —2x1 + Y pq Mk [V+A(x2 —x1)] =0, '

whereA% ) =2 (£ (x)), (H) and), ...\, are the Lagrange multipliers. For systems of coupled oscil-
lators, the slow variables correspond to amplitudes andetladive phase between the oscillators. In [2, 3],
we show that for periodic systems there existsd — 1 functionally independent slow variables. Hence,
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(3.12) is a quadratic system 0fl — 1 equations an@d — 1 unknowns. In the examples appearing at the
next Section, (3.12) is solved using Newton-Raphson witbcaired accuracy. Taking the second order
approximation (3.9) and; =--- =\, =0 is a good initial guess. Since the system is quadratic, cgevnee
is usually rapid.

We summarize our method with the following algorithm. Na@at are the same as in Section 2.

1. Initial conditions:x(0) = xo andn =0.

2. Force estimation:
(a) micro-simulation: solve (1.1) ift,, — n/2,t,, +n/2] with initial conditionsx(t,,) =x,,.
(b) Averaging: approximaté&(t,,) by (¢),(t,).

3. Macro-step: evolving and reconstructing,, 1 (leap frog example)

solveG(x,,2H (&) (tn);Xn—1,Xn+1) =0 for x,, 1, whereG is given by (3.12).
4. n=n+1. Repeat steps (2) and (3) to tiriie

Finally, we remark that higher order quadrature methodsbeaoonstructed in a similar fashion using
two or more steps for approximating (3.7) and additionahtein the Taylor expansion (3.10).

4 Examples

In this Section we apply the reversible HMM algorithm delsed above to several model systems. The main
purpose of the examples is to show the advantages of timesibiligy in he multiscale setting.

4.1 Theinverted pendulum

The following example considers a pendulum with a rigid dnat ts attached at one of its ends to a mechan-
ical motor. The setup is depicted in Figure 4. The motor catise point of suspension of the arm to vibrate
up and down with amplitude and frequency—!. Surprisingly, the fast vibrations of the motor can cause
the pendulum to oscillate slowly (with@(1) frequency) around the inverted position, in which its arm is
pointing up. Denoting by the angle between the pendulum arm and the upward direttiergquation of
motion for the system becomes

10 =[g+ ¢ 'sin(2me )] sind, (4.1)
where6 denotes the angle between the arm and the upward direétisrthe arm’s length and is the
gravitational constant [25]. Rewriting (4.1) as a first ardetonomous system yields an ODE of the form

0, =0,

92 :l_l(g+e_1¢1)sin01 4.2)
Y1 =2me iy

l/.}2 =—2me My

In [2] we describe a variational numerical method for idinig the slow variable for (4.2). The method
identifies three slow variables that constitute a slow atlas

¢ =9,
¢®) =97 +93 (4.3)
£®) =0y + (271) ~L4pysinb; .
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Indeed, itis easily verified thatl /dt)¢*) (x(t)) is bounded independentefor k= 1,2, 3. Figure 5a depicts
the numerical HMM solution for (4.2) witlh =0.1 and/ = 0.05 using the reversible, second order Macro-
solver (3.11). Simulation parameters are 10~°, h =¢/25, H =0.25, n=6.2¢ and the exponential kernel
(2.9). The Newton-Raphson algorithm for solving (3.12)ererequires more than two iterations. Initial
conditions ared; (0) =0, 6 (0) = —0.4, 11 (0) =0 and1)»(0) = 1. The value fot® is practically constant
with an error that is less thair®—8%. Invariance of quadratic constants of motion is a typicatadage of
reversible methods. With the above parameters the HMM algoruns over 5000 times faster than Verlet.
Figure 5b depicts a similar numerical HMM solution for (4u&ing the exact same parameters, but with
a Macro-solver applying the mid-point rule. All other pamters are the same. Although both methods
are second order accurate, the errors using the midpomteuvisibly larger. Additional approaches for
applying the HMM strategy on this example can be found at $6.31].

e]

Figure 4: The inverted pendulum has a rigid arm which is agdcto a motor that is vibrating fast. The
centrifugal force pulls the arm upwards.

4.2 Fermi-Pasta-Ulam

The Fermi-Pasta-Ulam model [14] is a one dimensional systeumit mass particles connected by springs.
The springs alternate between stiff linear and soft noedimones [18]. The model is derived from the
following Hamiltonian

2k k k
— 1 2 1 -2 2 4
H= 2 ;pi + ZG Z(qm —q2i-1) +Z(QQH‘1 —q2i)". (4.4)

=1 =0

The following linear change of variables is convenient siiiGeparates the elongations of thstiff springs
and associated momentum:

zi=€ (goi—1— (121')/\/§ . vi=(paic1 —pai)/ V2, (4.5)
and a second set of variables associated withttbeft springs:

Yi=(qoic1+q2i)/ V2, ui=(pai1+p2)/V2, (4.6)
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Figure 5: (a) Comparison of the HMM approximation for theusimin of (4.2) to the Verlet method with step
size of ordek. Solid curve:¢(Y) =4, dotted curvet® =@+ (271) = Mhysind;. £ is constant. (b) The
same system with a Macro-solver applying the mid-point.rAléother parameters are the same. With the
mid-point rule errors are visibly larger.

Definingyo = o = y2r+1 = z21+1 = 0, the equations of motion can be written as

Vi =Uy

T; = 6_1?)Z‘ 4.7)
(e o 33 )3 :
U =—(yi—eri—yi—1 —€xi—1)> + (Yit1 — €Tip1 — Yi — €2;)

v =—e twi+ (yi—exi —yio1 —exi—1)> 4+ (Yir1 — €xit1 —yi — €x;)3.

As discussed in [2], the slow atlas for the system consistgcef1 slow variables. First are all the degrees
of freedom which are related to the soft springs:andw,;, i=1...k. Second, the total energy (kinetic +
potential) of the stiff springsl; = x? +v?, i=1...k. Finally, the relative phases between the different stiff
springsg; = x1x; +v1v;, i =2...k. Any other functiony(x) which is slow under the dynamics of (4.7) can
be written as a function of th&k — 1 variables described above.

OntheO(1) time scale the energy of the stiff springs and their relgiivases are fixed, while the degrees
of freedom that correspond to the soft springs oscillatedaraplicated, non-harmonic way. On ttge 1)
time scale the dynamics becomes more interesting as thgieséy begin to change [14, 18]. The pur-
pose of this example is to demonstrate the benefits of thegsible algorithm. Indeed, with non-reversible
Macro-solvers the algorithm suffers from relatively higteegy dissipation and the method is unpractical
for computations on th@(e~!) time scale. The reversible solver greatly improves eneoggervation and
a posteriori error analysis suggests that it is converg®htle it is possible to construct a method that works
on the correct) (¢~ !) time scale, this is beyond the scope of the current paper.

Figure 6a depicts our results for a system with three stifings, k = 3. Initial conditions arer; = —1,
y1=—-0.5, y1 =u; =22 =1, v3=—0.5 and zero otherwise. Fixing=10"2, simulation parameters were
varied until amplitude values changed by 10%. It was particularly difficult to get convergence using the
standard Verlet method.

HMM parameters aré =¢/50, H = 0.1, n=60e and the exponential kernel (2.9). The second order ac-
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curate reversible HMM (3.12) is compared to the Verlet sotutvith step size /200. Note the significantly
smaller step size required for Verlet. Figure 6b depictsdhft in the total energy of the entire system,
which is smaller tha.4%, even though our method does not guarantee convergence en‘ttime scale.
The Newton-Raphson method used for solving the equatiotsnaal by the Lagrange multipliers,
(3.12), becomes inefficient if the partial derivatives rixadf the right hand side of (3.12) is close to singular.
In principle, one should then use a different method forisglthese equations. Since in this example we
are mostly interested in demonstrating energy conservatie bypass this difficulty by integrating the full
system (4.7) using Verlet for a timé whenever this problem occurs. In practice, the Verlet me¢tbased
in a few segments whose total length is less th#nof [0,7] and therefore does not reduce the efficiency
considerably. In addition, these segments improve thelisyatf the algorithm as they smooth out oscil-
lations between even and odd steps. We stress that the Hiiéfcdiscussed above only occur on the long,
O(e~1) time scale.

0.4

15¢

0.3r

0.2r

0.1r

energy change in %

-0.1 ' ;
0 500 1000

Figure 6: (a) Comparison of the HMM approximation for theutioin of the Fermi-Pasta-Ulam equations of
motion (4.7) to the one obtained using the Verlet methodE¢®rgy dissipation with reversible HMM.

5 Conclusion

Previously, we have proposed an approach for identifyingange of variables that decomposes a vector
field into its fast and slow constituents [2, 3]. The deconitsis used in an HMM algorithm that effi-
ciently integrates the slow parts of the dynamics witholly fiesolving the fast parts over the computed time
interval. The algorithm applies a different integrator &zl of the time scales in the problem. In this paper
we further develop this approach and describe a method iohntdth the integrators and the feed back
between the different scales are implemented in a time sélerway. As a result, we obtain a numerical
scheme in which the sequence of microscopic states is ibleer$he method is not reversible for the slow
variables. A particular set of slow variables does not @poad to a unique microscopic state. As a result,
given the final slow statesy_; and{y, it is necessary to find y_; andx, such thaty_; =&(xy_1) and

&En =&(xn). This reconstruction procedure ca only be preformed apprately. Hence, one cannot trace
back to&, exactly. This is consistent with the fact that the dynamfidbe slow variables is not reversible in
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the sense of Hamiltonian systems.

We demonstrate that the new approach enjoys many of the tseoffiaditional time reversible integra-
tors such as low energy dissipation. These properties @ieatfor integrating Hamiltonian systems over
long time periods, as was demonstrated in the Fermi-Pdsta-example.
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