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Abstract

A multiscale, time reversible method for computing the effective slow behavior of systems of highly
oscillatory ordinary differential equations is presented. The proposed method relies on correctly tracking
a set of slow variables that is sufficient to approximate any variable and functional that are slow under the
dynamics of the system. The algorithm follows the frameworkof the heterogeneous multiscale method.
The notion of time reversibility in the multiple time-scalesetting is discussed. The algorithm requires
nontrivial matching between the microscopic state variables and the macroscopic slow ones. Numerical
examples show the efficiency of the multiscale method and theadvantages of time reversibility.

1 Introduction

The dynamics of Hamiltonian systems are known to have special geometrical symmetries. LetH(q,p)
denote the Hamiltonian of a system with position coordinatesq and momentump. An important property
of the Hamiltonian dynamics is that if(q(t),p(t)) is a solution then(q(−t),−p(−t)) is also a solution.
Time reversible and symplectic schemes have proven to be highly valuable tools for integrating systems of
ordinary differential equations (ODEs) [18, 24] whose solutions possess similar symmetries. These methods
are particularly useful for integration over long time segments. However, for general systems involving two
or more time scales, most such schemes require a step size that is of the order of the fastest scale, typically
due to stability and accuracy considerations. As a result, application of conventional schemes becomes
prohibitively expensive and inefficient. Accordingly, devising a multiscale time reversible algorithm seems
desirable particularly if it can inherit the benefits of boththe multiscale and the time reversible approaches.

Many challenges of multiscale numerical integration have been addressed by several different ap-
proaches. Stiff problems with fast transients can be optimally solved by implicit schemes [8, 19, 21]. The
Chebyshev methods [1, 23] as well as the projective integrator approach [16] provide stable and explicit
computational strategies for this class of problems in general. For near harmonic oscillatory problems, tra-
ditional numerical approaches attempt to either filter out or fit fast oscillations to some known functions in
order to reduce the complexity, e.g. [15, 22, 30], or use somenotion of Poincaré map to determine slow
changes in the orbital structure [17, 27].

A general class of approaches aiming at Hamiltonian systemsare geometric integration schemes that
preserve a discrete version of certain invariances. We refer the readers to [18] and [24] for an extensive
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list of literature. Many schemes specialized for finite dimensional mechanical systems can be conveniently
derived from the view point of variational integrators [26]. In certain applications, special considerations are
given to the expensive cost of evaluating non-local potentials in large systems, see e.g. the impulse method
and its derivatives [24]. For a recent review on numerical methods for highly oscillatory systems see [7].

In this paper we propose a multiscale numerical scheme that approximates the slowly varying effective
dynamics of highly oscillatory ODE systems. The numerical method is time reversible in the sense that,
upon time reversal, the algorithm traces back to the initialcondition with no truncation error. To be more
precise, leth>0 denote the step size used in the algorithm. Then, taking a step of sizeh followed by a
step of size−h, the algorithm goes back to the initial state. The only erroris in round-off. We follow
the framework of the Heterogeneous Multiscale Methods (HMM) [9, 10, 11, 32], and the general strategy
proposed in [13]. We point out here that it is not entirely clear if for general highly oscillatory systems
which are time-reversible in the Hamiltonian sense, the effective slow dynamics is also reversible in the
same sense.Nevertheless, it is reasonable to ask if the multiscale scheme can update the fast scale variables
in a (numerically) reversible way, without fully resolvingall the fast oscillations at all time while remaining
consistent with the slow dynamics. Furthermore, it is interesting to see if this additional symmetry brings
any benefit for the overall multiscale approximation.To this end we give two numerical examples whose
main purpose is to demonstrate that reversible methods may in fact be superior to non-reversible ones. In
the first example of the inverted pendulum, we find that the reversible method allows bigger macro steps
than a non-reversible method of the same order. In the Fermi-Pasta-Ulam (FPU) example [14], we show
that energy drift is much smaller with the reversible method. The energy can stay constant over long time
segments and does not increase linearly in time as with non-reversible schemes. In this respect, the purpose
of the examples is more than just a proof of concept. They alsoserve to demonstrate the advantages of a
reversible macro-solver.

Recently, Calvo and Sanz-Serna suggested an HMM scheme thatis both time reversible and symplectic
[6]. Their method can be applied to some types of Hamiltoniansystems, for example, mechanical systems
that are driven by a single external fast oscillation. Theseideas were further developed for stiff mechanical
systems with constraints [20].

Here, we consider general ODE systems of the form

ẋ= ε−1f(x)+g(x), x(0)=x0, t∈ [0,T ], (1.1)

where0<ε≤ ε0, x=(x1, . . . ,xd)∈R
d and0<T <∞ is independent ofε. It is assumed that the solution of

(1.1) remains in a domainD0⊂R
d which is bounded independent ofε for all t∈ [0,T ]. For fixedε and initial

conditionx0, the solution of (1.1) is denotedx(t;ε,x0). For brevity we will writex(t) when the dependence
on ε andx0 is not directly relevant to the discussion. Furthermore, inthis paper we only consider the case
in which the fast dynamics is oscillatory in nature rather than dissipative. In particular, we assume that
the unperturbed system,g(x)=0, has a continuous family of periodic solutions or an asymptotically stable
periodic limit cycle.

The general approach previously developed in [2, 3, 4, 12] and [13], is to identify a set of functions in
the state space whose values change slowly along the oscillatory trajectories. The time evolution of these
slow variables is used to guide the slow time-scale dynamics. The ODE (1.1) is then integrated following
the HMM framework: a Macro-solver integrates the effective, but generally unknown evolution equation for
the slow variables under the dynamics of (1.1). The rates of change for these slow variables are computed
on-the-fly by a micro-solver that integrates the full ODE (1.1) for short time segments. For a recent review
see [11].

In the typical HMM setting, the macroscopic system evolves aset of slowly changing quantities (slow
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variables in our case), denoted here byξ
d

dt
ξ=F (ξ,t), (1.2)

where the right hand sideF (ξ,t) is evaluated by the appropriate averaging of the solutions of (1.1) with
suitable initial conditions. See Section 2 for details. Hence, one can formally apply any desirable scheme to
discretize (1.2). One possibility includes time reversible schemes such as the leap-frog scheme

ξn+1 = ξn−1+2∆t ·F (ξn,t), (1.3)

whereξn denotes the numerical approximation forξ at then’th macroscopic step. However, this is not
the complete story at the level of actual numerical discretization which involves nontrivial coupling of the
numerical schemes for the macro- and micro-scales, e.g. theevaluation ofF (ξn,t) via suitable solutions
of (1.1). Additional challenges emerge if we want to update the microscopic variablesxn in a reversible
way while remaining consistent with the underlying effective dynamics regulated by the macroscopic slow
variables.

Despite the fact that in general leap-frog is second order accurate, the slow variables need to be related
to the original fast state variable. In section 3 we show thata naive implementation may lead to a reduction
in accuracy and describe a way to regain the second order accuracy of leap-frog. All these couplings make
time reversibility at both macroscopic and microscopic level in an HMM scheme non-trivial.

The organization of the paper is as follows. Section 2 reviews the main results and algorithms developed
in [2], [3] and [12] and examines the notion of time reversibility in our multiple time-scale setting. Section 3
describes particular implementations of the method which are time reversible and analyses their accuracy. A
few examples are presented in Section 4. We end with concluding remarks in Section 5.

2 The HMM scheme

In order to study the long time properties of (1.1) we need to distinguish between the fast and slow con-
stituents of the dynamics. We say that a real valued smooth function (variable)α(x) is slow with respect to
(1.1) in an open connected setA if

max
x0∈A,t∈[0,T ]

∣

∣

∣

∣

d

dt
α(x(t;ε,x0))

∣

∣

∣

∣

≤C0, (2.1)

whereC0 is a constant that is independent ofε. Otherwise,α(x) is said to be fast. Similarly, we say that a
quantity or constant is of order one if it is bounded independent ofε in D0 or [0,T ].

Of course, any function of slow variables is also slow. Therefore, it is reasonable to look for vari-
ables which are functionally independent, i.e., a vector ofslow variablesξ=(ξ(1)(x), . . . ,ξ(r)(x)) such that
∇ξ(1)(x), . . . ,∇ξ(r)(x) are linearly independent inA. Sincer is bounded by the dimension,d, it is useful
to look at a set with a maximal number of functionally independent slow variables. Augmenting the slow
variables withd−r fast onesz=(z1, . . . ,zd−r) such that∂(ξ,z)/∂x is non-singular inA, one obtains a local
coordinate systems, i.e., a chart of the states space. We will refer to a chart in which a maximal number of
coordinates is slow as a maximal slow chart forA with respect to the ODE (1.1). Covering the setD0 by
maximal slow charts we obtain a maximal slow atlas forD0.

One of the important observations which follow from our definition of a slow chart is that typical slow
variables do not appear in conjugate pairs of some generalized position and momentum. Hence, there is
no clear notion of macroscopic time reversibility in the Hamiltonian sense. In [20], the slow behavior of a
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particular class of stiff mechanical systems is studied. Itis shown that in the limit ofε→0 the dynamics
can be approximated by an effective equation with Holonomicconstraints [5]. As a result, this effective
dynamics is time reversible.

We continue by examining the relations between the originalstate variables, which are typically fast,
and the slow coordinates in a maximal slow chart. In particular, we wish to establish the existence of an
effective evolution equation for the slow variablesξ(x(t)) under the flow of (1.1). The assumption that the
unperturbed dynamics is periodic implies that the only fastcoordinate is equivalent to rotation on the unit
circle with constant velocity, i.e.,φ∈S

1. This case is quite general since many weakly perturbed integrable
systems in resonance fall into this category through the notion of action-angle variables. Then, an averaging
principle can be used to prove that for smallε, ξ(x(t;ε,x0)) is well approximated in[0,T ] by an effective
equation of the form

ξ̇=F (ξ), ξ(0)= ξ(x0). (2.2)

See [2, 5, 28] for details. The requirement that(ξ,φ) is a maximal slow chart is critical for the derivation of
(2.2). Without it, there is no guaranty that the right hand side of the averaged equation does not depend on
additional slow variables which may be hidden or unknown.

The effective equation (2.2) may not be available as an explicit formula. Instead, the idea behind the
HMM algorithm is to evaluateF (ξ) by numerical solutions of the original ODE (1.1) on significantly re-
duced time intervals. In this way, the HMM algorithm approximates an assumed effective equation whose
form is typically unknown. This strategy is advantageous ifF (ξ) can be approximated efficiently. The ad-
ditional requirement of a time reversibility poses constraints on the way theF (ξ) is evaluated. Furthermore,
integration of (2.2) should be done while keeping the sequence of fast state variables reversible even across
macroscopic steps. The next section describes such an algorithm.

2.1 The algorithm

Supposeξ=(ξ(1)(x), . . . ,ξ(r)(x)) are the slow variables in a slow atlas for (1.1). The system isintegrated
using a two level algorithm, each level corresponding to a different time scale. The first is a Macro-solver
which integrates the effective equation (2.2) for the slow variablesξ. The second level is a micro-solver that
is invoked whenever the Macro-solver needs an estimate ofF (ξ). The micro-solver computes a short time
solution of (1.1) using suitable initial data. Then, the time derivative ofξ is approximated by

ξ̇(t)∼〈ξ̇〉η(t)=

∫ η/2

−η/2

ξ̇(x(t+τ))Kη(t−τ)dτ, (2.3)

where,Kη(·) denotes a smooth averaging kernel with support on[−η/2,η/2]. Note thatξ̇ is not necessarily
slow. However, it is bounded independent ofε. The properties of averaging with respect to a kernel will be
reviewed shortly.

To better explain the algorithm, denote the Macro-solver sample times byt0, . . . ,tN , N =T/H , and its
output at corresponding times byx0, . . . ,xN . At then-th Macro-step, the micro-solver can be implemented
using any scheme with step-sizeh and initial conditionx(tn)=xn. It integrates the full ODE both back-
wards and forward in time to approximate the solution in[tn−η/2,tn +η/2]. The structure of the algorithm,
depicted in Figure 1, is as follows [10, 13]

1. Initial conditions:x(0)=x0, ξ0 = ξ(x0) andn=0.

2. Force estimation:
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(a) micro-simulation: solve (1.1) in[tn−η/2,tn +η/2] with initial conditionsx(tn)=xn.

(b) Averaging: approximatėξ(tn) by 〈ξ̇〉η(tn).

3. Macro-step (forward-Euler example):ξn+1 = ξn +H〈ξ̇〉η(tn).

4. Reconstruction: findxn+1 consistent withξn+1. takexn+1 =xn +HF̃n, whereF̃n is the least squares
solution of the linear system

∂ξ(xn)

∂x
F̃n = 〈ξ̇〉η(tn)

5. n=n+1. Repeat steps (2) and (3) to timeT .

Here,∂ξ/∂x is a matrix whosek’th row is ∇ξ(k). The scheme described above can be generalized to
Macro-solvers with higher order accuracy.

h
x(0)

x

ξ

η

micro−solver

Macro−solverH

Figure 1: The cartoon depicts the time steps taken by the HMM scheme. At then-th Macro step, a micro-
solver with step sizeh integrates (1.1) to approximatex(t) in a time segment[tn−η/2,tn +η/2]. This data
is used to calculate〈ξ̇(x)〉η(t). Then, the Macro-solver takes a big step of sizeHF̃n, whereF̃n is consistent
with 〈ξ̇(k)〉η for all slow variablesξ(k) in the maximal slow chart.

2.2 Updating state variables

At the core of the HMM framework lies the idea that we are actually solving the effective equatioṅξ=F (ξ)
at the macroscopic time scale. Accordingly, one has the freedom of using an integrator of choice. For
example, applying forward-Euler with step sizeH yields a single-step rule

ξn+1 = ξn +HF (ξn), (2.4)

whereξn denotes the approximation forξ(tn). Alternatively, one can use the familiar two-step leap-frog
method, which is reversible in time

ξn+1 = ξn−1 +2HF (ξn). (2.5)

As in the algorithm described above,F (ξn) is approximated by solving the full system for a very short time
window.

Once new values for the slow variables are determined, it is necessary to find a new set of state variables,
xn+1, that are consistent with the new slow state,ξn+1, i.e., ξ(xn+1)= ξn+1. This stage is referred to as
reconstruction. Instead, the algorithm described above bypasses this difficulty by evolving the state variables
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x directly [2, 13]. Hence, step (3) of the algorithm above doesnot need to be performed. Of course, this
has to be done in a way that is consistent with the slow dynamics (to some order inH). With single-step
methods, the Macro-step takes the form

xn+1 =xn +HF̃ (xn,ξn). (2.6)

Comparing with (2.4) we find that, to orderH2, F̃ (xn,ξn) can be taken to be the least squares solution of
the linear system

∂ξ(xn)

∂x
F̃ (xn,ξn)=F (ξn).

Higher order schemes following Runke-Kutta methods are developed in [2].
The main goal of this paper is to develop a time reversible leap-frog scheme for the state variables

which consistently embeds the leap-frog scheme forξ, (2.5). For example, a naive attempt for a reversible
reconstruction step is to take

xn+1 =xn−1 +2HF̃n, (2.7)

whereF̃n is the least squares solution of the linear system

∂ξ(xn)

∂x
F̃n = 〈ξ̇〉η(tn).

Although this approach is simple, in section 3 it is shown that this leads to a method which is only first order
accurate inH . This low order accuracy is often too poor and impractical.

More generally, the scheme can be written implicitly in the form

G(xn,ξn;xn−1,xn+1)=0, (2.8)

where we require thatxn−1 andxn+1 are consistent with (2.5) to some known power ofH . In Section 3,
we suggest possible forms forG, which are skew-symmetric inxn−1 andxn+1, i.e.,

G(xn,ξn;xn−1,xn+1)=−G(xn,ξn;xn+1,xn−1).

As a result, the evolution operator is time reversible. The process of finding a microscopic statexn+1,
consistent with the Macroscopicξn+1 is under-determined since differentx may correspond to the same slow
coordinatesξ. Using (2.8) one picks a particular possible solution in such a way that the entire algorithm
become reversible in time.

Stability of the new scheme is inherited from that of the leap-from method forξ, (2.5). Note that the
approximation is only consistent for the slow variablesξ and not for the original state variablesx, since any
information on the fast coordinate is discarded.

2.3 Averaging using kernels

Let K(·) denote a smooth kernel function with support on[−1,1] with unit mass,
∫ 1

−1K(τ)dτ =1, and

vanishing first moment,
∫ 1

−1
K(τ)τdτ =0. In this paper we restrict the discussion to kernels which are

symmetric with respect to their mid-point. For example, thefollowing smooth exponential kernel was found
useful:

K(t)=Z−1exp

(

−5

4

1

(t−1)(t+1)

)

, (2.9)
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for t∈ (−1,1) and zero otherwise. Here,Z is a normalization constant. Forη>0 let,

Kη(τ)=
2

η
K(

2

η
τ). (2.10)

We will take η to beε dependent such that0<ε<η�1. The convolution of a functiona(t) with Kη is
denoted as (recall (2.3))

〈a〉η(t)=

∫ η/2

−η/2

a(t+τ)Kη(t−τ)dτ. (2.11)

Typically, the fast dynamics in equations such as (1.1) is one of two types (compare to the linear case,
f(x)=Ax). The first consists of modes that are attracted to a low dimensional manifold in a time scale
of order one. These modes are referred to as transient or dissipative modes and will not be discussed in
this paper. The second type consists of oscillators with constant or slowly changing frequencies. Averaging
of oscillatory modes filters out high frequency oscillations. The errors introduced by the averaging are
estimated in [2] and [12]. For example, for a functionβ(t) with period one and a kernel withq continuous
derivatives, we have that

∣

∣Kη(·)∗β(ε−1·)− β̄
∣

∣≤C||β||∞||K||W 1,q

(

ε

η

)q

, (2.12)

whereβ̄=
∫ 1

0
β(τ)dτ , || · ||∞ denotes the sup norm inD0,

||β||∞ = sup
x∈D0

|β(x)|, (2.13)

and

||K||W 1,q =

∫ 1

−1

|K(q)(t)|dt. (2.14)

Here,K(q) denotes theq-th derivative ofK.

3 A consistent and reversible multiscale solver

In this Section we describe our strategy that enables time reversibility in the entire HMM algorithm described
in Section 2.1 while maintaining the consistency between the macro- and micro states. Letx(t) denote the
exact solution of the full ODE system (1.1) with the initial conditionx(0)=x0. In addition, letH denote
the Macroscopic step size used in the Macro-solver,xn =x(nH) and∆+

xn−1 =xn−xn−1.
For illustration purposes, consider the following linear system describing a slowly expanding spiral

{

ż1 =−ε−1z2 +z1

ż2 = ε−1z1 +z2,
(3.1)

with initial conditions z1(0)=1 and z2(0)=0. The exact solution of (3.1) isx(t)= (z1(t),z2(t))=
(etcosε−1t,et sinε−1t) andξ(x)= z2

1 +z2
2 is a slow variable. Figure 2 depicts a forward-Euler type Macro-

step for (3.1).
Let γ denote a smooth curve connectingx0 andx1 =x(H). The change inξ(x) along the curve can be

expressed as

∆+ξ(x0)= ξ(x1)−ξ(x0)=

∫

γ

∇ξ(x) ·dx. (3.2)
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We are interested in two particular curves. The first is alongthe solution of the ODE. Takingγ={x(t)|0≤
t≤H}, (3.2) yields

∆+ξ(x0)=

∫ H

0

∇ξ(x(τ)) · ẋdτ =

∫ H

0

ξ̇(x(τ))dτ.

For0<ε<η�H , we obtain an estimate

∆+ξ(x0)=H
〈

ξ̇(x)
〉

η
(0)+O(H2 +e), (3.3)

wheree denotes the error from approximating the averageξ̇ using kernels. We assumee is negligible
compared toH2.

An alternative choice of curve follows the straight line in phase space connectingx0 andx1. Parameter-
izing the segment assx1 +(1−s)x0 with s∈ [0,1] yields

∆+ξ(x0)=

∫ 1

0

∇ξ(x0 +s∆+
x0) ·(x1−x0)ds=∇ξ(x0) ·∆+

x0 +O(H2). (3.4)

Comparing (3.3) and (3.4) we deduce that to second order inH ,

H〈ξ̇(x)〉η(0)=∇ξ(x0) ·∆+
x0. (3.5)

Thus, solving for∆+
x0, (3.5) yields the forward-Euler Macro-step formula used for the algorithm described

in Section 2.1 with a local truncation error that is second order inH . For larger systems with several
slow variables (3.5) generalizes to a linear system whose components comes directly from each of the slow
variables, and (3.5) can be solved using singular value decomposition.

The derivation above can be generalized to high order Runge-Kutta type methods by improving the
approximation in (3.2) and (3.4). This approach is developed in [2]. More attention is needed for multistep
methods that uses directly the original variables of the full system at the Macroscopic level. In the following,
we discuss our approach for designing such schemes.

Suppose the multiscale algorithm has already produced the first two Macroscopic steps,x0 =x(0) and
x1 =x(H). We are looking for the next Macro-stepx2 =x(2H). In analogy to the leap frog method,
we would like to find the value forx2 usingx0, x1 and the derivative at the middle pointx1, 〈ξ̇〉η(H).
In particular, any reversible explicit scheme cannot use the derivatives atx0, 〈ξ̇〉η(0). Figure 3 depicts a
reversible Macroscopic two-step solver.

Following the discussion above, we consider the change in a slow variableξ betweenx0 to x2

∆0ξ= ξ(x2)−ξ(x0)=

∫

γ

∇ξ(x) ·dx, (3.6)

whereγ is a smooth curve starting atx0 and ending atx2. Integrating along the solution of the ODE,x(t),
yields

∆0ξ=

∫ 2H

0

ξ̇(x(τ))dτ =

∫ 2H

0

〈ξ̇(x)〉η(τ)dτ +O(He)=2H〈ξ̇(x)〉η(H)+O(H3). (3.7)

On the other hand, we expandξ(x) around the middle pointx1

ξ(x1 +δx)= ξ(x1)+v ·δx+
1

2
δxTAδx+O(|δx|3),
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wherev=∇ξ(x1) andA=D2ξ(x1) is the Hessian ofξ(x) evaluated atx1. We have

ξ(x2)= ξ(x1)+v ·(x2−x1)+
1

2
(x2−x1)

TA(x2−x1)+O(|x2−x1|3)

and

ξ(x0)= ξ(x1)+v ·(x0−x1)+
1

2
(x0−x1)

TA(x0−x1)+O(|x0−x1|3).

Hence,
∆0ξ= ξ(x2)−ξ(x0)=v ·(x2−x0)+O(|x2−x1|2 + |x0−x1|2). (3.8)

Assuming thatξ(t) is Lipshitz in the domain of interest,D0, we have that|x2−x1| and|x0−x1| are both
of orderH . Note that, in general, the second order term does not cancel. Therefore, comparing (3.7) and
(3.8) yields, to orderH2,

2H〈ξ̇(x)〉η(H)=v ·(x2−x0). (3.9)

In order to achieve a local truncation error as small as possible, we look for the solutionx2 such that|x2−x1|
is minimal. The reversibility of the algorithm hinges on thefact that (3.9) is anti-symmetric with respect to
switchingx0 andx2 and that both|x2−x1| and|x0−x1| are minimal. Since (3.9) is a linear system,x2

can be easily obtained using singular value decomposition.This is equivalent to using the naive approach
(2.7). The solution of (3.9) is unique since it is a least squares problem. Geometrically,x2−x0 is the point
on the hyperplane with normal directionv, shifted fromx0 by 2H〈ξ̇(x)〉η(H)v/|v|2 which is closest tox0.

The numerical scheme is reversible, since, given initial conditions,x0 andx1, the micro-solver is used
to approximate the force atx1, 〈ξ̇(x)〉η(H), and we solve (3.9) forx2. The process can be reversed to take
x2 andx1, approximate the force starting at thex1, and solve (3.9) forx0.

x1
0x

∆+ 0x

micro−solver

Macro−step

Figure 2: A forward-Euler type Macro-step for the expandingspiral (3.1).

As discussed above, the sequence of microscopic statesx0, . . . ,xN is generated in a reversible manner
in the sense that, givenxN andxN−1, the algorithm can be traced back to obtainx0 andx1 up to round
off errors. However, the method is not reversible for the corresponding slow variablesξ0 = ξ(x0), . . . ,ξN =
ξ(xN ). Starting with macroscopic states,ξN andξN−1, requires identification of new microscopic states,
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0x

1x

2x∆+x0 x1∆+

micro−solver

Macro−step

Figure 3: A leap-frog type Macro-step for the expanding spiral (3.1).

xN andxN−1, such thatξN = ξ(xN ) andξN−1 = ξ(xN−1). Tracing back tot=0, the new value forξ0
will be different than the initialξ(x0) by an orderH . The lack of reversibility for the slow variables is
also apparent in the fact that the order of accuracy is even. The second order correction does not vanish, as
expected for reversible schemes.

Using (3.9), the error in each Macro step is of orderH2. Hence, the global error of the Macro-solver is
of orderH . In order to obtain a second order method, we expand the slow variableξ(x1 +δx) to second
order inδx

ξ(x1 +δx)= ξ(x1)+v ·δx+
1

2
δx ·Aδx+O(δ3x). (3.10)

Using (3.6), (3.7) and (3.10) yields an equation forx2 that is accurate to orderH3

2H〈ξ̇(x)〉η(H)= (x2−x0) ·(v−Ax1)+
1

2
x2 ·Ax2−

1

2
x0 ·Ax0. (3.11)

As before, in order to have a reversible scheme, we look for a solution that is closest to the middle point
x1. With several slow variablesξ(1), . . . ,ξ(r), x2 is the minimum of|x2−x1|2 under the constraint (3.11)
for each of the slow variables. Since (3.11) is a quadratic hypersurface inx2 andx0, the sought constrained
minimum exists and is unique unlessx2 is on the medial axis of the hypersurface. It can be shown thatfor
〈ξ̇(x)〉η(H) 6=0 this is not possible for small enough values ofH . Hence, the scheme is reversible. Using
Lagrange multipliers,x2 satisfies

{

(x2−x0) ·(v−Ax1)+
1
2x2 ·Ax2− 1

2x0 ·Ax0 =∆0ξ(k), k=1 . . .r

2x2−2x1 +
∑r

k=1λk [v+A(x2−x1)]=0,
(3.12)

where∆0ξ(k) =2H〈ξ̇(k)(x)〉η(H) andλ1 . . .λr are the Lagrange multipliers. For systems of coupled oscil-
lators, the slow variables correspond to amplitudes and therelative phase between the oscillators. In [2, 3],
we show that for periodic systems there existsr=d−1 functionally independent slow variables. Hence,
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(3.12) is a quadratic system of2d−1 equations and2d−1 unknowns. In the examples appearing at the
next Section, (3.12) is solved using Newton-Raphson with a required accuracyε. Taking the second order
approximation (3.9) andλ1 = · · ·=λr =0 is a good initial guess. Since the system is quadratic, convergence
is usually rapid.

We summarize our method with the following algorithm. Notations are the same as in Section 2.

1. Initial conditions:x(0)=x0 andn=0.

2. Force estimation:

(a) micro-simulation: solve (1.1) in[tn−η/2,tn +η/2] with initial conditionsx(tn)=xn.

(b) Averaging: approximatėξ(tn) by 〈ξ̇〉η(tn).

3. Macro-step: evolvingξ and reconstructingxn+1 (leap frog example)
solveG(xn,2H〈ξ̇〉η(tn);xn−1,xn+1)=0 for xn+1, whereG is given by (3.12).

4. n=n+1. Repeat steps (2) and (3) to timeT .

Finally, we remark that higher order quadrature methods canbe constructed in a similar fashion using
two or more steps for approximating (3.7) and additional terms in the Taylor expansion (3.10).

4 Examples

In this Section we apply the reversible HMM algorithm described above to several model systems. The main
purpose of the examples is to show the advantages of time reversibility in he multiscale setting.

4.1 The inverted pendulum

The following example considers a pendulum with a rigid arm that is attached at one of its ends to a mechan-
ical motor. The setup is depicted in Figure 4. The motor causes the point of suspension of the arm to vibrate
up and down with amplitudeε and frequencyε−1. Surprisingly, the fast vibrations of the motor can cause
the pendulum to oscillate slowly (with aO(1) frequency) around the inverted position, in which its arm is
pointing up. Denoting byθ the angle between the pendulum arm and the upward direction,the equation of
motion for the system becomes

lθ̈=
[

g+ε−1 sin(2πε−1t)
]

sinθ, (4.1)

whereθ denotes the angle between the arm and the upward direction,l is the arm’s length andg is the
gravitational constant [25]. Rewriting (4.1) as a first order autonomous system yields an ODE of the form



















θ̇1 = θ2

θ̇2 = l−1(g+ε−1ψ1)sinθ1

ψ̇1 =2πε−1ψ2

ψ̇2 =−2πε−1ψ1

(4.2)

In [2] we describe a variational numerical method for identifying the slow variable for (4.2). The method
identifies three slow variables that constitute a slow atlas:

ξ(1) = θ1

ξ(2) =ψ2
1 +ψ2

2

ξ(3) = θ2 +(2πl)−1ψ2 sinθ1.

(4.3)
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Indeed, it is easily verified that(d/dt)ξ(k)(x(t)) is bounded independent ofε for k=1,2,3. Figure 5a depicts
the numerical HMM solution for (4.2) withg=0.1 andl=0.05 using the reversible, second order Macro-
solver (3.11). Simulation parameters areε=10−5, h= ε/25,H=0.25, η=6.2ε and the exponential kernel
(2.9). The Newton-Raphson algorithm for solving (3.12) never requires more than two iterations. Initial
conditions areθ1(0)=0, θ2(0)=−0.4, ψ1(0)=0 andψ2(0)=1. The value forξ(2) is practically constant
with an error that is less than10−8%. Invariance of quadratic constants of motion is a typical advantage of
reversible methods. With the above parameters the HMM algorithm runs over 5000 times faster than Verlet.
Figure 5b depicts a similar numerical HMM solution for (4.2)using the exact same parameters, but with
a Macro-solver applying the mid-point rule. All other parameters are the same. Although both methods
are second order accurate, the errors using the midpoint rule re visibly larger. Additional approaches for
applying the HMM strategy on this example can be found at [6, 29, 31].

Figure 4: The inverted pendulum has a rigid arm which is attached to a motor that is vibrating fast. The
centrifugal force pulls the arm upwards.

4.2 Fermi-Pasta-Ulam

The Fermi-Pasta-Ulam model [14] is a one dimensional systemof unit mass particles connected by springs.
The springs alternate between stiff linear and soft non-linear ones [18]. The model is derived from the
following Hamiltonian

H=
1

2

2k
∑

i=1

p2
i +

1

4
ε−2

k
∑

i=1

(q2i−q2i−1)
2 +

k
∑

i=0

(q2i+1−q2i)
4. (4.4)

The following linear change of variables is convenient since it separates the elongations of thek stiff springs
and associated momentum:

xi = ε−1(q2i−1−q2i)/
√

2 , vi =(p2i−1−p2i)/
√

2, (4.5)

and a second set of variables associated with thek soft springs:

yi =(q2i−1 +q2i)/
√

2 , ui =(p2i−1 +p2i)/
√

2, (4.6)
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Figure 5: (a) Comparison of the HMM approximation for the solution of (4.2) to the Verlet method with step
size of orderε. Solid curve:ξ(1) = θ1, dotted curve:ξ(3) = θ2+(2πl)−1ψ2 sinθ1. ξ(2) is constant. (b) The
same system with a Macro-solver applying the mid-point rule. All other parameters are the same. With the
mid-point rule errors are visibly larger.

Definingy0 =x0 = y2k+1 =x2k+1 =0, the equations of motion can be written as



















ẏi =ui

ẋi = ε−1vi

u̇i =−(yi−εxi−yi−1−εxi−1)
3 +(yi+1−εxi+1−yi−εxi)

3

v̇i =−ε−1xi +(yi−εxi−yi−1−εxi−1)
3 +(yi+1−εxi+1−yi−εxi)

3.

(4.7)

As discussed in [2], the slow atlas for the system consists of4k−1 slow variables. First are all the degrees
of freedom which are related to the soft springs:yi andui, i=1 . . .k. Second, the total energy (kinetic +
potential) of the stiff springs,Ii =x2

i +v2
i , i=1 . . .k. Finally, the relative phases between the different stiff

springs,φi =x1xi +v1vi, i=2 . . .k. Any other functionα(x) which is slow under the dynamics of (4.7) can
be written as a function of the4k−1 variables described above.

On theO(1) time scale the energy of the stiff springs and their relativephases are fixed, while the degrees
of freedom that correspond to the soft springs oscillate in acomplicated, non-harmonic way. On theO(ε−1)
time scale the dynamics becomes more interesting as the energiesIi begin to change [14, 18]. The pur-
pose of this example is to demonstrate the benefits of the reversible algorithm. Indeed, with non-reversible
Macro-solvers the algorithm suffers from relatively high energy dissipation and the method is unpractical
for computations on theO(ε−1) time scale. The reversible solver greatly improves energy conservation and
a posteriori error analysis suggests that it is convergent.While it is possible to construct a method that works
on the correct,O(ε−1) time scale, this is beyond the scope of the current paper.

Figure 6a depicts our results for a system with three stiff springs,k=3. Initial conditions arex1 =−1,
y1 =−0.5, y1 =u1 =x2 =1, v3 =−0.5 and zero otherwise. Fixingε=10−3, simulation parameters were
varied until amplitude values changed by5−10%. It was particularly difficult to get convergence using the
standard Verlet method.

HMM parameters areh= ε/50,H=0.1, η=60ε and the exponential kernel (2.9). The second order ac-
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curate reversible HMM (3.12) is compared to the Verlet solution with step sizeε/200. Note the significantly
smaller step size required for Verlet. Figure 6b depicts thedrift in the total energy of the entire system,
which is smaller than0.4%, even though our method does not guarantee convergence on the ε−1 time scale.

The Newton-Raphson method used for solving the equations obtained by the Lagrange multipliers,
(3.12), becomes inefficient if the partial derivatives matrix of the right hand side of (3.12) is close to singular.
In principle, one should then use a different method for solving these equations. Since in this example we
are mostly interested in demonstrating energy conservation, we bypass this difficulty by integrating the full
system (4.7) using Verlet for a timeH whenever this problem occurs. In practice, the Verlet method is used
in a few segments whose total length is less than1% of [0,T ] and therefore does not reduce the efficiency
considerably. In addition, these segments improve the stability of the algorithm as they smooth out oscil-
lations between even and odd steps. We stress that the difficulties discussed above only occur on the long,
O(ε−1) time scale.
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Figure 6: (a) Comparison of the HMM approximation for the solution of the Fermi-Pasta-Ulam equations of
motion (4.7) to the one obtained using the Verlet method. (b)Energy dissipation with reversible HMM.

5 Conclusion

Previously, we have proposed an approach for identifying a change of variables that decomposes a vector
field into its fast and slow constituents [2, 3]. The decomposition is used in an HMM algorithm that effi-
ciently integrates the slow parts of the dynamics without fully resolving the fast parts over the computed time
interval. The algorithm applies a different integrator to each of the time scales in the problem. In this paper
we further develop this approach and describe a method in which both the integrators and the feed back
between the different scales are implemented in a time reversible way. As a result, we obtain a numerical
scheme in which the sequence of microscopic states is reversible. The method is not reversible for the slow
variables. A particular set of slow variables does not correspond to a unique microscopic state. As a result,
given the final slow statesξN−1 andξN , it is necessary to findxN−1 andxN such thatξN−1 = ξ(xN−1) and
ξN = ξ(xN ). This reconstruction procedure ca only be preformed approximately. Hence, one cannot trace
back toξ0 exactly. This is consistent with the fact that the dynamics of the slow variables is not reversible in
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the sense of Hamiltonian systems.
We demonstrate that the new approach enjoys many of the benefits of traditional time reversible integra-

tors such as low energy dissipation. These properties are critical for integrating Hamiltonian systems over
long time periods, as was demonstrated in the Fermi-Pasta-Ulam example.
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