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Abstract We propose a new heterogeneous multiscale method (HMM) for computing the
effective behavior of a class of highly oscillatory ordinary differential equations (ODEs).
Without the need for identifying hidden slow variables, the proposed method is constructed
based on the following ideas: a nonstandard splitting of the vector field (the right hand side
of the ODEs); comparison of the solutions of the split equations; construction of effective
paths in the state space whose projection onto the slow subspace has the correct dynamics;
and a novel on-the-fly filtering technique for achieving a high order accuracy. Numerical
examples are given.

Keywords Oscillatory dynamical system · Averaging

1 Introduction

In many applications the preservation of the long-time behavior of the flow is more impor-
tant than the approximation of the trajectory or a particle itself. Even for a numerical scheme
with a high order accuracy, the preservation of invariance does not hold automatically. There

G. Ariel
Bar-Ilan University, Ramat Gan, 52900, Israel
e-mail: arielg@math.biu.ac.il

B. Engquist · S. Kim · Y. Lee · R. Tsai (�)
Department of Mathematics and Institute for Computational Engineering and Sciences (ICES),
The University of Texas at Austin, Austin, TX 78712, USA
e-mail: ytsai@math.utexas.edu

B. Engquist
e-mail: engquist@ices.utexas.edu

S. Kim
e-mail: skim@math.utexas.edu

Y. Lee
e-mail: ylee@math.utexas.edu

mailto:arielg@math.biu.ac.il
mailto:ytsai@math.utexas.edu
mailto:engquist@ices.utexas.edu
mailto:skim@math.utexas.edu
mailto:ylee@math.utexas.edu


248 J Sci Comput (2013) 54:247–268

has been significant amount of activities in developing numerical methods that allow long
time computation of oscillatory solutions to Hamiltonian systems. These methods typically
attempt to approximately preserve some analytical invariance of the solutions: e.g. the to-
tal energy of the system, symplectic structures, or the reversibility of the flow. Detailed
reviews and further references on this active field of geometric integration can be found
in [12, 29–31, 37, 38, 41], and [15]. Another approach based on asymptotic expansions in
inverse powers of the oscillatory parameter is given in [16] and references within.

Here we develop computational methods for a class of highly oscillatory ODEs, including
non-Hamiltonian systems that are beyond the scope of the standard geometric integrators
or the classical methods for stiff equations. We focus on problems for which the range of
scales is so large that the finest scale cannot be resolved over the entire time interval of
interest. Gear and Kevrekidis introduced such a technique in [26] and applied it successfully
to dissipative problems. We will concentrate on highly oscillatory problems and build on the
framework of E and Engquist [19], The Heterogeneous Multiscale Method (HMM).

An HMM utilizes an important consequence of scale separation in the given problems.
If enough information about the fast scale influence on the slow scale dynamics can be
obtained by performing localized simulations over short times, then it is possible to obtain
a numerical complexity that is much smaller than direct simulations of the given systems.
This feature exists implicitly in the classical stiff solvers as the resulting algebraic systems
of equations are solved by efficient nonlinear solvers exploiting special structures. In the
envelope methods [39] for highly oscillatory problems fast oscillations are sampled cleverly
in order to extrapolate in a much larger time scale. Similar techniques are also used in
stochastic differential equations [20]. In a sequence of papers, [2–6, 22], we have introduced
and developed multiscale algorithms which use a set of slow variables for computing the
effective behavior of a highly oscillatory dynamical system. The set of slow variables can
be either analytically derived, or numerically determined. In addition to our previous work,
other approaches to find slow variables include, e.g. [8, 9].

The requirement of using an explicit form of slow variables is no longer needed in the
methods proposed in this paper. Instead, some assumptions are placed on the vector fields
defined by the dynamical systems. The originally given dynamical system is thought of as
having a lower order perturbation. By ignoring a lower order perturbative part of the vector
field, an “unperturbed” dynamical system is defined. It is assumed that the dynamics of the
“unperturbed system” is ergodic and yields an invariant measure on a manifold. The essen-
tial part of our new algorithm is to run the original and the “unperturbed” systems from
the same initial conditions for short time intervals, and compare the resulting solutions. See
Fig. 2 for an illustration. Furthermore, by reversing the “unperturbed problems, the “unper-
turbed” system yields new initial data from which a new comparison of the two dynamical
systems can be performed as described earlier. Iterating this procedure a few times, we ob-
tain a sequence of points in the state space. From these points, we then construct locally
an effective path along which the evolutions of the original system’s slow variables are ac-
curately captured. Moreover, our algorithm achieves higher order accuracy by connecting
these ideas with a novel filtering technique.

We remark that our method shares some formal procedural similarity to many algorithms
that use splitting techniques, but ours is fundamentally different from these algorithms. The
impulse method [25] and FLAVORS [42] are two of the well-known methods using splitting
technique. The impulse method for Newtonian dynamics splits the force field into fast and
slow parts. As with the conventional splitting strategy, the basic impulse algorithm then in-
tegrates alternately in time intervals of equal length, the fast equation and the slow equation;
the integration for the fast equation starts with the solution generated by the slow equation,
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and vice versa. In the context of impulse method, it is assumed that the slow part of the
vector field comes from long range interaction potential and is relatively costly to evaluate
compared to the fast force. In this paper, the focus is on bypassing the need to evaluate the
fast forces in time intervals that are asymptotically longer than the shortest periods in the
oscillations, which is also dealt with in FLAVORS. FLAVORS integrate the whole system
and the split non-stiff system alternately as well. More precisely, during the integration, stiff
forces in the given system are “turned on” over a microscopic time interval time and then
“turned off” over a mesoscopic time step. As in the impulse method, the solution produced
at the end of a microscopic interval by “turning on” the stiff force in the system is continued
by serving as the initial condition for the whole system in the following mesoscopic time
integration.

We emphasize that while our algorithm does require splitting of the vector field, our
ultimate numerical solutions are not constructed from continuing alternately the solutions
computed by the split equations. Furthermore, we point out that both the impulse methods
and FLAVORS are lower order methods. In essence FLAVORS can be regarded as a Monte-
Carlo type algorithm while our method is deterministic in nature and does compute higher
order accurate solutions.

The layout of the paper is as follows. In the remaining of this section, we present the
basic ideas in designing an HMM. In Sect. 2, we present our new algorithm for tracking slow
variables. This is based on splitting the original equation (1.1) into stiff and non-stiff parts.
In order to achieve high order accuracy, a novel on-the-fly filtering technique is introduced
in Sect. 2.1.2. Section 3 presents several numerical examples. Here we compare our method
with existing methods, e.g., FLAVORS. We conclude in Sect. 4.

1.1 The HMM Framework

We consider the computation of the effective long time properties of a class of dynamical
system, formally written in the form

d

dt
u = ε−1f1(u) + f0(u), (1.1)

with initial condition u(0) = u0 ∈ D0 ⊂ R
d . It is assumed that a unique bounded solution

exists in a time segment I = [0, T ]. In many examples, it is not clear how to characterize
the slow parts of the dynamics in systems (1.1).

Significant amplification of numerical errors occurs when a classical integrator is applied
to approximate the long-time behavior of (1.1). The accuracy and stability requirements of
the integrator dictate the use of a time step of order ε due to the stiff part. This fact implies
that the computational complexity for (1.1) over a fixed time T is at least of the order of ε−1.
However, in many situations, one is interested only in a set of slowly changing quantities
U that are derived from the solutions of the given stiff system (1.1). In the case where U

is a set of functions of u, they are commonly referred to as slow variables of the system.
See [2, 4, 24, 27, 34–36]. For example, U could be the averaged kinetic energy of a particle
system u. Formally, slow variables of a dynamical system can be defined as below.

Definition 1 Let u(t) ∈ D0 denote the solution of (1.1) for some initial conditions. A smooth
function a(t) is to be slow if |da/dt | � C for some constant C independent of ε in t ∈ I .
Moreover, a smooth function ξ(u) : D0 → R is called a slow variable with respect to u(t) if
ξ(t) = ξ(u(t)) is said to be slow.
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Our objective is to construct and analyze ODE solvers that integrate the system

d

dt
U = F(U,D), (1.2)

where D is the data that can be computed by solving (1.1) locally in time. U may be some
function or functional of u, and is called the macroscopic variable. U typically describes
some effective behavior of (1.1) that is of relevance to the application.

If F is well-defined and has convenient explicit mathematical expression, then there is
no need to solve the stiff system (1.1); one only needs to solve (1.2). In many situations,
the dependence of U on u is not explicitly available. Our proposed strategy involves setting
up a formal numerical discretization for (1.2), and evaluate F from short time histories of u

with properly chosen initial conditions.
We will generalize the scope of this type of algorithms by providing a more general

systematic analysis that is applicable to a much wider class of applications including some
systems from molecular dynamics. In the HMM framework [3, 4, 22], one assumes a macro-
scopic model

F(U,D) = 0, U ∈ Ω(M) (1.3)

which may not be explicitly given, but can be evaluated from a given microscopic model,

f (u, d) = 0, u ∈ Ω(m) (1.4)

where u are the microscopic variables. D = D(u) and d = d(U) denote the set of data or
auxiliary conditions that further couple the macro- and microscopic models. Model (1.3)
is formally discretized at a macroscopic scale, and the adopted numerical scheme dictates
when the necessary information D(u) should be acquired from solving (1.4), locally on the
microscopic scale with auxiliary conditions d(U). As part of d(U) and D(u), the macro-
and microscopic variables are related by reconstruction and compression operators:

R(U,DR) = u, Q(u) = U, Q
(

R(U,DR)
) = U, (1.5)

where DR are the needed data that can be evaluated from u. Errors of this type of schemes
generally take the structure

Error = EH + Eh + EHMM,

where EH is the error of the macroscopic model (1.3), Eh is the errors from solving (1.4),
and EHMM contains the errors in the multiscale model, including the passing of information
through R and Q. This approach has been used in a number of applications, such as contact
line problems, epitaxial growth, thermal expansions, combustion [21], as well as homoge-
nizations of wave propagation in long time intervals [23], and coupling network models for
macroscopic multiphase flows in porous media [13, 14].

Figure 1 shows two typical structures of such algorithms. In our context, an ODE solver
for U lies on the upper axis and constructs approximations of U at the grid points depicted
there. The fine meshes on the lower axis depict the very short evolutions of (1.1) with initial
values determined by R(U(tn)). The reconstruction operator then takes each short time
evolution of u and evaluates F and U . The algorithms in [18, 26, 39], and [7] are also of
a similar structure. As a simple example, the forward Euler scheme applied to (1.2) would
appear to be

Un+1 = Un + H · F(Un), (1.6)
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Fig. 1 Two typical structures of the proposed multiscale algorithm. The structure on the left is suitable for
dissipative systems

where F contains the passage of QΦt R(Un); reconstruction R, evolution Φt , and compres-
sion Q, and H is the step size. If each evolution Φt of the full scale system (1.1) is reasonably
short, the overall complexity of such type of solvers would be smaller than solving the stiff
system (1.1) for all time, thereby gaining computational efficiency.

Essential questions that need to be resolved for each scheme include:

• If only the microscopic model is given, how to systematically derive a corresponding
macroscopic model for the application in question? What are R and Q?

• With the system for u, and a choice of U(u), is F well-defined by the procedure defined
above? If not, how can it be properly defined?

• How long should each evolution be computed?
• What do consistency, stability, and convergence mean?

For a fixed ε, all well known methods, assuming U = u, will converge as the step-size
H → 0, and there is no difference between stiff and non-stiff problems. In the related work
[3, 4, 22], convergence for stiff problems (ε � H ) is defined by the following relation: For
the error

E(H) = max
0≤tn≤T

(
sup

0<ε<ε0(H)

∣∣U(tn) − Un

∣∣
)
, (1.7)

we have that E(H) → 0 as H → 0. Here, ε0(H) is a positive function of H , serving as
an upper bound for the range of ε, and U(tn) and Un denote respectively the analytical
solution and the discrete solution at tn. With this notion, it is clear that a sensible method
has to utilize the slow varying property of U and generate accurate approximation with a
complexity sublinear to ε−1.

1.2 Slow Variables and Invariant Measures

We start by considering a class of system that has an explicit slow-fast grouping in the
solution’s components:

{
d
dt

x = ε−1f (x, z, t) + g(x, z, t),
d
dt

z = h(x, z, t).
(1.8)

Here the x components are real valued and stay bounded but are highly oscillatory, and
the z components are called the slow variables in the system, since their time derivatives
are formally bounded. If for fixed z, x(t) is ergodic with respect to an invariant measure
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μ supported on some manifold M(z) of the same dimension as that of x, then z(t) can be
consistently approximated in any constant time interval by an averaged equation

d

dt
z̄ = h̄(z̄, t) :=

∫

M(z̄)

h(x, z̄, t)dμ(x, z̄). (1.9)

Such systems are widely studied for building multiscale scale methods; see [18, 43]. For
these systems, it is reasonable to use z̄ as the macroscopic variable; i.e. U = z̄ � z, and
R(U,DR) = (x∗, z) where DR gives the value x∗ ∈ M. For example, due to the ergodicity
of the system, x∗ can be taken from the x values in the previous microscale simulation.
The compression Q may simply be Q(x, z) = z. The operator F in (1.6) plays the role
of approximating the average right hand side by time averaging the microscopic evolution
using a suitable filtering kernel. From the computational point of view, averaging methods
inspire efficient numerical schemes for integrating the slow components of slow-fast systems
without fully resolving all fast oscillations.

However, if there are resonances among the oscillations, x(t) is likely not to remain on
any invariant manifold [35], and more sophistication in the algorithm is needed. One can see
the essence of this problem from the simple example,

{
d
dt

x = iε−1x + g(x), x(0) = 1,
d
dt

z = h(x), z(0) = z0
=⇒

{
d
dt

w = e− i
ε t g(e

i
ε tw), x(t) = e

i
ε tw(t),

d
dt

z = h(e
i
ε tw), z(0) = z0.

Let us formally decompose e− i
ε t g(e

i
ε tw) = ḡ(w) + α(e

i
ε t ,w), where ḡ does not depend on

any fast oscillations but α has only fast oscillations and averages to zero. Resonance in this
system corresponds to the case where ḡ is non-zero. If ḡ ≡ 0, w(t) stays close to 1, due to
the strong self-averaging in α. Thus (1.9) corresponds to averaging h over the unit circle,
and dμ is the arc-length element. Consequently, the averaging has to be performed with the
correct measure

d

dt
z̄ = h̄(z̄, t) :=

∫

M(t)

h(x, z̄, t)dμ(x, z̄; t).

For example, if g(x) = x, then ḡ(w) = w, and α ≡ 0. Consequently, M(t) is a circle with
radius equal to w(t) = exp(t). Without the knowledge of w(t), it is impossible to define a
consistent reconstruction operator R, and consequently, it is impossible to build a convergent
multiscale algorithm. In some literature, the issue caused by resonance is referred to as the
system having hidden slow variables [3, 22, 24, 42]. It is essential that a multiscale method
computes accurately the effect of the hidden slow variables.

We continue our discussion using the previous example, but instead, we rewrite the equa-
tion for x as a system in R

2:
{

ẋ1 = ε−1x2 + x1,

ẋ2 = −ε−1x1 + x2,

with initial conditions (x1(0), x2(0)) = (0,1). Thus (x1(t), x2(t)) = (et sin ε−1t, et cos ε−1t).
Taking I = x2

1 + x2
2 , we notice that I has a bounded derivative along the trajectory of the

solution; i.e., İ := (d/dt)I (x1(t), x2(t)) = 2I is independent of ε. Since I does not appear
explicitly in the given ODEs, it is regarded as a hidden slow variable. For this particular
example one can easily solve for I , I (t) = I (0)e2t . In fact, the uniform bound on İ indicates
the slow nature of I (x1(t), x2(t)) when compared to the fast oscillations in (x1(t), x2(t)).
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This type of characterization of the effective dynamics of highly oscillation systems are
commonly used in the literature. In this example it was easy to find the slow quantity I .

We refer the reader to [3, 4] for designing multiscale algorithms that compute the effec-
tive behavior of highly oscillatory dynamical systems by using slow variables. [4] shows
how polynomial slow variables in (1.1) can be identified by a numerical algorithm and how
short time solutions of (1.1) can be used to approximate the assumed effective equation. In
particular, for autonomous systems, a diffeomorphism Ψ : u → (ξ(u),φ(u)) of (1.1) from
R

d onto R
d−1 × S1 is constructed so that

{
ξ̇ = g0(ξ,φ), ξ(0) = ξ0,

φ̇ = ε−1g1(ξ,φ) + g2(ξ,φ), φ(0) = φ0,
(1.10)

and all smooth slow variables depend on ξ up to some bounded lower order perturbative
terms. Consequently, this set of slow variables characterizes the slowly changing effective
behavior of the trajectory of the given oscillatory dynamical system. Typically, one may
expect that the values of a slow variable ξ along the dynamical system’s solutions, ξ ◦
u, converge as ε → 0. We shall denote this limit as ξ̄ (t;u0). This expectation may come
directly from the averaging theory [40].

In designing multiscale algorithms for this type of problems, it is often convenient to
aim at constructing accurate approximation of ξ̄ by suitable filtering of the oscillations in
u(t). This typically involves numerically averaging over the fast oscillations in the system.
The resulting HMMs are quite efficient as reported in our previous work. Nevertheless, for
large systems, analytical or numerical determination of a suitable close set of slow vari-
ables whose dynamics are closed along u(t) can be difficult. The purpose of this paper is to
introduce new HMMs which do not use slow variables in the computation.

2 The BF HMM Scheme

We consider the computation of the effective long time properties of a class of dynamical
system, formally written in the form

d

dt
xε = ε−1f1

(
xε

) + f0

(
xε, t; ε), (2.1)

with initial condition xε(0) = x0 ∈ D0 ⊂ R
d .

Assumption 1 The trajectory passing through y0 ∈ D0 of the unperturbed equation

d

dt
y = ε−1f1(y), (2.2)

is ergodic on some invariant manifold M(y0) ⊂ D0. Furthermore, for points in D0, the
Jacobian of f1 has only purely imaginary eigenvalues bounded away from 0, independent
of ε.

Assumption 2 The invariant manifolds M of (2.2) can be identified by the level sets of
ξ1, ξ2, . . . , ξk with k < d which are slow variables with respect to xε(t).
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Fig. 2 γ (
) := x(
),
γ (0) := y(
), and
γ (−
) := x(−
;y(
))

Thus, for each time t , we may identify the manifold

M(t) =
k⋂

j=1

{
z ∈ R

d : ξj (z) = ξj ◦ xε(t)
}
,

and if we solve (2.1) and (2.2) with the same initial condition lying on M(t), it is then
possible to track M(t) by comparison of xε(t) and y(t) without explicitly knowing the
slow variables. Thus the evolution of the slow variables, or equivalently, that of M(t), can
be tracked at least locally in state space by a path γ (s) which crosses M(t) at s = t . Note
that such γ is not unique and we shall construct one in the state space such that for any slow
variable ξ , and finite time interval, γ satisfies the following conditions:

1. (Consistency) ξ ◦ γ (t) = ξ ◦ xε(t);

2. (Effectiveness) | d(j)γ

dt(j) | ≤ C, for 1 ≤ j ≤ k for some positive integer k.

We shall refer γ as an effective path of the given dynamical system.
It has been observed in [4] that such a path can be constructed using an effectively closed

system of explicitly identified slow variables. Furthermore, the constructed path is orthogo-
nal to the level sets of the slow variables in the limit as ε → 0. Our new algorithm does not
require explicit form of any slow variables. Instead, our new algorithm compares short time
solutions of (2.1) and (2.2) to generate a sequence of points whose interpolation defines an
approximation of γ . In the following algorithms, γ is not necessarily orthogonal to the level
sets of slow variables. As we shall see further below, the more sophisticated form of our
algorithm requires both the forward and backward in time solutions of (2.1) and (2.2). Thus,
we shall call our algorithms BF HMMs for brevity.

Our basic algorithm is illustrated in Fig. 2 and summarized below. This first algorithm
does not involve any solution of the equations involved backward in time, but we shall
still call it a BF HMM. We remark here that Algorithm 1 described below shares a similar
strategy is that proposed in [1] for a different problem.
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Algorithm 1 (Forward Euler BF HMM)

1. (Forward Euler macro-solver) Compute γn+1 from γn at tn = nH .

γn+1 = yn(
) + HFn,

where

Fn := xn(
) − yn(
)



,

and xn(
) and yn(
) are evaluated from the micro-solver.
2. (Micro-solver) At tn = nH , solve

d

dt
xn = ε−1f1(xn) + f0(xn, tn; ε), xn(0) = γn,

and

d

dt
yn = ε−1f1(yn), yn(0) = γn,

for t ∈ [tn, tn + 
] with 0 < ε � 
 � H .
3. Repeat.

Example 1 Our simple example to demonstrate the consistency of the Forward Euler BF
HMM is an expanding spiral [3] in C.

d

dt
xε = iε−1xε + xε, xε(0) = x0 (2.3)

with x0 > 0 independent of ε. We transform xε into (ξ,φ) where ξ = |xε | and φ = arg(xε),
and obtain

{
ξ̇ = ξ, ξ(0) = |x0|,
φ̇ = ε−1, φ(0) = arg(x0).

(2.4)

By Definition 1, ξ is a slow variable. In Step 1, we assume that all micro simulations of x

and y are exact over [tn, tn + 
], 
 � H . Then the local truncation error in approximating
a slow variable ξ is given by

∣
∣∣
∣ξ ◦ xε(tn+1) − ξ ◦

(
yn(
) + H · xn(
) − yn(
)




)∣
∣∣
∣ =

∣
∣∣
∣e

tn+H − etn

(
1 + H · e
 − 1




)∣
∣∣
∣

=
∣∣
∣∣e

tn

(
H 2 − 
 · H

2
+ · · ·

)∣∣
∣∣

≤ CH 2

for some positive constant C. Thus to leading order in H 2, Forward Euler BF HMM yields
a correct γ (t) for the slow variable ξ .

2.1 Higher Order Schemes

In this section we describe the construction of high order accurate BF HMMs with sublinear
complexity in constant time intervals. In Algorithm 1, forward Euler scheme is used to
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compute the effective path γ that passes through y(
). A lower order approximation of
dγ /dt when it crosses y(
) is approximated by Fn, which is a linear approximation. Thus,
higher order BF HMMs require higher order approximation of dγ /dt . In order to do that, we
systematically solve (2.1) and (2.2) both forward and backward in time to obtain points lying
on an effective path that crosses a chosen point. Below, we outline this general procedure:

• The chosen macroscopic integrator is used to construct an effective path γ that crosses
a chosen point γ ∗

0 , which may either be given by the macroscopic integrator directly, or
come from solving (2.2) for a short time. The values of d

dt
γ at various quadrature points

needed by the macro-integrator are computed as below.
• From the initial condition γ (t∗) =: γ ∗

0 . A sequence of points in the state space, denoted
by γ ∗

k , k = 0,±1, . . . ,±p, is generated by the microscopic solver solving (2.1) and (2.2)
for short time intervals of length 
. The generation of γ ∗

k will be described in detail later.
• d

dt
γ (t) is approximated by d

dt
γ ∗


(t) for t ∈ [t∗ − p
, t∗ + p
], where γ ∗

(t) is an inter-

polation of γ ∗
k at t = t∗ + k
.

For simplicity of presentation, we only describe the procedure for k > 0. Assume that the
value of γ (t∗) is given, we start by defining γ ∗

0 := γ (t∗).

• For k = 0,1, . . . , p − 1,

1. Solve Eq. (2.1) for xε using γ ∗
k as the initial condition at t = k
, and obtain the

solution at time (k + 1)
, denoted by xε(
;γ ∗
k ).

2. Solve Eq. (2.2) for y backward in time, from t = (k + 1)
 to k
, with the condition
x(
;γ ∗

k ). Denote the solution at t = k
 by y(−
;γ ∗
k ).

• Define γ ∗
k+1 := y(−
;γ ∗

k ).

The procedure for k < 0 involves first solving y backward in time, and then solving xε for-
ward in time. This type of construction involving forward-backward flow can be recognized
using the diagram shown in Fig. 3. In Fig. 4, we show two projections of γ thus constructed
for the stellar orbits problem. See Sect. 3.2 for the stellar orbits model.

2.1.1 A Sampling Issue

In a typical application, the slow variables along xε(t) will possess O(ε) oscillations around
a smooth average; i.e. one cannot expect that | dν

dtν
ξ ◦xε | be bounded uniformly in ε for ν ≥ 2.

Since slow variables are functions that do not depend on ε, the boundedness of | dν

dtν
ξ ◦xε | =

| dν

dtν
ξ ◦γ | thus determines the boundedness of γ (ν)(t). In other words, for most applications,

the effective path γ (t) constructed by the algorithm outlined above will have fast oscillations
of O(ε) amplitudes. This poses some restriction to the lengths of 
 and the macroscopic step
size, H .

Nevertheless, the O(ε) oscillations will be sampled very irregularly by the interpolation
points γ ∗

k and will typically lead to an O(ε/
) error in the approximation of dξ̄/dt regard-
less of how many points we interpolate. This limitation of the accuracy can be lifted by a
novel filtering technique described in the following section, or by additional knowledge of
the periodicities of the fast oscillations in ξ ◦ xε(t).

2.1.2 A Novel On-the-Fly Filtering Approach

As we see from the discussion in Sect. 2.1.1, the bottleneck in the accuracy of this new
algorithm is a consequence of the small-amplitude fast oscillations in ξ ◦xε(t). The accuracy
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Fig. 3 An illustration of the BF HMM construction for approximating an effective path that passes through
γ ∗

0 . This construction will take place at every microscopic simulation in a BF HMM algorithm. Mappings that
involve backward in time solutions of either (2.1) and (2.2) are depicted by the dashed arrow curves. (Left)
This diagram summarizes the evaluation of Fn in Algorithm 1. Together with the chosen Forward Euler
macro-solver, the structure corresponds to the HMM structure shown in the left subfigure of Fig. 1. (Right)
Blue curves symbolize mappings that involve the solutions of (2.2). The red curve depicts the trajectory of
the computed effective path (Color figure online)

Fig. 4 Projections of γ (t) onto the x1–v1 and the x2–v2 planes, are shown by the solid curve. The level sets
of the slow variables are shown by the dotted contours. γ is computed by a second order explicit Runge-Kutta
method using macroscopic time step size H = 0.25, ε = 10−4. See Algorithm 2 for generating solid curves
and Sect. 3.2 for the stellar orbits equation

of the proposed algorithm can be improved if γk sample the smooth average ξ̄ instead. Since
we assume no explicit knowledge about the slow variables, ξ̄ must be computed intrinsically.

Our idea is to average the vector field defined by the dynamical system “on-the-fly”.
More precisely, we propose to replace (2.1) by a filtered equation

d

dt
x̃ = 1

ε
f1(x̃) + K
(t)f0(x̃, t; ε), (2.5)

with the identical initial condition as xε ; i.e. x̃(t∗) = xε(t∗). In the forward in time simula-
tions for time interval t∗ ≤ t ≤ t∗ + 
, the filter K
(t) will vanish outside of that interval.
Similarly, in the backward in time simulations, the filter will be supported on the interval
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t∗ − 
 ≤ t ≤ t∗. We will develop the appropriate filters so that the smooth average ξ̄ (t) of
ξ ◦ xε(t) is approximated accurately by ξ ◦ x̃(t) at t = t∗ ± 
.

The mechanism of this approach for linear equations can be understood by comparing

x ′ = i

ε
x + c

(
t,

t

ε

)
x,

and the corresponding filtered equation in the interval 0 ≤ t ≤ 
. Analysis of this new
approach for more general nonlinear systems will be reported in a forthcoming paper. With
x = e

i
ε tw and x̃ = e

i
ε t w̃, we have

w′ = c

(
t,

t

ε

)
w, and w̃′ = K
(t)c

(
t,

t

ε

)
w̃.

Suppose c(t, t/ε) = c̄(t) + α(t/ε), where α is a periodic function with zero average. Then

w(t) = w0 exp

(∫ t

0
c̄(s)ds +

∫ t

0
α

(
s

ε

)
ds

)
= w0 exp

(∫ t

0
c̄(s)ds

)
+ O(ε), (2.6)

w̃(t) = w0 exp

(∫ t

0
K
(s)c̄(s)ds +

∫ t

0
K
(s)α

(
s

ε

)
ds

)
. (2.7)

In this example, the lower order term containing α in the right hand side of (2.6) causes the
sampling issue mentioned above. Thus, our main objective is to build high order schemes
that compute the smooth part of w; i.e.

w̄(t) := w0 exp

(∫ t

0
c̄(s)ds

)
.

In the algorithm that we outlined above, we only need that the value of w̃(t) to be close to
w̄(t) at t = 
, the filter K
 performs two specific types of approximations corresponding to
the integrals involving c̄ and α.

The theory of averaging out oscillations that appear in the integral for α(t/ε) is developed
in [22]. It requires that K
 is compactly supported in the interval [0,
], and the effective-
ness of averaging out the oscillations in α is determined by the regularity of K
 at s = 0
and 
; i.e.

dk

dtk
K
(0) = dk

dtk
K
(
) = 0, k = 0,1, . . . , q, (2.8)

and then integration by parts yields
∣
∣∣
∣

∫ 


0
K
(s)α

(
s

ε

)
ds

∣
∣∣
∣ ≤ C · εq+1


q
. (2.9)

High order accurate approximation of the integration of c̄ requires different conditions.
Taylor expansion of c̄(t) around t = 
 gives c̄(t) = c̄(
) + (t − 
)c̄′(
) + · · · and

∫ 


0
c̄(s)ds =

∑

j

c̄(j)(
)

j !
∫ 


0
(s − 
)jds,

∫ 


0
K
(s)c̄(s)ds =

∑

j

c̄(j)(
)

j !
∫ 


0
K
(s)(s − 
)jds.
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Fig. 5 The blue curves are the trajectories of ξ1 ◦ xε(t) with ε = 10−3, showing fast oscillations with small
amplitudes. The top plot shows the result obtained without the new filtering. The bottom plot is obtained with
the new filtering

Thus for this type of problems, we may require what we called the quadrature moment
conditions for the filter K
:

∫ 


0
K
(
 − s)sjds =

∫ 


0
sjds, j = 0,1,2, . . . , p. (2.10)

We thus have the error

∣
∣∣
∣

∫ 


0
K
(
 − s)c̄(s)ds −

∫ 


0
c̄(s)ds

∣
∣∣
∣ ≤ C
p+2.

For convenience of presentation below, let K̃
p,q(I ) denote the space of normalized Cq func-

tions, supported on I = [0,1] that have p moments specified by

∫

I

K(1 − t)t rdt =
∫

I

t rdt = 1

r + 1
, 0 ≤ r ≤ p. (2.11)

For 
 > 0, K
(t) denotes a rescaling of K as K
(t) = K(
−1t).
We remark that with 
 = O(ε), the estimate in (2.9) shows that it is more important to

use a filter with higher regularity, as it directly impacts on how the error | dj

dtj
ξ ◦ x̃ − d

dt
ξ̄ |

depends on ε, and consequently, how the sizes of 
 and the step size H for the macro-solver
should be chosen.

Figure 5 demonstrates a scenario for the stellar orbits example. In it, the blue curves
correspond to the values of the slow variable ξ1 ◦ x(t) defined in Sect. 3.2. The red circles
show the values of ξ1(γk) at times tn + k
, and the dotted red curves are the quadratic
interpolants of these values. The bottom plot in Fig. 5 is obtained with the strategy to be
discussed below.
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Algorithm 2 (Midpoint rule BF HMM)

1. (Midpoint rule macro-solver) Compute γn+1 from γn at tn = nH .

γn+ 1
2

= γn + H

2
FHMM(γn, tn),

γn+1 = γn + H FHMM

(
γn+ 1

2
, tn + H

2

)

where FHMM is defined below.
2. (Micro-solver) Evaluation of FHMM(γ ∗

0 , t∗). With a chosen filter K
 ∈ K̃
p,q([0,
]),

p,q ≥ 1, and 
 > 0:
(a) (Forward solution of the perturbed equation) Solve

d

dt
x̃ = ε−1f1(x̃) + K


(
t − t∗

)
f0(x̃, t; ε), x̃

(
t∗

) = γ ∗
0

for t ∈ [t∗, t∗ + 
]. Denote the solution at t = t∗ + 
 by x̃(
;γ ∗
0 ).

(b) (Backward solution of the perturbed equation) Solve

d

dt
x̃ = ε−1f1(x̃) + K


(
t − t∗

)
f0(x̃, t; ε), x̃

(
t∗

) = γ ∗
0

for t ∈ [t∗ − 
, t∗]. Denote the solution at t = t∗ − 
 by x̃(−
;γ ∗
0 ).

(c) (Forward solution of the unperturbed equation) Solve

d

dt
yF = ε−1f1(yF ), yF

(
t∗ − 


) = x̃
(−
;γ ∗

0

)

for t ∈ [t∗ − 
, t∗]. Denote the solution yF (t∗) by γ ∗
−1.

(d) (Backward solution of the unperturbed equation) Solve

d

dt
yB = ε−1f (yB), yB

(
t∗ + 


) = x̃
(

;γ ∗

0

)

for t ∈ [t∗, t∗ + 
]. Denote the solution yF (t∗) by γ ∗
1 .

(e) Evaluate FHMM :

FHMM

(
γ ∗

0 , t∗
) := γ ∗

1 − γ ∗
−1

2

.

3. Repeat.

Algorithm 3 (Explicit s-stage Runge Kutta BF HMM)

1. (Macro-solver: An explicit s-stage m-th order Runge-Kutta method defined by the
Butcher’s tableau involving the coefficients (ai,j ), bi , and cj , 1 ≤ i, j ≤ s.)
Computes γ n+1 from the given value γ n at t = tn.

γ n+1 = γ n + H

s∑

i=1

biki,

where

kj = FHMM

(

γ n + H

j−1∑

�=1

aj�k�, tn + cjH

)

, j = 1,2, . . . , s.
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The values of FHMM are computed from microscopic simulations.
2. (Micro-solver) Evaluate FHMM(γ ∗

0 , t∗) at the given values of γ ∗
0 and t∗.

Let S

t∗ be the operator that maps a given initial data at t = t∗ to the solution of the filtered

perturbed equation (2.5) to t∗ + 
, and let S̃

t∗ be the operator that has the analogous

function for the unperturbed equation (2.2). Define

γ ∗
j := (

S̃−

t∗+
S


t∗
)j

γ ∗
0 ,

γ ∗
−k := (

S̃

t∗−
S−


t∗
)k

γ ∗
0 .

Let γ
(t) be an interpolant of γj at t∗ + j
. Then

FHMM

(
γ ∗

0 , t∗
) := d

dt
γ


(
t∗

)
.

2.1.3 Formal Accuracy Estimate

Here we summarize errors produced by Algorithm 3.

• Global error in macro-simulation: Using an α-th order method with step size H , is given
by Hα .

• Global error in each micro-simulation: Using a β-th order method with step size h, we
solve equations for x(t) and y(t) over micro interval 
. The global error is of order 
hβ

εβ+1 .
• Filtering errors, by which we refer to the errors made in constructing γ ∗

k . Using a filter
K
(t) ∈ K̃

p,q with p,q ≥ 1, we have a residual from averaging the oscillations of order
εq+1


q , and quadrature error of order at most 
.
• Error in approximation of γ ′(t) via interpolation: interpolating n + 1 points by an n-th

degree polynomial leads to an error of order 
n.

In our setup for the multiscale problems, we consider a regime: 0 ≤ t ≤ T , ε → 0, T ∼
O(1), 
 ∼ O(ε), and H ∼ O(1), assuming that ξ̄ (t) has ν derivatives bounded uniformly
independent of ε, and ν ≥ α. In this regime, the dominating error terms would be that from
micro-solver O(h/ε)β , the filtering error O(ε), and the error from the macro-solver O(Hα).

3 Numerical Examples

In this section, we apply our BF HMM algorithm described in Sect. 2 to ODE systems and
compare it with other methods.

3.1 Nonlinear Expanding Spiral

Consider the following nonlinear equation in the complex plane

ẋ = iε−1x|x| + (
sinx + Re(x) · x)|x|−2, (3.1)



262 J Sci Comput (2013) 54:247–268

Table 1 (Section 3.1) BF HMM parameters

T H 
 h Micro solver RelTol, AbsTol (ODE45 parameters) Macro solver

4 1/6 40ε ε/30 ODE45 10−13, 10−10 Midpoint rule

Fig. 6 (Section 3.1) Plot of an estimation error ‖ξ̄ (·) − ξ ◦ γ (·)‖L∞ with different 
’s over t ∈ [0,4]. The
dotted lines are the errors without the new filtering. A kernel K ∈ K̃

1,1 is used

with the initial value x(0) = 1. As in Example 1, the dynamics of x(t) can be analyzed by
the corresponding system of slow and fast variables:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̇ = cosφ + ξ−2{cosφ sin(ξ cosφ) cosh(ξ sinφ) + sinφ cos(ξ cosφ) sinh(ξ sinφ)},
ξ(0) = 1,

φ̇ = ε−1ξ + ξ−3{cosφ cos(ξ cosφ) sinh(ξ sinφ) − sinφ sin(ξ cosφ) cosh(ξ sinφ)},
φ(0) = 0.

(3.2)
We see immediately from Definition 1 that ξ is a slow variable. Note that (3.2) is never used
in our algorithm; we use ξ in (3.2) only to show that the results computed by the algorithm
is correct. The averaged equation for the slow variable ξ is

˙̄ξ = ξ̄−1, ξ̄ (0) = 1. (3.3)

In this example, we used Algorithm 2, the Midpoint rule macro-solver and ODE45 micro-
solver with quadratic polynomial interpolation for γ to compute the solution; however, in
each micro-simulation, the micro-solver integrates the filtered equation

ẋn = iε−1xn|xn| + K
(t − tn)
{(

sinxn + Re(xn) · xn

)|xn|−2
}
, tn ≤ t ≤ tn + 
,

the parameters in Table 1. The estimation errors for each different value of 
 with respect
to ε = 10−4 and 10−5 are illustrated in Fig. 6. Without the filtering technique, the resulting
errors are highly oscillatory due to the sampling issue discussed in Sect. 2.1.1.

In Table 2, we show the effect of kernels on accuracy in the approximations of the slow
variable ξ . Since the error tends to be dominated by the step size H of the macroscopic
solver, taking a kernel with one-moment and one-regularity condition is enough to prevent
the sampling error.
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Table 2 Table of ‖ξ̄ (·) − ξ ◦ γ (·)‖L∞([0,4]) with various kernels K̃
p,q

(a) H = 0.2, ε = 10−4, 
 = 40ε

q = 1 2 3

p = 1 2.00(−3) 1.84(−3) 1.99(−3)

w/o filtering 6.76(−3)

(b) H = 0.2, ε = 10−5, 
 = 40ε

q = 1 2 3

p = 1 2.21(−3) 2.03(−3) 2.15(−3)

w/o filtering 5.82(−3)

(c) H = 0.02, ε = 10−4, 
 = 40ε

q = 1 2 3

p = 1 2.14(−4) 2.79(−4) 1.92(−4)

w/o filtering 8.12(−4)

(d) H = 0.02, ε = 10−5, 
 = 40ε

q = 1 2 3

p = 1 4.85(−5) 6.13(−5) 9.05(−6)

w/o filtering 1.16(−3)

3.2 A Simplified Model for Stellar Orbits in a Galaxy

The following extensively analyzed system is taken from the theory of stellar orbits in a
galaxy (see [32, 33]):

{
r ′′

1 + a2r1 = εr2
2 ,

r ′′
2 + b2r2 = 2εr1r2, 0 < t̃ < T/ε.

Here r1(0, ε) = r2(0, ε) = 1, r ′
1(0, ε) = r ′

2(0, ε) = 0; r1 stands for the radial displacement
of the orbit of a star from a reference circular orbit, and r2 stands for the deviation of the
orbit from the galactic plane. The time variable t̃ actually denotes the angle of the planets
in a reference coordinate system. After a rescaling of time, the system can be written in the
following form

x′ = ε−1

⎡

⎢
⎢
⎣

0 a 0 0
−a 0 0 0
0 0 0 b

0 0 −b 0

⎤

⎥
⎥
⎦x +

⎡

⎢
⎢
⎣

0
x2

2/a

0
2x1x2/b

⎤

⎥
⎥
⎦ , x(0) =

⎡

⎢
⎢
⎣

1
0
1
0

⎤

⎥
⎥
⎦ , (3.4)

where x = [x1, v1, x2, v2]t. One seeks approximation of the effective properties that takes
place in a constant time interval. When a = 2 and b = 1, resonance of oscillatory modes
take effect in the lower order term. Using the numerical algorithm proposed in [4], three
functionally independent slow variables are identified to be

ξ1 = x2
1 + v2

1, ξ2 = x2
2 + v2

2, ξ3 = x1x
2
2 + 2v1x2v2 − x1v

2
2 (3.5)

where ξi : R
4 → R, i = 1,2,3.

In Fig. 7, we present a result computed by our method and compare it with the results
computed by FLAVORS [42] with two different sets of parameters. Figure 7a shows the BF
HMM Mid-ODE45 (Midpoint rule macro-solver and ODE45 micro-solver with quadratic
polynomial interpolation for γ ) result computed with the parameters tabulated in Table 3
and a kernel K ∈ K̃

1,4. The resulting error in the slow variables is maxi=1,2,3 ‖ξi(·) − ξi ◦
γ (·)‖L∞([0,14]) = 0.049. The computational time on a one-year old desktop is about 7 s.

In Fig. 7b, we show the result computed by FLAVORS with the parameters within the
recommended regimes. To be more precise, as stated in [42], the required conditions for
FLAVORS are as follows:


 � ε � H � 1 and

(



ε

)2

� H � 


ε
. (3.6)
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Table 3 (Section 3.2) BF HMM parameters for Sect. 3.2

ε T h 
 H Micro solver RelTol Macro solver

10−4 14 ε/30 15ε 0.25 ODE45 10−4 Midpoint rule

Fig. 7 (Section 3.2) The dynamics of the slow variables ξ1, ξ2 and ξ3 in (3.4). Subfigures (b) and (c)
FLAVORS fail to preserve the geometrical structure of the flow

In [42], the proposed empirical choice is given by 
 = γ ε, H = γ 

ε

where γ is small (0.1,
for instance). Figure 7b is from their empirical choice 
 = γ ε, H = γ 


ε
where γ = 0.1. We

obtained maxi=1,2,3 ‖ξi(·) − ξi ◦ x̃(·)‖L∞([0,14]) = 0.56. The computational time on the same
machine is about 3.1 s.

In Fig. 7c, we show the result computed by FLAVOR by a set of parameters which
do not fall in the recommendation. With the parameters shown in the figure, we obtained
maxi=1,2,3 ‖ξi(·) − ξi ◦ x̃(·)‖L∞([0,14]) = 0.23. The computational time is about 8.4 s.

3.3 The Fermi-Pasta-Ulam Problem

The Fermi-Pasta-Ulam problem is a dynamical system which reveals highly unexpected
behavior. We consider a chain of 2k springs connected with alternating soft nonlinear and
stiff linear springs, and both ends are fixed. This problem has been a test bed for evaluating
the long-time performance of geometric integrators [29]. The model is derived from the
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Table 4 (Section 3.3) BF HMM parameters for Fig. 8

ε T h 
 H Micro solver RelTol Macro solver

2 · 10−3 ε−1 ε/10 6πε 1/3 ODE45 10−7 Verlet

Fig. 8 (Section 3.3) The solid
lines correspond to the direct
numerical simulation (DNS)
solution with an exponential
integrator. Dotted lines
correspond to the HMM

following Hamiltonian:

H(p,q) = 1

2

2k∑

i=1

p2
i + 1

4
ε−2

k∑

i=1

(q2i − q2i−1)
2 +

k∑

i=1

(q2i+1 − q2i )
4. (3.7)

Using the change of variables given in [4], we have the following equations of motion

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẏi = ui,

ẋi = ε−1vi,

u̇i = −(yi − εxi − yi−1 − εxi−1)
3 + (yi+1 − εxi+1 − yi − εxi)

3,

v̇i = −ε−1xi + (yi − εxi − yi−1 − εxi−1)
3 + (yi+1 − εxi+1 − yi − εxi)

3.

(3.8)

Both fixed ends yield y0 = x0 = yk+1 = xk+1 = 0 and we choose k = 3 for an illustration.
Initial conditions are y1 = x1 = u1 = 1 and zero otherwise. Total energies of the stiff springs
are given by

Ii = x2
i + v2

i , i = 1,2,3 (3.9)

where Ii : R
12 → R. See [10, 11, 28] and references therein for some recent progress. With

ε denoting the time scale of the fast oscillations, the nontrivial energy transfer take place
in the very long ε−1 time scale. Even if one could afford the long computational time, it
is unclear if the computational results retain enough effective accuracy. The FPU is a good
model problem to study the proposed new algorithm for computation in O(ε−1) timescale.

Figure 8 shows the energy exchange of the stiff springs over T = ε−1, with ε = 2 · 10−3.
We compare the results computed by the BF HMM Verlet-ODE45 (Verlet macro-solver and
ODE45 micro-solver with quadratic polynomial interpolation for γ ) with those by an expo-
nential integrator with Deuflhard’s filter functions [17, 29] with the stepsize h = 5 · 10−7,
which we used as a reference solution. We point out here that in order to obtain a reli-
able reference numerical solution, the aforementioned step size is needed. Furthermore, we
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Table 5 (Section 3.3) BF HMM parameters for Fig. 9

ε T h 
 H Micro solver RelTol Macro solver

5 · 10−3 7 · ε−1 ε/10 15ε 0.3 ODE45 10−7 Verlet

Fig. 9 (Section 3.3) Long time
simulation by BF HMM
Verlet-ODE45 to T = 7ε−1

had to use 128-bit precision for the variables in our computation in order to retain rea-
sonable significant digits at time T in our computation with the exponential integrator.
The BF HMM result is computed with the parameters given in Table 4, and with the filter
Kcos ∈ K̃

1,1 for the filtered equation that corresponds to (3.8). In this setup, the BF HMM
runs approximately 30,000 times faster. The difference in the stiff springs’ total energy be-
tween the HMM solution and the reference solution measured in the supremum norm is
maxi=1,2,3 ‖Ii(·) − Ii ◦ γ (·)‖L∞([0,ε−1]) = 0.027.

In Fig. 9, with ε = 5 · 10−3 , we show a result computed by the same BF HMM algorithm
for longer time and demonstrate the stability of our algorithm in a longer time interval. See
Table 5 for simulation parameters.

4 Summary

We introduce and analyze a new class of multiscale methods that use a technique related
to the construction of a Poincaré map. The proposed algorithms compute the effective slow
behavior of highly oscillatory dynamical systems. The main idea of this paper is summarized
in the following:

• The given highly oscillatory system is regarded as a system with lower order perturba-
tion. The solutions of the corresponding system without the lower order perturbation are
assumed to stay on some invariant manifolds.

• We construct an effective path by comparing the solutions of the equations with and with-
out lower order perturbation. This path discloses information about how the solutions of
the given perturbed system traverse through the invariant manifolds of the unperturbed
system.

• A novel on-the-fly filtering technique is applied for achieving high order accuracy beyond
other approaches that rely only on dynamical system’s self-averaging property.

Finally, we point out that the proposed HMM methods are not limited to the few simple
schemes that we presented here. One can use this methodology to build an HMM scheme for
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problems with more than two separated scales, and to capture numerically the slow behavior
of stiff stochastic differential equations. Rigorous analysis of the proposed methods and their
generalization will be reported in a forthcoming paper by the authors.
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