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ACCELERATED SIMULATION OF A HEAVY PARTICLE
IN A GAS OF ELASTIC SPHERES∗

GIL ARIEL† AND ERIC VANDEN-EIJNDEN‡

Abstract. A new, accelerated algorithm for a system of elastic hard spheres in which one of
the particles (a colloid) is significantly heavier than the others is presented. The algorithm follows
the framework of the stochastic heterogeneous multiscale method. In the limit in which the ratio
between the light and the heavy particles approaches zero, the dynamics of the colloid is given by a
stochastic differential equation whose drift and diffusion coefficients are not known explicitly. It is
shown that these coefficients can be calculated on the fly using short-time event-driven simulations,
thereby allowing us to simulate the stochastic differential equation for the colloid. The efficiency
of the resulting scheme is independent of the mass ratio. A few numerical examples, which serve
as a proof of principle, are presented. The examples demonstrate that our results are consistent
with analytical predictions in the ideal gas limit. A result of a simulation with a dense gas is also
presented.
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1. Introduction. Hard-sphere (HS) systems have been the subject of extensive
research for over 50 years [3, 5, 14, 23]. Due the simplicity of these systems, they have
long been considered as benchmark problems for a wide range of theories and computer
simulation techniques. Of particular interest are binary mixtures of spherical species
differing in size and mass [8, 28], which are also considered a first approximation to
colloidal suspensions.

From a computational point of view, simulating the dynamics of such binary
HS mixtures has proven to be highly challenging [1, 6, 15, 26]. Even event-driven
molecular dynamics (MD) [18] in which the system is advanced exactly between the
discrete and instantaneous elastic collisions tends to be inefficient. The reason is
that the lighter of the two HS species is usually also the faster and denser one. This
implies that simulations need to resolve a large number of collisions between the small
particles in order to observe any significant movement in the heavy particles. A simple
estimation shows that the required simulation time is proportional to the mass ratio
between the heavy and light particles. Several useful strategies have been proposed
for reducing the computational cost of event-driven simulations by clever bookkeeping
of possible future collisions [11, 16, 18, 19]. However, all of these methods address
the dependence of the simulation efficiency on the number of particles and not on the
mass ratio between the two particle species.

In this paper we present a new approach for simulating HS systems. Our method
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350 GIL ARIEL AND ERIC VANDEN-EIJNDEN

follows the framework of the stochastic heterogeneous multiscale method (HMM)
[9, 25, 27]. In spirit, the method resembles Brownian dynamics [4] in that one iden-
tifies an effective stochastic differential equation (SDE) that approximates the time
evolution of the heavy particles in a certain limit. In HMM, however, the coefficients
of the effective equation are not approximated a priori. Rather, these coefficients are
calculated on the fly using short-time MD simulation, thereby eliminating the need
of a closure approximation. We show that the efficiency of the method is indepen-
dent of the ratio between the masses of the two particle species, which constitutes a
considerable improvement over a standard MD simulation.

1.1. Summary of the main results. The main purpose of this manuscript is
to present the multiscale computational strategy. Therefore, we restrict the discussion
to a simple case, namely a system consisting of a three-dimensional periodic box of
volume V containing

• a colloid, which is a single hard sphere of mass M and radius R; and
• a gas, which is modeled by N hard spheres of mass m and radius r.

We are interested in situations in which the colloid is much heavier than the particles
in the gas, m � M , and the motion of all the particles (colloid and gas) is ballistic
except for collision events. There are two types of such collisions. First, there are
elastic collisions between the particles (i.e., gas-gas and gas-colloid collisions). Second,
the particles of the gas are also subject to random collisions events with a heat bath
which we model via an Andersen thermostat. More precisely, we introduce a sequence
of times, {τk}k∈Z, such that τk−τk−1 are independent random variables exponentially
distributed with rate ν; at time τk, a particle of the gas is picked at random and its
velocity vg is randomized according to the Gibbs–Maxwell probability density

(1.1) ρ(vg) = Z−1e−βm|vg|2/2,

where 1/β > 0 is the temperature and Z is a normalization constant. Initially, we
take the colloid at rest, distribute the particles of the gas randomly in the system
(subject to the constraint that they do not overlap), and independently pick each of
their velocities at random from (1.1).

The role of the heat bath is to compensate for the extremely large difference
between physically realistic system sizes (of the order of 1023 gas particles) and com-
putationally feasible system sizes, usually of the order of several thousands of particles.
In essence, the N gas particles simulate the neighborhood of the colloid. The ther-
mostat is also important for the HMM simulations to be consistent, as discussed at
length in section 3.

Because the colloid is so much heavier than the gas particles, each collision has
a small effect on the colloid velocity. As a result, noticeable changes in the velocity
of the colloid occur only on long time scales due to the collective effect of numerous
collisions between colloid and gas, and on these time scales, the velocity performs a
diffusion. Heuristically, the origin of diffusion can be explained by a central limit type
of argument which goes as follows. Let ε2 = m/M denote the ratio between the mass
of a gas particle, m, and that of the colloid, M , so that the limit ε → 0 corresponds to
a colloid infinitely more massive than a gas particle, and denote by v(t) the velocity

of the center of mass of the colloid and by x(t) = x(0) +
∫ t

0
v(t′)dt′ its position. The

change in the colloid velocity in a single collision is given by

(1.2) Δv = 2
m

M + m
[(vg − v) · n̂]n̂,
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where n̂ is a unit vector pointing from the center of the colloid to the center of the
gas particle. Note that Δv is of order ε2. Suppose that v is small and is of order
ε—this assumption will turn out to be correct. Assume also that the velocity of gas
particles, vg, is distributed according to (1.1)—this is actually incorrect in general
but will give us the right order of magnitude estimate. Then the expectation of Δv
is of order O(ε2), while the variance is O(ε4). In addition, the number of gas-colloid
collisions in a time interval of length T is proportional to (R + r)2λT 〈|(vg − v) · n̂|〉,
where λ = N/V is the number density, V is the total volume, and brackets denote
expectations with respect to the equilibrium distribution for vg. Hence, in a time
length of order ε−2, ε−1v is changed O(ε−2) times, where each change is of order ε.
This suggests that the interesting dynamics of the colloid occurs under the rescaling
u(s) = ε−1v(ε−2s). More precisely, it is expected that for any S ∈ [0,∞) and any test
function φ, we have

(1.3) lim
ε→0

sup
0≤s≤S

|Eφ(ε−1v(ε−2s)) − Eφ(u(s))| = 0,

where u(s) is the solution of the SDE

(1.4) du = b(u)ds + σ(u)dBs.

Here Bs denotes the Wiener process in R
3. In (1.3) the first expectation is over the

statistics of the gas particles and the second over that of the Wiener process in (1.4).
The drift b(u) and the diffusion σ(u) are given in terms of expectations which measure
the average effect and the fluctuations above this average that the impact of the gas
particles has on the colloid velocity: the form of these expectations is explicit (see
section 2), but their value is unknown in general. The statement (1.3) was rigorously
proven by Dürr, Goldstein, and Lebowitz [7] for an ideal gas. In the present paper, we
will formally extend their argument to nonideal gases and use it to design a numerical
scheme to simulate the colloid motion.

To be more specific, the limiting result (1.3) indicates that, for ε small but finite,
we can still use the limiting SDE (1.4) for computing the evolution of the colloid
position. This can be done, for example, using the following numerical scheme:

(1.5)

{
xn+1 = xn + vnΔt,

vn+1 = vn + bε(vn)Δt + σε(vn)
√

Δt ξn,

where bε(v) = ε3b(ε−1v), σε(v) = ε2σ(ε−1v), and ξn are independent Gaussian vari-
ables with zero mean and unit variance. Equation (1.5) is nothing but a forward
Euler scheme for (1.4) to which we have added an equation to update the position of
the colloid and which we have rewritten in terms of the original v and t. The scaling
of time in (1.3) suggests that Δt can be taken to be of order ε−2. Equation (1.5)
requires one to evaluate bε(vn) and σε(vn) at every iteration step. The idea behind
our proposed algorithm is to do so on the fly by making a short MD simulation of the
gas with fixed v = vn. Hence, each Euler step requires three substeps:

1. Microstep: Simulate the gas using the full MD event-driven method for a time
segment of length tmicro keeping the velocity of the colloid fixed at v = vn.

2. Estimator step: Use the time series obtained from the microsolver to approx-
imate bε(vn) and σε(vn), e.g., via time averaging.

3. Macrostep: Move the colloid according to the forward Euler step (1.5).
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This algorithm is advantageous compared to a full MD simulation if the length of the
simulation at each microstep, tmicro, is shorter than the Euler step size, Δt. One of
the main results of this paper is to show that it is possible to take tmicro/Δt to be
of order ε2, which represents a significant O(ε−2) gain in efficiency over a full MD
simulation. This, however, requires using variance reduction techniques to estimate
bε(v) and σε(v), as described in detail in section 3.

1.2. Organization. The layout of the remainder of this paper is as follows. In
section 2, the effective dynamics is derived in the limit when the colloid is infinitely
more massive than a gas particle. Section 3 presents the HMM scheme for hard
spheres, and section 4 describes a few example simulations. Finally, we summarize
our results in section 5 and suggest further applications for the method.

2. Limiting dynamics. As explained in the introduction, the HMM scheme
relies on the existence of a limiting equation for the colloid when ε → 0, where
ε2 = m/M measures the ratio between the mass of the gas particles and the mass of
the colloid. In this section, we explain how this limiting equation arises. Note that
the limit ε → 0 can be achieved in various equivalent ways. Throughout this paper
we will assume that gas particles have unit mass, m = 1, while the colloid mass is
large, M = ε−2.

To begin, recall that the only force acting on the colloid is due to elastic collisions
with gas particles. In other words, if we concentrate on the velocity v(t) of the colloid,
its equation of motion can be written as

(2.1) v̇(t) =
∑
j∈N

Δvjδ(t− tj),

where tj denote the collision times between the colloid and a particle of the gas,
and Δvj is the change in velocity in a collision occurring at time tj . Denoting by
{vkg}k=1,...,N the velocities of the N particles of the gas, Δvj is explicitly

(2.2) Δvj = 2
ε2

1 + ε2
[(vk(j)

g (tj) − v(tj)) · n̂j ]n̂j ,

where v
k(j)
g (tj) is the velocity of the k(j) ∈ {1, . . . , N} gas particle hitting the colloid

at time tj and n̂j is the unit vector pointing from the center of the colloid to the
center of the gas particle. In terms of the scaled velocity u(s) = ε−1v(ε−2s), (2.1) can
be written in integral form as

(2.3) u(s + Δs) = u(s) + Qε,ε−2Δs(s).

Here we defined

(2.4) Qε,T (s) =
2ε

1 + ε2

∑
j∈N

[(vk(j)
g (tj) − εu(tj) · n̂j ]n̂j1[ε−2s,ε−2s+T ](tj),

where 1A(t) is the indicator function of the set A; i.e.,1A(t) = 1 if t ∈ A and 1A(t) = 0
otherwise.

Since the change in the colloid velocity is significant only as a cumulative effect
of many collisions, it is convenient to introduce a virtual fast process in which the
colloid velocity is fixed. This is the essence of the argument made by Dürr, Goldstein,
and Lebowitz for the case of an ideal gas [7]. In the limit of ε → 0, Δs → 0 with
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Δs/ε2 → ∞, the virtual fast process approximates the change in scaled velocity in
the original system, Qε,ε−2Δs(s). To be more precise, consider a system in which the
colloid is anchored to a pivot that is moving with a fixed velocity v = εu. All aspects
of the virtual model are the same as in the original one, except that the colloid is
assumed to have an infinite mass and hence does not change its velocity even after
colliding with gas particles. Gas initial conditions and their interaction with the heat

bath are the same. For j ∈ N, denote by ṽ
k̃(j)
g (t̃j) the velocity of the k̃(j) ∈ {1, . . . , N}

gas particle hitting the colloid at time t̃j and by ñj the unit vector pointing from the
center of the colloid to the center of the gas particle. While in the virtual fast process
the velocity of the colloid is unchanged at each collision, the velocity of the gas particle
is updated as

(2.5) ṽk̃(j)
g (t̃j+) = ṽk̃(j)

g (t̃j) − Δw̃j(u),

where

(2.6) Δw̃j = 2[(ṽk̃(j)
g (t̃j) − εu) · ñj ]ñj .

Approximating Qε,ε−2Δs(s) by Q̃ε,ε−2Δs(u(s)) in (2.3), we arrive at

(2.7) u(s + Δs) = u(s) + Q̃ε,ε−2Δs(u(s)),

where

(2.8) Q̃ε,T (u) = ε
∑
j∈N

Δw̃j1[0,T ](t̃j).

Note that, at equilibrium, the statistics of Q̃ε,T (u) does not depend on the initial
time s but only on u and the time length T . Note also that the interaction of the gas
with the heat bath guarantees the existence of an equilibrium measure for the gas.
This measure may be different from the initial Gibbs–Maxwell distribution because
collisions with the colloid increase the energy in the system. Here we will assume
that these effects are small and that the rate of convergence of the gas system to its
equilibrium measure is fast on a time scale that is ε independent. This assumption is
justified in section 3.

Then, in the limit as ε → 0, it can be proved using a central limit argument that
Q̃ε,ε−2Δs(u) converges to a Gaussian process with mean and variance given by

(2.9)

mΔs(u) = lim
ε→0

E Q̃ε,ε−2Δs(u),

cΔs(u) = lim
ε→0

E

[
(Q̃ε,ε−2Δs(u) −mΔs(u)) ⊗ (Q̃ε,ε−2Δs(u) −mΔs(u))

]
,

where E denotes expectation with respect to the virtual process. The virtual process
converges to equilibrium on the fast time scale. Therefore, for fixed Δs, one can
replace the time segment ε−2Δs with any long enough segment T with proper rescaling
of the mean and variance. This becomes exact in the limit T → ∞. This yields

(2.10)

mΔs(u) = Δs lim
ε→0
T→∞

E

⎡
⎣ 1

T

∑
j∈N

ε−1Δw̃j1[0,T ](t̃j)

⎤
⎦ ,

cΔs(u) = Δs lim
ε→0
T→∞

E

⎡
⎣ 1

T

∑
i∈N

∑
j∈N

Δw̃iw̃
T
j 1[0,T ](t̃i)1[0,T ](t̃j)

⎤
⎦ ,
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where we neglected lower-order corrections coming from centering. Due to the ε−1

factor in the expression for mΔs(u) it is not clear a priori that the sum converges.
However, there are additional cancellations due to the isotropy of the system when
the colloid is moving slowly. This is discussed in section 2.1 for the ideal gas case and
confirmed for the general case numerically in section 3.

The argument above suggests that if (2.10) converges, then (2.3) converges to the
forward Euler scheme for an SDE with drift and diffusion terms given by

(2.11)
b(u) = Δs−1mΔs(u),

a(u) = Δs−1cΔs(u).

How to prove all the assumptions stated above and compute b and a is explained in
section 2.1 in the case of an ideal gas when the size of the gas particle is zero (r = 0);
these results are formally generalized in section 2.2 to the nonideal case, which is our
prime interest. The general framework is developed in [12, 13, 17, 20, 21, 22, 25, 27].

2.1. The ideal gas situation. When r = 0, (2.3) can be analyzed by following
Dürr, Goldstein, and Lebowitz [7]. The main difficulty that had to be overcome in
this analysis is that successive gas-colloid collisions are not statistically independent,
even in the ideal gas situation. For instance, a gas particle can hit the colloid twice
if, after collision, the colloid is pushed back by a second gas particle with enough
momentum, so that the colloid catches up with the first. Such correlated events,
however, become increasingly unlikely as ε → 0 because in this limit more and more
collisions are necessary to change the colloid velocity by a noticeable amount. The
main result in [7] was to show that, in the ideal gas case, gas-colloid collisions become
statistically independent as ε → 0 and the velocities of the gas particles hitting the
colloid are distributed according to the equilibrium distribution (1.1). In particular,
the probability that a gas particle with velocity |vg| ∈ [v1, v1 + dv1] hits the colloid
from direction n̂ during the interval [s, s + ds] is

(2.12) dμ(v1, n̂, s) = λR2(v1 − εu(s) · n̂)+

√
β

2π
e−βv2

1/2dv1dν(n̂)ds,

where λ = N/V is gas density, (·)+ = max{·, 0}, and ν(n̂) is the uniform measure on
S2. The probability distribution (2.12) allows one to analyze the statistical proper-
ties of Q̃ε,ε−2Δs(s) and the residue Q̃ε,ε−2Δs(s) − Qε,ε−2Δs(s). Dürr, Goldstein, and
Lebowitz find that

(2.13)

bid = −2

√
2π

β
λR2u,

aid = 4

√
2π

β3
λR2Id,

where Id is the identity matrix. Hence, u(s) is an Ornstein–Uhlenbeck process. It
remains to show that the error introduced by replacing Q by the virtual process Q̃
has a variance which is o(Δs) when ε → 0. This last statement can be proven by a
bootstrap argument based on u(ε2tj) = u(s) + O(

√
Δs) for tj ∈ [ε−2s, ε−2(s + Δs)].

This is the essence of the statement that was proven in [7]. In fact, the authors
show a stronger statement than (1.3):

(2.14) lim
ε→0

P

(
sup

0≤s≤S
|ε−1v(ε−2s) − u(s)|

)
= 0,
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where v is the velocity of the colloid in the original model and u is the solution of
(1.4) with drift and diffusion coefficients given by (2.13), respectively. Note that the
strong convergence result (2.14) (unlike the weak one (1.3)) requires one to relate
the probability space of the Wiener process in (1.4) to that of the gas in the original
system. For details see [7].

2.2. The nonideal case. The nonideal gas situation (r > 0) is more compli-
cated than the ideal gas one because gas particles collide amongst themselves. While
expression (2.1) remains valid, gas-gas collisions increase correlation effects in the sec-
ond term at the right-hand side of (2.1). In addition, the velocities of gas particles
hitting the colloid are no longer distributed according to (1.1). In this paper, we will
assume that the assumptions outlined at the beginning of section 2 remain valid in
this case and hence that the motion of the colloid can be approximated by the limiting
equation (1.4) with the drift and diffusion coefficient given by (2.11). Although this
assumption seems intuitively correct, we shall not attempt to prove it (in essence,
it would amount to proving that gas-colloid collisions become uncorrelated before
the velocity of the colloid changes noticeably). We will, however, verify its validity
numerically in section 3.

3. The numerical algorithm. In this section we describe the numerical algo-
rithm used to approximate u(s) in a time segment [0, S] for some S < ∞ independent
of ε. Since only the virtual process Q̃ is involved, all tilde notations are dropped for
the rest of the paper in order to simplify notation.

The essence of the algorithm is to approximate (3.1) by a large, but finite T . This
leads to the following approximations for the drift b(u) and diffusion coefficient a(u)
in (2.11):

(3.1)

bε,T (u) = ε−1 1

T

∑
j∈N

Δwj1[0,T ](tj),

aε,T (u) =
1

T

∑
i∈N

∑
j∈N

ΔwiΔwT
j 1[0,T ](ti)1[0,T ](tj).

We can then use these coefficients in a forward Euler scheme as macrosolver with step
size Δt = ε−2Δs for evolving the colloid (compare with (1.5)):

(3.2)

{
xn+1 = xn + vnε−2Δs,

vn+1 = vn + bε,T (ε−1vn)εΔs + σε,T (ε−1vn)ε
√

Δs ξn,

where σε,Tσ
T
ε,T (u) = aε,T (u). The rest of the section gives more details about the

algorithm, in particular the evaluation of bε,T (u) and aε,T (u).

3.1. Estimating the drift bε,T (u). From (2.6), the velocity transfer to the
colloid at each collision, Δwj , is of order one. Hence, the sum in bε,T changes in
jumps of order one as well. At first glance, it may seem like bε,T diverges in the limit
ε → 0. However, there are additional cancellations due to the isotropy of the system

at u = 0. To see this, we separate Δwj into two distinct terms: 2v
k(j)
g (tj) · n̂j and

2ε(u(tj) · n̂j)n̂j . Accordingly, bε,T (u) can also be separated into two contributions:

(3.3) bε,T (u) = Xε,T (u) + Yε,T (u),
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where

(3.4)

Xε,T (u) = 2ε−1 1

T

∑
i∈N

vk(j)
g (tj) · n̂j1[0,T ](tj),

Yε,T (u) = 2
1

T

∑
i∈N

(u · n̂j)n̂j1[0,T ](tj).

Note that Xε,T (u) depends n u through the details of the collision process such as tj

and v
k(j)
g (tj).

We begin with the second term Yε,T (u). Let R(T ) = limT→∞ Yε,T (u)−Yε,T (u) =
E[Yε,T (u)] − Yε,T (u) denote the error in approximating the average by a finite time
segment of length T . It is a random variable whose variance depends on the rate of
decay of correlations in the gas, 1/τcor. For dilute gases, correlations decay exponen-
tially [2, 10]. However, even at higher densities the gas evolves on a time scale that is
independent of ε. Hence, E[R2(T )] is of the order of τcor/T . This means that Yε,T (u)
can be evaluated directly from the virtual fast process.

The term Xε,T (u) presents additional difficulties due to the ε−1 prefactor. For a
colloid at rest we have that EXε,T (0) = 0. Formally expanding in u yields EXε,T (0) =
O(ε), which suggests that the limit ε → 0 exists. Our goal is to reduce the variance of
Xε,T (u) by eliminating the leading-order term in the sum that averages out to zero.
Using the same gas initial conditions, we simulate the system twice up to time T
independent of ε. In the first run, we take u = 0; i.e., the position of the colloid
is fixed in the virtual fast process. In the second simulation, we move the colloid
with a constant velocity v = εu. The difference in velocity transfer between the two
simulations comes from the fact that collisions do not take place at exactly the same
place on the colloid surface because the colloid moves in the second simulation and
not in the first. However, since the colloid does not move by more than εuT , which
is O(ε), the angle ϕ between u and the point of collision is also different by order
ε. The velocity transfer, which is proportional to cosϕ, changes by order ε at worst.
Note that this analysis also includes the case in which a collision is completely missed
or added since in this case ϕ = π/2. Instead of estimating Xε,T (u) directly, we then
estimate ε−1 [Xε,T (u)−Xε,T (0)]: the expectation of these two quantities is the same,
but the variance of the second is O(1) instead of O(ε−2) for the first.

Summarizing, bε,T (u) is approximated by

(3.5) bε,T (u) = ε−1 [Xε,T (u) −Xε,T (0)] + Yε,T (u).

This expression is, to leading order, ε independent and can therefore be evaluated by
a time segment of length T = O(1).

3.2. Estimating the diffusion coefficient aε,T (u). Recall the definition of
aε,T (u) given by (3.1). Following the discussion on the evaluation of Yε,T , aε,T (u) can
be evaluated similarly using a short simulation with length T , which is several times
larger than τcor, i.e., independent of ε.

Alternatively, the random variable σε,T (u)
√

Δsξi can be generated directly from
the simulation itself since it can be checked by direct calculation that

(3.6)

√
Δs

T

∑
i∈N

Δwi1ti∈[0,T )

has the correct distribution to order ε.
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3.3. Efficiency gain. The numerical scheme presented above approximates both
b(u) and a(u) at each macrotime step. Suppose we wish to simulate the colloid dy-
namics with a prescribed accuracy Δ. The Euler method used for the macrosolver
requires that SΔs is of order Δ. In addition, the rate of decay of correlations of
colloid-gas collisions requires that Δt/τcor is also of order Δ. The overall complexity
of the method is SΔt/(Δsτcol). Hence, recalling that Δt and τcol are O(1) and that
S and Δs are O(ε−2), we find that the complexity is independent of ε. This is a
considerable improvement over previous methods that run in O(ε−2) time.

3.4. Details of the MD simulation. The method used for the event-driven
MD simulation has a large impact on the actual running time of the simulation.
However, the gain in computational time due to the multiscale scheme we suggested
is independent of the MD scheme.

In the simulations described in the following section, the simulated volume is
divided into cubic cells, as suggested in [3]. Denoting the length of the cells’ side by
l, simulation time is divided into long cycles in which none of the particles moves
by more than l/2 − r. This guarantees that within a single long cycle a particle can
collide only with others that are in one of its neighboring cells. Then we calculate the
first collision time for every particle. The information on prospected collisions that
may occur before the end of the long cycle are kept in a heap, arranged according
to collision time. The system is then advanced, collision by collision, until the end
of the long cycle. Note that at each collision there is no need to update the position
of all particles but only of the particles participating in the collision. This method is
described in [18].

The number of cells is chosen to maximize performance. We found that the
optimal number of cells is such that the time length of long cycles is a little longer
than T . Most of the computational time is spent at processing the beginning of long
cycles.

Initially, gas particles are placed on a cubic lattice and velocities are chosen ran-
domly from the Gibbs distribution with inverse temperature β. The system is equili-
brated by running the MD simulation until on average all gas particles collide once.
We have found that longer equilibration times do not affect the results.

3.5. The thermostat. The implementation of the thermostat is a delicate issue
in our algorithm. Since we employ an Andersen thermostat, the main parameter that
controls the influence of the bath on the system is the rate of randomization, ν. On one
hand, this rate needs to be high enough, so that the velocity distribution of a “fresh”
gas particle, which did not previously hit the colloid, is as expected at equilibrium.
On the other hand, the rate cannot be too high to ruin correlation effects, at least up
to several times the correlation decay time.

The reason why it is possible to adjust the heat bath to fulfill both requirements
is the short time, T = O(1), for which the full MD simulation is performed at each
macrostep. During the MD simulation, the coupling with the bath is taken to be small.
In addition, particles that recently hit the colloid, or are suspected to do so within T ,
are not randomized. However, after the colloid is advanced by the macrosolver, the
velocity of a large fraction (or even all) of the gas particles is randomized. Using this
approach, the movement of the colloid does not “heat up” the gas, while the bath
does not interfere with gas-colloid collisions in the vicinity of the colloid. In practice,
these requirements are checked a posteriori by testing the dependence of the results
on the coupling constant and by monitoring the average and variance of the velocity
of gas particles.
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3.6. Some technical aspects. Our numerical scheme depends on a self-
consistent assumption that the scaled velocity u is of order one. However, these
assumptions may be temporarily violated due to large fluctuations, which are not
only inevitable but constitute an integral part of the dynamics.

In particular, the method for calculating the drift term bε,T (u) depends on a fine
canceling of the velocity transfer between two different simulations. An uncharac-
teristic velocity can result in an unrealistic value for bε,T (u), and the whole scheme
may become unstable. In order to deal with these occurrences, the consistency of the
above assumptions needs to be monitored. To this end, if the value of v is larger than
a given threshold (around several times ε), then we do not perform any macrosteps.
Instead, we advance the system using MD alone until the colloid is slowed down due
to collisions with the gas. We also check to see that, at each step, the total velocity
transfer to the colloid is also of order ε. As before, if it is larger than several times
ε, then the macrostep is not performed. The two mechanisms described above do not
change the accuracy estimate of the previous sections. However, they do reduce the
efficiency since some of the macrosteps are discarded. In section 4 we show that in
practice this mechanism is not applied too frequently. Nonetheless, it is important
for the stability of the algorithm.

4. Example experiments. To illustrate our method, we conducted a few nu-
merical experiments. These examples serve as a proof of principle and demonstrate
that our results are consistent with analytical predictions in the infinitely dilute limit.
We also describe the results of a simulation we performed with a dense gas.

The compatibility of our simulations with the expected limiting behavior is evalu-
ated through two dynamical properties: the average fluctuation of the scaled velocity
and the colloid diffusion coefficient. At equilibrium, it is expected that if collisions
with gas particles are independent, then the average square velocity should be given
by the equipartition theorem

(4.1)
1

2
ε−2〈v2〉 =

3

2
β−1,

or Ek = β〈u2〉/3 = 1.
The diffusion constant of the colloid is defined as

(4.2) D = lim
T→∞

〈x2(T )〉
T

.

In the ideal gas case we have that

(4.3) D =
1√

2πβλ(r + R)2
,

where (4.3) takes into account the contribution of the radius of gas particles to the
cross section of colloid-gas collisions.

As an example, we performed two different experiments. The first tests the depen-
dence of the colloid dynamics on the mass ratio between the colloid and gas particles,
ε−2. Table 1 details our results for a dilute gas with two different values of ε: 0.1
and 0.02. We find that the dynamics of the colloid is well approximated by the lim-
iting Ornstein–Uhlenbeck process even for relatively large values of ε. The number
of particles in both simulations is N = 40000, and the inverse temperature is β = 1.
The radius of gas particles is r = 0.001 and that of the colloid R = 0.1. The density
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Table 1

Simulation results for a system of N = 40000 gas particles and β = 1. The table compares the
average kinetic energy and diffusivity of the colloid as obtained using our accelerated method, with
values predicted by the limiting Ornstein–Uhlenbeck process.

ε Ek D
0 (limiting) 1 0.003

0.02 0.98 ± 0.08 0.003 ± 0.0004
0.1 1.1 ± 0.1 0.0029 ± 0.0003

Table 2

Simulation results for a system of approximately N = 20000 gas particles and β = 1. The table
compares the average kinetic energy and diffusivity of the colloid as obtained using our accelerated
method, with values predicted by the limiting Ornstein–Uhlenbeck process.

φ Analytic Ek Analytic D Simulation Ek Simulation D
1.5 · 10−4 1 0.0031 0.95 ± 0.1 0.003 ± 0.0006

0.3 1 0.0015 0.9 ± 0.1 0.0009 ± 0.0002

of the gas, measured by the ratio between the volume occupied by the gas particles
and the close packing volume, is approximately φ = 2.5 · 10−4. Hence, the gas can
be considered to be dilute. The length of the MD simulation, T , is taken to include,
on average, about 2.5–3.5 collisions between the colloid and gas particles. The size of
the macrosolver steps, Δt, is taken to be about Δt = ε−2T/5. Statistical errors were
obtained using block averaging.

A second pair of experiments was intended to check the dependence of the col-
loid dynamics on the gas density. Table 2 presents our results for two additional
simulations. In the first, the number of particles is N = 25000 and r = 0.001, i.e.,
φ = 1.5·10−4. Hence, the gas is dilute. Additional simulation parameters are ε = 0.01,
R = 0.07, and β = 1. Once again, T was chosen to include three colloid-gas collisions
on average, and the acceleration is Δt/T = ε−2/4. In the second simulation, the
number of gas particles is N = 20000 and r = 0.014. Hence, the density of the gas is
φ = 0.3, which implies that it is no longer dilute. Note that this concentration is still
below the liquid-solid phase transition for hard spheres, which is expected at a ratio
of approximately φ = 0.65. Additional simulation parameters are R = 0.1 and β = 1.
To the best of our knowledge, there are no previous results in the literature for this
system in the above parameter range.

5. Conclusions. The different schemes available for simulations of binary mix-
ture of hard spheres can be roughly divided into two categories. The first type of
method attempts to follow the evolution of all particles according to Newton’s equa-
tions of motion. Included in this category are the multiscale methods proposed by
Tuckerman, Berne, and Rossi [24] and similar ones. Although these methods save con-
siderable computing time by evaluating slowly changing forces less frequently than fast
changing ones, the time step taken by their innermost loops is always on the same
scale as the fastest dynamics. The integrator they suggest does not include any sto-
chastic elements. The second type of method uses Brownian dynamics [4] to simulate
the limiting equations of motion without resolving any details of the gas. In this
approach dynamical parameters such as b and σ have to be calculated beforehand.
HMM lies in between these two types of approaches. It uses the existence of a limiting
equation for the colloid but does not make a priori assumptions about the form of the
coefficients in this equation. Rather, these parameters are calculated on the fly. In
particular, the drift and diffusion coefficients do not necessarily have to be given by
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(2.13), and this greatly increases the range of validity of the algorithm. This allows
us to run the simulation in a regime which is quite different from the dilute, ideal gas
case. Our results show that with dilute gases, the dynamics of the colloid is well de-
scribed by an Ornstein–Uhlenbeck process with parameters b and σ given by (2.13).
However, when the density of gas particles is high, correlations between successive
collisions become important. Our simulations show that in this case the dynamics
of the colloid deviates significantly from the analytic solution of the infinitely dilute,
ideal gas limit. This, together with the fact that the efficiency of the method does
not depend on the mass ratio between the colloid and gas particles, makes our HMM-
based algorithm a very promising alternative to existing schemes for simulating the
dynamics of binary mixtures of hard spheres.

The simulation method presented here suggests numerous applications and gen-
eralizations to systems in which the colloid dynamics is more complicated, and the
limiting equation is more difficult to obtain or may not be known. For example, the
case in which the colloid is not a sphere but an ellipsoid poses an enormous computa-
tional challenge. The angular momentum of the colloid has to be taken into account,
and calculating collision times is more complicated. Another interesting generaliza-
tion is to the case of two or more colloids. When the separation between two colloids
is a few times the diameter of gas particles, the collective effect of colloid-gas col-
lisions is to push the colloids closer together [6, 28]. We expect to find that under
appropriate scaling, the two colloids become effectively trapped in a metastable state
keeping them close for a long time. Hence, the limiting rate for the dynamics may be
the escape rate out of this state. Simulating this system is more complicated since
due to the effective force on each colloid, the system is expected to show nontrivial
dynamics on the ε−1 time scale.

Acknowledgments. We wish to thank Bjorn Engquist, Jonathan Goodman,
Robert Kohn, Richard Tsai, Paul Wright, and Lexing Ying for useful discussions and
suggestions.

REFERENCES

[1] B. J. Alder, Studies in molecular dynamics. III. A mixture of hard spheres, J. Chem. Phys.,
40 (1963), pp. 2724–2730.

[2] B. J. Alder, D. M. Gass, and T. E. Wainwright, Studies in molecular dynamics. VIII.
Transport coefficients for a hard-sphere fluid, J. Chem. Phys., 53 (1970), pp. 3813–3826.

[3] B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. General method, J.
Chem. Phys., 31 (1959), pp. 459–466.

[4] M. P. Allen, Algorithms for Brownian dynamics, Mol. Phys., 47 (1982), pp. 599–601.
[5] S. Asakure and F. Oosawa, On interaction between two bodies immersed in a solution of

mactomolecules, J. Chem. Phys., 22 (1954), pp. 1255–1256.
[6] T. Biben, P. Bladon, and D. Frenkel, Depletion effects in binary hard-sphere fluids, J.

Phys.: Condens. Matter, 8 (1996), pp. 10799–10821.
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