
NUMERICAL MULTISCALE METHODS FOR COUPLEDOSCILLATORSGIL ARIEL∗, BJORN ENGQUIST† , AND RICHARD TSAI‡Abstract. A multiscale method for computing the e�ective slow behavior of a system of weaklycoupled nonlinear planar oscillators is presented. The oscillators may be either in the form of aperiodic solution or a stable limit cycle. Furthermore, the oscillators may be in resonance with oneanother and thereby generate some hidden slow dynamics. The proposed method relies on correctlytracking a set of slow variables that is su�cient to approximate any variable and functional thatare slow under the dynamics of the ODE. The technique is more e�cient than existing methodsand its advantages are demonstrated with examples. The algorithm follows the framework of theheterogeneous multiscale method.Key words. Multiscale computation, nonlinear oscillators, resonance, phase locking, slow vari-ablesAMS subject classi�cations. 65L05,34E131. Introduction. Ordinary di�erential equations (ODEs) with highly oscilla-tory periodic solutions prove to be a challenging �eld of research from both the an-alytic and numerical points of view [15, 16]. Several di�erent numerical approacheshave been suggested, each appropriate to some class of ODEs. Dahlquist laid downthe fundamental work for designing linear multistep methods [4, 5, 6, 7] and stud-ied their stability properties. Sti� problems with fast transients can be optimallysolved by implicit schemes [4, 18, 22]. The Chebyshev methods [1, 24] as well as theprojective integrator approach [13] provide stable and explicit computational strate-gies for this class of problems in general. Chebyshev methods are also e�cient withproblems that have a cascade of di�erent scales which are not necessarily well sepa-rated. For harmonic oscillatory problems, traditional numerical approaches attemptto either �lter out or �t fast oscillations to some known functions in order to reducethe complexity, e.g. [12, 23, 30], or use some notion of Poincaré map to determineslow changes in the orbital structure [14, 27]. A general class of approaches aimingat Hamiltonian systems are geometric integration schemes that preserve a discreteversion of certain invariance. We refer the readers to [17] and [25] for an extensivelist of literature. Many of the schemes specialized for �nite dimensional mechanicalsystems can be conveniently derived from the view point of variational integrator; seethe review paper [26]. In certain applications, special considerations are given to theexpensive cost of evaluating non-local potentials in large systems, see e.g. the impulsemethod and its derivatives [25]. For a recent review on numerical methods for highlyoscillatory systems see [3].We refer to a pair (x, y) as an oscillator if the trajectory (x(t), y(t)) is either periodicor approaches a stable periodic limit cycle. The period of an oscillator is denoted T0.
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2One typical example is the Van der Pol oscillator [31],
ẍ = −x + ν(1 − x2)ẋ,(1.1)for some ν > 0. Equation (1.1) has a unique and stable limit cycle that tends to thecircle x2 + ẋ2 = 4 in the limit ν → 0. Another type of oscillators arise when a systemof ODEs has a family of periodic solutions.In this paper we propose a numerical multiscale scheme for the initial value problemsin which di�erent oscillators are coupled weakly. The period of each oscillation istaken to be proportional to a small parameters ε � 1. The e�ect of the couplingonly becomes signi�cant on a longer time scales. We are particularly interested inresonance or synchronization e�ects. Consequently, we assume that the frequenciesof the uncoupled oscillators are commensurable, i.e. linearly independent over therationals.Let {(xk, yk)}l

k=1 denote a set of l oscillators with xk, yk ∈ R. We consider ODEsystems in singular perturbation form
εẋ = f(x) + εg(x), x(0) = x0,(1.2)where 0 < ε ≤ ε0 and x = (x1, y1, x2, y2, . . . , xl, yl). It is further assumed that thesolution of (1.2) remains in a domain D0 ⊂ R

2l, that is bounded independent of ε forall t ∈ [0, T ], T < ∞ and independent of ε. For �xed ε and initial condition x0, thesolution of (1.2) is denoted x(t; ε,x0). For brevity we will write x(t) whenever it isclear what the values for ε and x0 are. On short time scales of order ε, the term εg(x)can be neglected. However, on longer time scales which are independent of ε, thisperturbation may accumulate to an important contribution that cannot be ignored.One of the main di�culties in numerical integration of (1.2) using explicit methods isthat stability and accuracy requirements severely restrict the usable step size. Thisgenerally implies that the computational complexity for integrating (1.2) over a time
T independent of ε is at least of the order of ε−1. This is the motivation for multiscalenumerical schemes that take advantage of the separation between time scales in theproblem. The new schemes proposed in this paper generalize those in [2] to systems ofnonlinear oscillators. The computational cost of our proposed schemes are sublinearin the frequency of the oscillators. Furthermore, it can be applied to problems forwhich specialized algorithms such as the exponential integrators [17, 20] do not apply,or do not yield e�cient approximations.The various types of oscillators make a general method di�cult. As a recourse, we �rstdescribe the main idea behind our algorithm and then apply it to several examplesinvolving di�erent types of oscillators. An important component in our approachis to identify a set of functions of x that are slow with respect to the dynamicsof (1.2), i.e., the time derivatives of these functions are uniformly bounded with aconstant that is independent of ε along the trajectories of (1.2). We classify thesefunctions as amplitudes and the relative phases between the oscillators. We generallyrefer to them as the slow variables of the system. The ODE (1.2) is then integratedusing the framework of the heterogeneous multiscale method (HMM) [9, 10, 11] �a Macro-solver integrates the e�ective, but generally unknown evolution equation forthe slow variables under the dynamics of (1.2), where the rate of change for these slowvariables are computed by a micro-solver that integrates the full ODE (1.2) for shorttime segments.



3For convenience, Section 2 reviews the main results and algorithm proposed in [2] and[11]. Section 3 describes a method for applying the HMM algorithm to systems ofweakly coupled oscillators. Several examples are studies in Section 4 including har-monic, Volterra-Lotka and relaxation oscillators. The Volterra-Lotka example admitsa family of periodic solutions that correspond to some constants of motion. On theother hand, in the relaxation oscillator example trajectories rapidly approach a stablelimit cycle. We conclude in Section 5.2. The HMM scheme. In this section we summarize the main results of [2]and [11]. We begin by analyzing how the slow aspects of a multiscale ODE can beidenti�ed and separated from the fast one by using a convenient system of coordinates.Then, an algorithm for approximating and evolving these slow aspects is reviewed.2.1. Fast and slow dynamics. We study the long time properties of (1.2)by separating the fast and slow constituents of the dynamics and investigating theinteractions between these constituents and their collective e�ective behavior. Wesay that a real valued smooth function (variable) α(x) is slow with respect to (1.2) ifthere exists a non-empty open set A ⊂ R
d such that

max
x0∈A,t∈I,ε∈(0,ε0]

∣

∣

∣

∣

d

dt
α(x(t; ε,x0))

∣

∣

∣

∣

≤ C0,(2.1)where C0 is a constant that is independent of ε and I = [0, T ]. Otherwise, α(x) is saidto be fast. Similarly, we say that a quantity or constant is of order one if it is boundedindependent of ε in A. We typically consider functions that are independent of ε. Forintegrable Hamiltonian systems, the action variables are indeed slow variables.Of course, any function of slow variables is also slow. Therefore, it is reasonable tolook for variables which are functionally independent, i.e., a vector of slow variables
ξ = (ξ1(x), . . . , ξr(x)) such that ∇ξ1(x), . . . ,∇ξr(x) are linearly independent in A.Since r is bounded by the dimension, d, it is useful to look at a set with a maximalnumber of functionally independent slow variables. Augmenting the slow variableswith d − r fast ones z = (z1, . . . , zd−r) such that ∂(ξ, z)/∂x is non-singular in A, oneobtains a local coordinate systems, i.e., a chart of the states space. We will refer toa chart in which a maximal number of coordinates is slow as a maximal slow chartfor A with respect to the ODE (1.2). Covering the set D0 by maximal slow charts weobtain a maximal slow atlas for D0.A second type of slow behavior, referred to as slow observables, are integrals of thetrajectories. For example, for any integrable function α(x, t), the integral

α̃(t) =

∫ t

0

α(x(s), s)ds(2.2)is slow since |dα̃/dt| ≤ C for some constant C > 0 Additional slow observables can beobtained using convolution with a compactly supported kernels, as explained at theend of this Section.One of the main di�culties is, that it is often not clear a priori what are the slow vari-ables and observables of interest for a speci�c problem. For this reason, we take a wideapproach and require that our algorithm approximates all variables and observableswhich are slow with respect to the ODE. To see how it is possible, let (ξ, φ) ∈ R
d



4denote a slow chart with slow coordinates ξ ∈ R
r and let α(x) : R

d → R a slowvariable. Then, by the maximality of the chart, there exists a function α̃ : R
r → R

dsuch that α(x) = α̃(ξ(x)), otherwise, α(x) can be added as an additional coordinate.Hence, if the values of ξ along the trajectories of (1.2) are approximated accurately,then the values of any other smooth slow variable are automatically approximated.Furthermore, it is not necessary to know α̃ since all points x which correspond to thesame ξ yield the same value of α(x). In [2] we prove that approximation of ξ is alsosu�cient to approximate all slow observables of the types described above.Construction of our multiscale algorithm is done in three stages. The �rst requiredidenti�cation of a maximal slow chart or atlas (ξ, φ) which needs to be de�ned in aneighborhood of the trajectory. Locally, any coordinates system on a manifold that isperpendicular to f(x) can serve as a maximal slow chart. However, extending a chartto include the full trajectory is more complicated. This is done in [2] for the case inwhich the leading order term in (1.2) is linear, f(x) = Ax. The main purpose of thispaper is to o�er a similar construction for some cases in which the solutions are stillperiodic even though f(x) may not be linear.The second stage is to establish the existence of an e�ective evolution equation forthe slow variables ξ(x(t)) under the �ow of (1.2). In all the examples discusses inthis paper, we �nd that the only fast coordinate is equivalent to rotation on the unitcircle with constant velocity, i.e., φ ∈ S
1. This case is quite general since many weaklyperturbed integrable systems in resonance fall into this category. Then, an averagingprinciple can be used to prove that for small ε, ξ(x(t; ε,x0)) is well approximated in

I by an e�ective equation of the form
ξ̇ = F (ξ), ξ(0) = ξ(x0).(2.3)See [2, 29] for details. The requirement that (ξ, φ) is a maximal slow chart is criticalfor the derivation of (2.3). Without it, there is no guaranty that the right hand sideof the averaged equation does not depend on additional slow variables which may behidden or unknown.The e�ective equation (2.3) may not be available as an explicit formula. Instead, theidea behind the HMM algorithm is to evaluate F (ξ) by numerical solutions of theoriginal ODE (1.2) on signi�cantly reduced time intervals. In this way, the HMM al-gorithm approximates an assumed e�ective equation whose form is typically unknown.This strategy is advantageous if F (ξ) can be approximated e�ciently. Finally, thethird stage of the process is to construct such an algorithm. This is explained belowin Section 2.2.In [2] we present both analytic and numerical methods for �nding a maximal slowchart in a neighborhood of the trajectories in the case in which f(x) is linear, i.e.,

f(x) = Ax and A is a diagonalizable matrix whose eigenvalues have non-positive realparts. It is then proved that the slow atlas can be described using a single chart whichconsists of the following slow variables:
• Slow variables that correspond to a basis of the Null space of A.
• Amplitudes of oscillators (or rather square of), which are quadratic functionsof x.
• The relative phase between each pair of oscillators which correspond to somespeci�c coupling of di�erent oscillators through initial conditions. If the ratiobetween the frequencies of two oscillators is a rational number, then thisrelative phase can be de�ned by a speci�c polynomial in x.



5A simple example is the following system described by
εẋ =













0 1 0 0 0
−1 0 0 0 0
0 0 0 2 0
0 0 −2 0 0
0 0 0 0 0













x + εg(x),(2.4)where x = (x1, y1, x2, y2, x3). Here (x1, y1) and (x2, y2) are harmonic oscillators withfrequencies 1/2π and 1/π, respectively. One veri�es that x3 is slow and that thesquare amplitudes, I1 = x2
1 + y2

1 and I2 = x2
2 + y2

2, are slow. In addition, the cubicpolynomial J1 = x2
1x2 +2x1y1y2− y2

1x2 is also slow. This is veri�ed by di�erentiating
J1(x(t)) with respect to time. The polynomial J1 is related to the relative phasebetween the two harmonic oscillators, a quantity that varies slowly in time.The main purpose of this paper is to extend these ideas to a wider class of ODEs.We �nd that the components of slow charts can be interpreted as some generalizedconcepts of amplitudes and relative phases.2.2. The algorithm. Suppose ξ = (ξ1(x), . . . , ξr(x)) are the slow variables in aslow atlas for (1.2). The system is integrated using a two level algorithm, each levelcorresponding to a di�erent time scale. The �rst is a Macro-solver, which integratesthe e�ective equation (2.3) for the slow variables ξ. The second level is a micro-solverthat is invoked whenever the Macro-solver needs an estimate of F (ξ). The micro-solver computes a short time solution of (1.2) using suitable initial data. Then, thetime derivative of ξ is approximated by

ξ̇(t) ∼ 〈ξ̇(t)〉η =

∫ η/2

−η/2

ξ̇(t + τ)Kη(t − τ)dτ,(2.5)where, Kη(·) denotes a smooth averaging kernel with support on [−η/2, η/2]. Notethat ξ̇ is not necessarily slow. However, it is bounded independent of ε. The propertiesof averaging with respect to a kernel will be reviewed shortly.Once time derivatives are approximated, the system needs to be evolved in a way thatis consistent with (2.5). For example, a step x(t + H) = x(t) + ∆x, correct to secondorder in H , is to take the least squares solution of the linear system
∆x · ∇ξk(x(t)) = H〈ξ̇k(t)〉η, k = 1, . . . , r.Higher order methods are developed in [2].To better explain the algorithm, denote the Macro-solver sample times by t0, . . . , tN ,

N = T/H , and its output at corresponding times by x0, . . . ,xN . At the n-th Macro-step, the micro-solver can be implemented using any scheme with step-size h andinitial condition x(tn) = xn. It integrates the full ODE both backwards and forwardin time to approximate the solution in [tn − η/2, tn + η/2]. The structure of thealgorithm, depicted in Figure 2.1, is as follows.1. Initial conditions: x(0) = x0 and n = 0.2. Force estimation:(a) micro-simulation: Solve (1.2) in [tn−η/2, tn+η/2] with initial conditions
x(tn) = xn.



6 (b) Averaging: approximate ξ̇k(tn) by 〈ξ̇k(tn)〉η.3. Macro-step (forward Euler example):
xn+1 = xn +HFn, where Fn is the least squares solution of the linear system

Fn · ∇ξk(xn) = 〈ξ̇k(tn)〉η, k = 1 . . . r4. n = n + 1. Repeat steps (2) and (3) to time T .The averaged time derivative of ξk, 〈ξ̇k〉η, can be calculated using either the chainrule as ξ̇k = ∇ξk · ẋ = ∇ξk · (f(x)+ εg(x)), or using integration by parts. The schemedescribed above can be generalized to Macro-solvers with higher order accuracy.
h

x(0)
x

ξ

η

micro−solver

Macro−solverH

Fig. 2.1. The cartoon depicts the time steps taken by the HMM scheme. At the n-th macrostep, a micro-solver with step size h integrates (1.2) to approximate x(t) in a time segment [tn −
η/2, tn + η/2]. This data is used to calculate 〈ξ(x(t))〉η . Then, the Macro-solver takes a big step ofsize HFn, where Fn is consistent with 〈ξ̇k〉η, i.e., Fn · ∇ξk = 〈ξ̇k〉η for all slow variables ξk in themaximal slow chart.Let K(·) denote a smooth kernel function with support on [−1, 1] with unit mass,
∫ 1

−1 K(τ)dτ = 1, and zero average, ∫ 1

−1 K(τ)τdτ = 0. For simplicity, we assume that
K(·) is symmetric with respect to its mid-point. For example, the following smoothexponential kernel was found useful:

K(t) = Z−1 exp

(

−5

4

1

(t − 1)(t + 1)

)

,(2.6)for t ∈ [−1, 1] and zero otherwise. Here, Z is a normalization constant. For η > 0 let,
Kη(τ) =

1

η
K(

1

η
τ).(2.7)We will take η to be ε dependent such that ε < η � 1. The convolution of a function

a(t) with Kη is denoted as (recall (2.5))
〈a(t)〉η =

∫ η/2

−η/2

a(t + τ)Kη(t − τ)dτ.(2.8)Typically, the fast dynamics in equations such as (1.2) is one of two types. The�rst consists of modes that are attracted to a low dimensional manifold in ε-timescale. These modes are referred to as transient or dissipative modes. The second typeconsists of oscillators with constant or slowly changing frequencies. Dissipative modescan be relaxed using asymmetric kernels while averaging of oscillatory modes �ltersout high frequency oscillations. The errors introduced by the averaging are estimatedin [2]. Asymmetric kernels can also be used in order to obtain an improved accuracy.



7Finally, the stability of the algorithm is related to integration of the approximatee�ective equation for the slow variables, ξ̇ = 〈ξ̇(x(t))〉η using the Macro-solver ofchoice. Additional details can be found in [10] and [11].3. Slow charts for coupled oscillators. In this section we outline a methodfor constructing slow charts for weakly coupled oscillators. A few speci�c examplesare detailed in section4. For simplicity, we consider a system of two planar oscillators,
z, γ ∈ R

2, of the form
εż = f(z)

εγ̇ = g(γ),(3.1)where the trajectory (z(t; z0), γ(t; γ0)) ∈ R
2 × R

2 is either periodic or approaches astable periodic limit cycle. In addition, consider the perturbed systems
ε ˙̃z = fε(z̃, γ̃) = f(z̃) + εh(z̃, γ̃)

ε ˙̃γ = gε(z̃, γ̃) = g(γ̃) + εk(z̃, γ̃).(3.2)We would like to study the e�ective behavior of the coupled system (3.2), in particularthe e�ective in�uence of the perturbative coupling. This could be done using somegeneralized notions of amplitude and relative phase to form slow charts in the statespace.Suppose that, in the limit ε → 0, the trajectory of each oscillator approaches a stableperiodic limit cycle. Two possibilities may occur [19, 21, 29, 32]. First, the limitcycle may be attractive, in which case any trajectory that starts close enough willbe asymptotically close to it. Second, there may a continuous one parameter familyof periodic orbits. In either case, one can often use this parameter to describe thecloseness of the trajectory to the limit cycle [19]. In the �rst case, the parameter is adissipative, �fast� variable. In the second case it is slow. We think of this parameteras some generalized amplitude, in the sense that it identi�es the periodic limit cycleof the oscillators. See, for example the discussion on the Van der Pol oscillator in [19].The generalized amplitudes of the two oscillators are denoted I1 and I2, respectively.3.1. Slowly changing observables along the trajectories. We observe thatalong each trajectory of (3.2), a slow variable de�nes a slowly changing quantity ϑ.First, consider the unperturbed equation (3.1) and a slow variable α(z, γ). We denote
d

dt
α(z(t), γ(t)) =

1

ε
(∇zα|z(t),γ(t) · f + ε∇γα|z(t),γ(t) · g) =: φf,g

α (t; z0, γ0),(3.3)where ∇z and ∇γ denote the gradients with respect to z and γ, respectively. Because
α(z, γ) is slow, we have that |φf,g

α (t; z0, γ0)| ≤ C1. If this bound is valid for 0 < ε ≤ ε0,then ∇zα · f = 0. Next, consider the perturbed equation (3.2). We may directlyconsider integrating a slow observable ϑ(t) satisfying
d

dt
ϑ = φfε,gε

α (t; y0), ϑ(0) = ϑ0.(3.4)Notice that
φfε,gε

α =
1

ε
(∇zα|z(t),γ(t) · fε + ε∇γα|z(t),γ(t) · gε) = ∇zα|z(t),γ(t) · h + ∇γα|z(t),γ(t) · k.Hence, ϑ(t) is slowly varying on a O(1) time scale.



8 3.2. Relative phase de�ned by time. We �rst consider the unperturbed sys-tem (3.1). Time may be used to de�ned what the phase of the trajectory of anoscillator means. Suppose that there exists two functions τz(z) and τγ(γ) such that
τz(z(t)) = ε−1t + c0 and τγ(γ(t)) = ε−1t + c1. Then, the relative phase between the
z(t) and γ(t) can be de�ned as θ(z(t), γ(t)), where

θ(z, γ) := τz(z) − τγ(γ).We see that θ(z(t), γ(t)) is constant which is independent of ε. For the coupled system(3.2), we �nd that the quantity de�ned by
d

dt
ϑ :=

d

dt
θ(z̃(t), γ̃(t)) =

1

ε
∇θ ·

(

f(z̃) + εh(z̃, γ̃)
g(γ̃) + εk(z̃, γ̃)

)

= ∇θ ·
(

h(z̃, γ̃)
k(z̃, γ̃)

)(3.5)measures how the relative phase between z̃ and γ̃ is changing under the coupling.In oscillatory systems, inverse functions such as τz and τγ cannot usually exist globally.To de�ne the relative phase this way, we have to allow for the possibility of using acollection of locally de�ned inverse functions whose domains collectively cover a givenperiodic orbit of the problem. Consider the case in which two patches τ
(1)
z and τ

(2)
zare needed. We can glue the two patches together via a partition of unity {φ1, φ2}supported on the domain of τ

(1)
z and τ

(2)
z . Enforcing that the values of τ

(1)
z and τ

(2)
zare identical where they are both de�ned, we have that

τz = φ1τ
(1)
z + φ2τ

(2)
zand

∇τz = φ1∇τ (1)
z + φ2∇τ (2)

z .Performing similar procedures to obtain ∇τγ , the relative phase can then be de�nedas (3.5).For many problems, even though the inverse function τ does not exist globally, wecan obtain a smooth, globally well-de�ned gradient from the locally de�ned inverses.In this case, we may employ (3.3) to integrate a slow quantity. For example, thederivative of arctan(z) is de�ned on the whole real line. Similarly, on the complexplane, the derivative of the arg function is de�ned everywhere except at the origin.In the latter case, the integral of τz(z) and τγ(γ) over closed orbits can be thoughtof as the winding numbers around z = 0 and γ = 0, respectively, and (3.3) de�nes acontinuous θ(t) on a Riemann sheet.4. Examples. For simplicity, we consider two coupled planar oscillators, (x1, y1)and (x2, y2). Generalizations to systems with a larger number of oscillators can beperformed in a similar fashion.4.1. Harmonic oscillators. We begin with the simple case in which f(x) islinear, i.e. f(x) = Ax for some diagonalizable matrix whose eigenvalues are purelyimaginary. Such systems were already considered in [2]. Here we apply the alternativeapproach proposed in Section 3 so that the e�ect of the coupling with fully nonlinear



9oscillators can be studied systematically via the notion of relative phase. Withoutloss of generality, we assume that the ODE is in diagonalized form
εẋk = ωkyk + εgk(x)

εẏk = − ωkxk + εhk(x),(4.1)for k = 1 . . . l, where ωk 6= 0 and x = (x1, y1, . . . , xl, yl). Note that gk and hk are notnecessarily linear.Under the dynamics of (4.1), it it easy to identify the r slow variables relating to thesquare of the amplitudes:
Ik(x) = x2

k + y2
k,(4.2)for all k = 1 . . . l. In [2], it was shown that if the frequencies {ωk/2π}l

k=1 are ra-tionally related, i.e., ωk/ωj is rational for all k, j, then there exists additional l − 1polynomials J1(x), . . . , Jl−1(x) that are slow. The variables Jk correspond to a notionof relative phases between the oscillators. Adding a single additional fast variable, φ,yields a maximal slow chart with respect to (4.1), denoted (I1, . . . , Il, J1, . . . , Jl−1, φ).Following our previous notations, r = 2l − 1.Consider a harmonic oscillator on the unit circle
X(t) = sin(ωt + φ0)

Y (t) = cos(ωt + φ0).(4.3)
X(t) and Y (t) thus satisfy

Ẋ = ωY

Ẏ = −ωX, X(0)2 + Y (0)2 = 1.(4.4)Time t can be uniquely de�ned up to a constant term using the arctan function:
t = ω−1

k

[

arctan(
Y

X
) − φ0

]

.(4.5)Furthermore, the derivative of arctan is globally de�ned for all values of X and Y .Thus, arctan(Y/X) is a good candidate to �nd time. From our discussion in Section3, for the system (4.1), the relative phase between the two oscillators can be de�nedas
θ(x1, y1, x2, y2) := ω−1

1 arctan(
y1

x1
) − ω−1

2 arctan(
y2

x2
).(4.6)Hence, θ represents the angle, or phase di�erence between two points, (x1, y1) and

(x2, y2), when written in the polar coordinates. If we evaluate θ along the trajectoriesof the solutions of (4.1), we have that
d

dt
θ(x(t)) = ∇θ · ẋ =

g1y1 − x1h1

ω1I1
− g2y2 − x2h2

ω2I2
, and | d

dt
θ(x(t))| ≤ C0.(4.7)Hence θ(x) is slow with respect to (4.1).Since the inverse tangent function is only de�ned locally, so is θ(x). Nonetheless, asdiscussed in Section 3.1, ϑ(t) =

∫ t

0
(d/dτ)θ(x(τ))dτ de�nes a continuously changingquantity or observable.



10As an example, consider a Van der Pol oscillator (1.1) with ν = ε, weakly coupled toa harmonic oscillator with frequency (2π)−1:
εẋ1 = y1 + εAx2,

εẏ1 = −x1 + ε(1 − x2
1)y1,

εẋ2 = y2 + εωy2,

εẏ2 = −x2 + εωx2.(4.8)with initial conditions x1 = y1 = x2 = 1 and y2 = 0. The parameter A is a couplingconstant and is independent of ε. With A = 0, (x1, y1) is a Van der Pol oscillator(1.1) with ν = ε and (x2, y2) is a harmonic oscillator with frequency (1 + εω)/(2π).Hence, the di�erence between the frequencies of the two oscillators is of order ε. For
A 6= 0 the two oscillators are coupled weakly. It follows from our discussion abovethat I1, I2 and θ given by (4.2) and (4.6) are slow variables with respect to (4.8).The algorithm described in Section 2.2 was implemented using the slow chart ξ with
ε = 10−4 and ω = 10. Other parameters are H = 0.5, h = ε/15, η = 25ε and (2.6) asa kernel. Both micro and Macro solvers employ a fourth order Runge-Kutta scheme.We compare results for A = 0 and A = 10. Figure 4.1 depicts the time evolutionof the amplitude of the Van der Pol oscillator, I1 = x2

1 + y2
1 . In order to observethe e�ect of the relative phase, we plot in Figure 4.2 the values of x1 and x2 duringthree di�erent runs of the micro-solver. In Figure 4.2a, A = 0 and the two oscillatorsare decoupled. We see that the two oscillators slowly drift out of phase due to theslightly di�erent frequencies. With A = 10 the oscillators are coupled and maintain aconstant relative phase. The phenomenon of phase locking, (also called entrainmentor synchronization) is well known for nonlinear oscillators [16, 28].
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10

A=0

A=10

Fig. 4.1. The amplitude of the Van der Pol oscillator described by (4.8). A = 0: decoupledand A = 10: coupled to a harmonic oscillator with a slightly di�erent frequency.4.2. The Volterra-Lotka oscillator. In this section we consider the Volterra-Lotka oscillator, which is treated as a benchmark case for oscillators that admit aconserved quantity. The Volterra-Lotka oscillator is given by the ODE
ẋ = x(1 − ν−1y)

ẏ = ν−1y(x − 1),(4.1)
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Fig. 4.2. The phase of the Van der Pol and harmonic oscillators described by (4.8). (a)
A = 0: decoupled, and (b) A = 10: coupled to a harmonic oscillator with a slightly di�erentfrequency. Dotted line: x1(t) � Van der Pol oscillator, solid line: x2(t) � harmonic. The twooscillators are synchronized when coupled.where 0 < ν � 1 is a small parameter. Equation (4.1) admits a family of periodicsolutions with period T0(ν) that can be parametrized according to the initial condi-tions 0 < x(0) < 1 and y(0) = 1. An example of such periodic trajectories is depictedin Figure 4.3.It can be veri�ed that

IV L(x, y) = x − ln x + y − ν ln y(4.2)is a conserved quantity along each periodic solution of equation (4.1), and it may playthe role of the oscillator's amplitude.Each periodic orbit can be divided into the union of two continuous open segmentswhich are joined by two points, (xI , ν) and (xII , ν), where xI ,and xII are the solutionsof IV L(x, ν) = C0. We denote the �rst segment by ΓI which consists of a relativelyslow movement close to the x-axis. The second segment, ΓII , corresponds to thetrajectory along the upper arc depicted in Figure 4.3. In a duration proportional to
ν, the solution goes through the upper arc and comes downs to the �rst segment. Thetrajectory goes from one segment to the other whenever its y component equals ν,at which location, ẋ = 0. Away from y = ν, ẋ > 0 when the trajectory is on ΓI and
ẋ < 0 on ΓII . This suggests that an inverse function mapping the trajectory to somereference time coordinate can be de�ned separately on each segment:

τI(x(t), y(t)) = t, for (x(t), y(t)) ∈ ΓIand
τII(x(t), y(t)) = t + CII , for (x(t), y(t)) ∈ ΓII .Hence, for (x, y) ∈ΓI ,

∂τI(x, y)

∂x
ẋ +

∂τI(x, y)

∂y
ẏ =

1

ε
.(4.3)Further more, it is convenient to take ∇τI · ∇IV L = 0.
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Fig. 4.3. The trajectory of the Volterra-Lotka oscillator (4.1) with ν = 0.01, x(0) = 0.5 and
y(0) = 1.Away from the turning points at y = ν, the gradient for τ2(x, y) are exactly the sameas that of τ1(x, y). Denoting 1Γ as the indicator function of the set Γ we formallyde�ne τ and ∇τ by

τ = 1Γ̄I
(x, y)τI(x, y) + 1ΓII

(x, y)τII(x, y),and
∇τ = 1Γ̄I

(x, y)∇τI(x, y) + 1ΓII
(x, y)∇τII (x, y).Let (X1(t), Y1(t)) denote a periodic solution of (4.1) and (X2(t), Y2(t)) denote anunperturbed harmonic oscillator with frequency ω. Similar to the approach describedin Section 4.1, we de�ne

θ(X1, Y1, X2, Y2) = τ(X1, Y1) − ω−1 arctan(
Y2

X2
).(4.4)From the discussion of Section 3.2, the slow observable ϑ de�ned by

d

dt
ϑ = ∇θ ·









Ẋ1

Ẏ1

Ẋ2

Ẏ2







is a well-de�ned continuous function of time, which is related to the relative phasebetween the oscillators.Now, consider the weak coupling of a Volterra-Lotka and a harmonic oscillator:
εẋ1 = x1(1 − ν−1y1) + εg1(x),

εẏ1 = ν−1y1(x1 − 1) + εh1(x),

εẋ2 = ωy2 + εg2(x),(4.5)
εẏ2 = −ωx2 + εh2(x).



13Thus, as we argued in Section 3.1, along each trajectory of (4.6) we can de�ne therelative phase between the two oscillators as a slowly changing observable satisfying
d

dt
ϑ =

(

∇θ · (ε−1f)
)

|γ(t), ϑ(0) = 0,where f denotes the right hand side of (4.6).As an example, the HMM algorithm was applied to (4.6) with ε = 10−5, ν = 0.2, g1 =
y2
2 , h1 = 0, g2 = 0 and h2 = x1. The frequency of the harmonic oscillator is taken to beclose to that of the Volterra-Lotka one, ω = 3.77/2π. The singularity at y1 = ν is notproblematic since ∇θ ·ẋ is integrable. Hence, we apply a cuto� around |y1−ν| < 10−4,which introduces an additional error evaluated by changing the cuto� value. Improvedaccuracy can be obtained by using methods such as Padé approximations in order tointegrate over the problematic region. Additional parameters are H = 0.25, η = 40(which is about 11 periods) and the integration kernel is (2.6). The micro-solver isa fourth order Runge-Kutta scheme with step size h = 0.03ε. The Macro-solver isthe midpoint rule. In addition, as explained in Section 3.2, we made sure that themacro-step is not taken with y1 values close to ν. Figure 4.4 compares the solutionof the amplitudes I1(x1, y1) = IV L(x1, y1) and I2 = x2

2 + y2
2 obtained by the HMMalgorithm (plus signs) with that of the fourth order Runge-Kutta method (solid line)with the same step size h = 0.03ε.
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Fig. 4.4. The amplitude of the Volterra-Lotka oscillator, I1 = IV L = x1 − ln x1 + y1 − ν ln y1,and the harmonic oscillator, I2 = x2

2
+y2

2
. Fourth order Runge-Kutta (solid line) compared to HMM(plus signs).4.3. Relaxation oscillators. Consider the following example system suggestedby Dahlquist et. al. [8]

ẋ = −1 − x + 8y3

ẏ = ν−1(−x + y − y3),(4.1)where ν � 1 is a small parameter. The dynamics of (4.1) has a limit cycle thatis de�ned by the cubic polynomial x = y − y3 and the turning points dx/dy = 0on it. The limit cycle consists of four parts, ΓI,, ΓII , ΓIII , and ΓIV . ΓI and ΓIIIdenote, respectively, the upper and lower branches of this cubic polynomial whichare stable up to the turning points. For any initial condition, the solution of (4.1) is



14attracted to one of the stable branches on an O(ν) time scale. The time derivative
ẋ stays positive when the trajectory is close to ΓI and negative when close to ΓIII .Thus, trajectories of (4.1) move close to a branch until it becomes unstable. At thispoint the solution is quickly attracted to the other stable branch. During the transientstates, the trajectories stay close to ΓII and ΓIV . The trajectory of the oscillator nearthe limit cycle is depicted in Figure 4.5. Van der Pol dubbed the name relaxationoscillators due to the fast relaxation process at the instabilities. We shall use thestructure of this limit cycle to parametrize time.The amplitude of the relaxation oscillator can be de�ned by some notion of distancebetween the trajectory and the limit cycle, for example, as the di�erence in the ycoordinates of the trajectory and the limit cycle at some �xed x. This is e�ectivelya particular realization of the Poincaré map with a transversal segment x = const.Under the dynamics of (4.1), this distance converges to zero exponentially fast in atime scale of order ν. Hence, the amplitude of the oscillator can be considered adissipative variable.Next, we discuss how to de�ne the phase of the oscillator. In order to do so, we needto make our description of the limit cycle more precise. As we alluded above, it consistof four parts: The vertical segments, ΓII and ΓIV , are de�ned by the intersections of
x = ±2

√
3/9 and x = y − y3:

ΓII = {(x, y) : x =
2
√

3

9
, y ∈ I2},

ΓIV = {(x, y) : x = −2
√

3

9
, y ∈ I4},where I2 = (b2, 2

√
3/9) and I4 = (−2

√
3/9, b4) are the intervals bounded by the twosolutions of y − y3 = 2

√
3/9 and y − y3 = −2

√
3/9, respectively. Hence,

ΓI = {(x, y) : x = y − y3,
1√
3

< y < b4},

ΓIII = {(x, y) : x = y − y3, b2 < y < − 1√
3
}.We shall assume that the solution of (4.1) is already su�ciently close to the limitcycle Γ. Near either ΓI or ΓIII , x(t) is strictly monotone, therefore, away from aneighborhood of the two turning points, we de�ne τI and τII to be the inverse functionof x(t) on these two branches. Again, we formally de�ne

τ(x, y) = 1ΓI
τI + 1ΓII

τI + 1ΓIII
τIII + 1ΓIV

τIVand the gradient
∇τ = 1ΓI

∇τI + 1ΓII
∇τII + 1ΓIII

∇τIII + 1ΓIV
∇τIV .Finally, the phase is de�ned as the solution of

d

dt
ϑ = ∇τ · f.
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x=y−y3 Fig. 4.5. The trajectory and slow manifold of the relaxation oscillator (4.1).We use this strategy to study the following system in which a relaxation oscillatorwith ν = ε is weakly coupled to a harmonic oscillator:
εẋ1 = −1 − x1 + 8y3

1 + εAx2

εẏ1 = ε−1(−x1 + y1 − y3
1)

εẋ2 = ω0y2 + εωy2(4.2)
εẏ2 = −ω0x2 + εωx2.Since the relaxation from one stable branch to the other occurs on a O(ε2) time scale,we simply ignore e�ects of those terms related to ΓII and ΓIV for convenience ofcomputation. We de�ne the interior of ΓI and ΓIII :

Γ̃I = {(x, y) : x = y − y3,
1√
3

+ C0ε < y < b4 − C0ε},

Γ̃III = {(x, y) : x = y − y3, b2 + C0ε < y < − 1√
3
− C0ε}.We can formally de�ne

∇τ̃ = 1Γ̃I
∇τI + 1Γ̃III

∇τIII ,where
∇τI = ∇τIII =

(

(−1 − x1 + 8y3
1)

−1

0

)

.The relative phase between the (x1, y1) and (x2, y2) is then given by
θ(x1, y1, x2, y2) = τ̃(x1) −

1

ω0
arctan(

y2

x2
).As an example, we take ω0 = 2π/T0, T0 = 0.28416 is the angular velocity of thedecoupled (x1, y1) oscillator. The initial conditions are x1 = 0, y1 = −1, and x2 =
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ξ
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η Fig. 4.6. An asymmetric HMM for problems involving transients.
y2 = 1/

√
2. The parameter A is a coupling constant and is independent of ε. With

A = 0, (x1, y1) is the relaxation oscillator (4.1) and (x2, y2) is a harmonic oscillatorwith angular velocity ω0 + εω. Hence, the frequencies of the two oscillators are close.For A 6= 0 the two oscillators are coupled weakly. The dynamics of (4.3) evolveson three time scales. The fastest scale, of order ε2, is the relaxation time of therelaxation oscillator between stable branches. On an intermediate time scale of order
ε, the coupling between the oscillators is negligible. The coupling becomes signi�canton a longer O(1) time scale. We apply HMM to take advantage of the scale separationbetween the two slowest modes.The slow variables for (4.3) can be taken to be the amplitude of the harmonic oscilla-tor, I2 = x2

2 + y2
2 , and the relative phase θ(x), which is well-de�ned in this example.Away from turning points, these variables describe a two dimensional slow manifold.Recall that the amplitude of the relaxation oscillator is dissipative.The algorithm described in Section 2.2 was implemented using the above slow variableswith ε = 10−4 and ω = 10. The micro-solver, integrating the full system (4.3)was implemented using a forth order Runge-Kutta scheme with variable step size inorder to speed up integration along the stable branches of the limiting cycle. Hence,our scheme operates on three time scales: ε2, ε and 1. The Macro-solver uses aforward Euler scheme plus projection of the (x2, y2) oscillator onto the unit circle.Additional parameters are H = 0.25 and η = 25ε. Due to the dissipative nature ofthe fast oscillations, the micro-solver only integrates the system forward in time andthe resulting algorithmic structure is shown in Figure 4.6. Finally, it is important thatmacroscopic steps are not taken too close to the boundary of a chart, particularly ifthe boundary corresponds to a turning point of the trajectory. This can be avoidedby running the micro-solver to time η+T0, and then choosing a sub-segment of length

η with a convenient mid-point for taking the macro-step.We compare results for A = 0 and A = 40. Figure 4.2 depicts the values of x1 and
x2 during three di�erent runs of the micro-solver. In Figure 4.7a, A = 0 and theoscillators are decoupled. We see that the two oscillators slowly drift out of phasedue to the slight di�erence in oscillator frequencies. With A = 40 the oscillatorsare coupled and maintain a constant relative phase. Figure 4.8 depicts the solutionof (4.3) with ω0 = 4π/T0, i.e, the frequency of the harmonic oscillator is slightlydi�erent than twice the frequency of the relaxation oscillator. With A = 40 therelaxation oscillator is synchronized with exactly half the frequency of the harmonicone. This phenomenon is referred to 1-2 entrainment or resonance.5. Conclusion. Previously in [2], we have proposed an approach for decompos-ing a vector �eld into its fast and slow constituents using the concept of slow variables.
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Fig. 4.7. The phase of the relaxation and harmonic oscillators described by (4.3). (a) A = 0:decoupled, and (b) A = 40: coupled to a harmonic oscillator with a slightly di�erent frequency.Dotted line: x2(t) � harmonic oscillator, solid line: x1(t) � relaxation. The two oscillators aresynchronized when coupled.
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Fig. 4.8. Example of 1-2 entrainment between a relaxation oscillator and a harmonic one.Dotted line: x2(t) � harmonic oscillator, solid line: x1(t) � relaxation.The decomposition is used in an algorithm that e�ciently integrates the slow partsof the dynamics without fully resolving the fast parts globally in time. In this pa-per we further develop this idea and extend it to fully nonlinear oscillators. Thisincludes oscillators which are very di�erent in nature from harmonic oscillators. Theslow variables are classi�ed as amplitudes and relative phases, in analogy to corre-sponding variables for harmonic oscillators. The notion of relative phase is de�nedby constructing inverse functions that maps the periodic orbits to time. Followingthe HMM framework, the time evolution of the slow variables in the coupled systemis computed using on the �y short-time simulations of the full system. Thus, we areable to compute e�ciently the slow behavior of the system using large time steps.Acknowledgments. Support from NSF through Grant DMS-0714612 is grate-fully acknowledged. We thank Nick Tanushev and Eric Vanden-Eijnden for usefulsuggestions, corrections and discussions. Tsai's research is partially supported by anAlfred P. Sloan Fellowship. Tsai and Engquist thank the Isaac Newton Institute for
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