NUMERICAL MULTISCALE METHODS FOR COUPLED
OSCILLATORS
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Abstract. A multiscale method for computing the effective slow behavior of a system of weakly
coupled nonlinear planar oscillators is presented. The oscillators may be either in the form of a
periodic solution or a stable limit cycle. Furthermore, the oscillators may be in resonance with one
another and thereby generate some hidden slow dynamics. The proposed method relies on correctly
tracking a set of slow variables that is sufficient to approximate any variable and functional that
are slow under the dynamics of the ODE. The technique is more efficient than existing methods
and its advantages are demonstrated with examples. The algorithm follows the framework of the
heterogeneous multiscale method.
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1. Introduction. Ordinary differential equations (ODEs) with highly oscilla-
tory periodic solutions prove to be a challenging field of research from both the an-
alytic and numerical points of view [15, 16]. Several different numerical approaches
have been suggested, each appropriate to some class of ODEs. Dahlquist laid down
the fundamental work for designing linear multistep methods [4, 5, 6, 7] and stud-
ied their stability properties. Stiff problems with fast transients can be optimally
solved by implicit schemes [4, 18, 22]. The Chebyshev methods [1, 24] as well as the
projective integrator approach [13] provide stable and explicit computational strate-
gies for this class of problems in general. Chebyshev methods are also efficient with
problems that have a cascade of different scales which are not necessarily well sepa-
rated. For harmonic oscillatory problems, traditional numerical approaches attempt
to either filter out or fit fast oscillations to some known functions in order to reduce
the complexity, e.g. [12, 23, 30], or use some notion of Poincaré map to determine
slow changes in the orbital structure [14, 27]. A general class of approaches aiming
at Hamiltonian systems are geometric integration schemes that preserve a discrete
version of certain invariance. We refer the readers to [17] and [25] for an extensive
list of literature. Many of the schemes specialized for finite dimensional mechanical
systems can be conveniently derived from the view point of variational integrator; see
the review paper [26]. In certain applications, special considerations are given to the
expensive cost of evaluating non-local potentials in large systems, see e.g. the impulse
method and its derivatives [25]. For a recent review on numerical methods for highly
oscillatory systems see [3].

We refer to a pair (z,y) as an oscillator if the trajectory (x(t),y(¢)) is either periodic
or approaches a stable periodic limit cycle. The period of an oscillator is denoted Tj.
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One typical example is the Van der Pol oscillator [31],
(1.1) i=—z+v(l -2,

for some v > 0. Equation (1.1) has a unique and stable limit cycle that tends to the
circle 22 + 22 = 4 in the limit ¥ — 0. Another type of oscillators arise when a system
of ODEs has a family of periodic solutions.

In this paper we propose a numerical multiscale scheme for the initial value problems
in which different oscillators are coupled weakly. The period of each oscillation is
taken to be proportional to a small parameters ¢ < 1. The effect of the coupling
only becomes significant on a longer time scales. We are particularly interested in
resonance or synchronization effects. Consequently, we assume that the frequencies
of the uncoupled oscillators are commensurable, i.e. linearly independent over the
rationals.

Let {(wg,yx)}._, denote a set of [ oscillators with zj,y, € R. We consider ODE
systems in singular perturbation form

(1.2) ex = f(x) + eg(x), x(0) = xo,

where 0 < € < ¢y and x = (x1,¥y1,%2,Y2,---,2;,41). It is further assumed that the
solution of (1.2) remains in a domain Dy C R%, that is bounded independent of ¢ for
all t € [0,T], T < oo and independent of e. For fixed € and initial condition xg, the
solution of (1.2) is denoted x(t;€,%¢). For brevity we will write x(¢) whenever it is
clear what the values for € and x¢ are. On short time scales of order ¢, the term eg(x)
can be neglected. However, on longer time scales which are independent of ¢, this
perturbation may accumulate to an important contribution that cannot be ignored.

One of the main difficulties in numerical integration of (1.2) using explicit methods is
that stability and accuracy requirements severely restrict the usable step size. This
generally implies that the computational complexity for integrating (1.2) over a time
T independent of € is at least of the order of e~!. This is the motivation for multiscale
numerical schemes that take advantage of the separation between time scales in the
problem. The new schemes proposed in this paper generalize those in [2] to systems of
nonlinear oscillators. The computational cost of our proposed schemes are sublinear
in the frequency of the oscillators. Furthermore, it can be applied to problems for
which specialized algorithms such as the exponential integrators [17, 20] do not apply,
or do not yield efficient approximations.

The various types of oscillators make a general method difficult. As a recourse, we first
describe the main idea behind our algorithm and then apply it to several examples
involving different types of oscillators. An important component in our approach
is to identify a set of functions of x that are slow with respect to the dynamics
of (1.2), i.e., the time derivatives of these functions are uniformly bounded with a
constant that is independent of e along the trajectories of (1.2). We classify these
functions as amplitudes and the relative phases between the oscillators. We generally
refer to them as the slow variables of the system. The ODE (1.2) is then integrated
using the framework of the heterogeneous multiscale method (HMM) [9, 10, 11] —
a Macro-solver integrates the effective, but generally unknown evolution equation for
the slow variables under the dynamics of (1.2), where the rate of change for these slow
variables are computed by a micro-solver that integrates the full ODE (1.2) for short
time segments.



3

For convenience, Section 2 reviews the main results and algorithm proposed in [2] and
[11]. Section 3 describes a method for applying the HMM algorithm to systems of
weakly coupled oscillators. Several examples are studies in Section 4 including har-
monic, Volterra-Lotka and relaxation oscillators. The Volterra-Lotka example admits
a family of periodic solutions that correspond to some constants of motion. On the
other hand, in the relaxation oscillator example trajectories rapidly approach a stable
limit cycle. We conclude in Section 5.

2. The HMM scheme. In this section we summarize the main results of [2]
and [11]. We begin by analyzing how the slow aspects of a multiscale ODE can be
identified and separated from the fast one by using a convenient system of coordinates.
Then, an algorithm for approximating and evolving these slow aspects is reviewed.

2.1. Fast and slow dynamics. We study the long time properties of (1.2)
by separating the fast and slow constituents of the dynamics and investigating the
interactions between these constituents and their collective effective behavior. We
say that a real valued smooth function (variable) «(x) is slow with respect to (1.2) if
there exists a non-empty open set A C R% such that

(2.1)

d

max —a(x(t;e,x < C

x0EA,tET,e€(0,€0) dt ( ( ’ 0))‘ =0

where Cj is a constant that is independent of € and Z = [0, T']. Otherwise, «(x) is said
to be fast. Similarly, we say that a quantity or constant is of order one if it is bounded
independent of € in 4. We typically consider functions that are independent of €. For
integrable Hamiltonian systems, the action variables are indeed slow variables.

Of course, any function of slow variables is also slow. Therefore, it is reasonable to
look for variables which are functionally independent, i.e., a vector of slow variables
& = (&1(x),...,&(x)) such that V& (x),...,VE(x) are linearly independent in A.
Since r is bounded by the dimension, d, it is useful to look at a set with a maximal
number of functionally independent slow variables. Augmenting the slow variables
with d — r fast ones z = (21, ..., z4—r) such that (&, z)/0x is non-singular in A, one
obtains a local coordinate systems, i.e., a chart of the states space. We will refer to
a chart in which a maximal number of coordinates is slow as a maximal slow chart
for A with respect to the ODE (1.2). Covering the set Dy by maximal slow charts we
obtain a maximal slow atlas for Dy.

A second type of slow behavior, referred to as slow observables, are integrals of the
trajectories. For example, for any integrable function «(x,t), the integral

(2.2) a(t) = /0 a(x(s), 5)ds

is slow since |da/dt| < C for some constant C' > 0 Additional slow observables can be
obtained using convolution with a compactly supported kernels, as explained at the
end of this Section.

One of the main difficulties is, that it is often not clear a priori what are the slow vari-
ables and observables of interest for a specific problem. For this reason, we take a wide
approach and require that our algorithm approximates all variables and observables
which are slow with respect to the ODE. To see how it is possible, let (£, ¢) € R
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denote a slow chart with slow coordinates ¢ € R” and let a(x) : RY — R a slow
variable. Then, by the maximality of the chart, there exists a function & : R” — R¢
such that a(x) = &(£(x)), otherwise, a(x) can be added as an additional coordinate.
Hence, if the values of £ along the trajectories of (1.2) are approximated accurately,
then the values of any other smooth slow variable are automatically approximated.
Furthermore, it is not necessary to know & since all points x which correspond to the
same ¢ yield the same value of a(x). In [2] we prove that approximation of £ is also
sufficient to approximate all slow observables of the types described above.

Construction of our multiscale algorithm is done in three stages. The first required
identification of a maximal slow chart or atlas (£, ¢) which needs to be defined in a
neighborhood of the trajectory. Locally, any coordinates system on a manifold that is
perpendicular to f(x) can serve as a maximal slow chart. However, extending a chart
to include the full trajectory is more complicated. This is done in [2] for the case in
which the leading order term in (1.2) is linear, f(x) = Ax. The main purpose of this
paper is to offer a similar construction for some cases in which the solutions are still
periodic even though f(x) may not be linear.

The second stage is to establish the existence of an effective evolution equation for
the slow variables £(x(¢)) under the flow of (1.2). In all the examples discusses in
this paper, we find that the only fast coordinate is equivalent to rotation on the unit
circle with constant velocity, i.e., ¢ € S'. This case is quite general since many weakly
perturbed integrable systems in resonance fall into this category. Then, an averaging
principle can be used to prove that for small €, £(x(¢; €,%0)) is well approximated in
7 by an effective equation of the form

(2.3) £=F(&), £0)=¢&(xo)

See [2, 29] for details. The requirement that (£, ¢) is a maximal slow chart is critical
for the derivation of (2.3). Without it, there is no guaranty that the right hand side
of the averaged equation does not depend on additional slow variables which may be
hidden or unknown.

The effective equation (2.3) may not be available as an explicit formula. Instead, the
idea behind the HMM algorithm is to evaluate F'(§) by numerical solutions of the
original ODE (1.2) on significantly reduced time intervals. In this way, the HMM al-
gorithm approximates an assumed effective equation whose form is typically unknown.
This strategy is advantageous if F(£) can be approximated efficiently. Finally, the
third stage of the process is to construct such an algorithm. This is explained below
in Section 2.2.

In [2] we present both analytic and numerical methods for finding a maximal slow
chart in a neighborhood of the trajectories in the case in which f(x) is linear, i.e.,
f(x) = Ax and A is a diagonalizable matrix whose eigenvalues have non-positive real
parts. It is then proved that the slow atlas can be described using a single chart which
consists of the following slow variables:

e Slow variables that correspond to a basis of the Null space of A.

e Amplitudes of oscillators (or rather square of), which are quadratic functions
of x.

e The relative phase between each pair of oscillators which correspond to some
specific coupling of different oscillators through initial conditions. If the ratio
between the frequencies of two oscillators is a rational number, then this
relative phase can be defined by a specific polynomial in x.



A simple example is the following system described by

0 1 0 00
-1 0 0 0O
(2.4) €x = 0 0 0 2 0 [x+eg(x),
0 0 -2 00
0 0 0 00O

where x = (21, y1, 22, y2,23). Here (z1,y1) and (x2,y2) are harmonic oscillators with
frequencies 1/27 and 1/7, respectively. One verifies that z3 is slow and that the
square amplitudes, I = 27 + y} and Iy = 23 + y3, are slow. In addition, the cubic
polynomial J; = 22x5 + 2219192 — Y35 is also slow. This is verified by differentiating
J1(x(t)) with respect to time. The polynomial J; is related to the relative phase
between the two harmonic oscillators, a quantity that varies slowly in time.

The main purpose of this paper is to extend these ideas to a wider class of ODEs.
We find that the components of slow charts can be interpreted as some generalized
concepts of amplitudes and relative phases.

2.2. The algorithm. Suppose { = (£1(x),...,&-(x)) are the slow variables in a
slow atlas for (1.2). The system is integrated using a two level algorithm, each level
corresponding to a different time scale. The first is a Macro-solver, which integrates
the effective equation (2.3) for the slow variables £. The second level is a micro-solver
that is invoked whenever the Macro-solver needs an estimate of F(£). The micro-
solver computes a short time solution of (1.2) using suitable initial data. Then, the
time derivative of £ is approximated by

. . n/2
(2.5) E(t) ~ (E(t))y = / £t + 1)K, (t — 7)dr,

-n/2

where, K, (-) denotes a smooth averaging kernel with support on [—7/2,n/2]. Note
that £ is not necessarily slow. However, it is bounded independent of . The properties
of averaging with respect to a kernel will be reviewed shortly.

Once time derivatives are approximated, the system needs to be evolved in a way that
is consistent with (2.5). For example, a step x(t + H) = x(t) + Ax, correct to second
order in H, is to take the least squares solution of the linear system

Ax - VEL(x() = HEx())y, k=1,...,.

Higher order methods are developed in [2].

To better explain the algorithm, denote the Macro-solver sample times by g, ..., tx,
N =T/H, and its output at corresponding times by xq,...,xy. At the n-th Macro-
step, the micro-solver can be implemented using any scheme with step-size h and
initial condition x(¢,) = x,,. It integrates the full ODE both backwards and forward
in time to approximate the solution in [t, — n/2,t, + 1n/2]. The structure of the
algorithm, depicted in Figure 2.1, is as follows.

1. Initial conditions: x(0) = x¢ and n = 0.
2. Force estimation:
(a) micro-simulation: Solve (1.2) in [t,, —1n/2, t,+n/2] with initial conditions
X(tn) = Xp-



(b) Averaging: approximate & (t,,) by (€ (tn))s-
3. Macro-step (forward Euler example):
Xn4+1 = Xn + HF,, where F,, is the least squares solution of the linear system

Fy - Vép(xn) = Ex(tn))n, k=1...r

4. n =n+ 1. Repeat steps (2) and (3) to time 7.

The averaged time derivative of &, (ék)n, can be calculated using either the chain
rule as & = V& -x = V& - (f(x) + €g(x)), or using integration by parts. The scheme
described above can be generalized to Macro-solvers with higher order accuracy.

&
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Fic. 2.1. The cartoon depicts the time steps taken by the HMM scheme. At the n-th macro
step, a micro-solver with step size h integrates (1.2) to approzimate x(t) in a time segment [tn, —
n/2,tn +n/2]. This data is used to calculate (£(x(t)))n. Then, the Macro-solver takes a big step of
size HFy,, where Fy, is consistent with <£k>n: i.e., Fp - V& = <§k>7, for all slow variables & in the
mazimal slow chart.

Let K(-) denote a smooth kernel function with support on [—1,1] with unit mass,
fil K(7)dr = 1, and zero average, Ll1 K(7)rdT = 0. For simplicity, we assume that
K(-) is symmetric with respect to its mid-point. For example, the following smooth
exponential kernel was found useful:

1 5 1
(2.6) K(t)=Z "exp <_Zm> ,

for t € [—1,1] and zero otherwise. Here, Z is a normalization constant. For > 0 let,
(2.7) Kn(T) = _K(_T)'

We will take 7 to be € dependent such that € < n < 1. The convolution of a function
a(t) with K, is denoted as (recall (2.5))

n/2
(2.8) (a()), = / a(t + 1)K, (t — 7)dr.

-n/2

Typically, the fast dynamics in equations such as (1.2) is one of two types. The
first consists of modes that are attracted to a low dimensional manifold in e-time
scale. These modes are referred to as transient or dissipative modes. The second type
consists of oscillators with constant or slowly changing frequencies. Dissipative modes
can be relaxed using asymmetric kernels while averaging of oscillatory modes filters
out high frequency oscillations. The errors introduced by the averaging are estimated
in [2]. Asymmetric kernels can also be used in order to obtain an improved accuracy.
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Finally, the stability of the algorithm is related to integration of the approximate
effective equation for the slow variables, £ = (£(x(t))), using the Macro-solver of
choice. Additional details can be found in [10] and [11].

3. Slow charts for coupled oscillators. In this section we outline a method
for constructing slow charts for weakly coupled oscillators. A few specific examples
are detailed in section4. For simplicity, we consider a system of two planar oscillators,
2,7 € R2, of the form

ez = f(2)
(3.1) ey = g(7),

where the trajectory (z(t;z0),7(t;7)) € R? x R? is either periodic or approaches a
stable periodic limit cycle. In addition, consider the perturbed systems

ez = fe(2,7) = f(2) + eh(,7)
(3.2) €7 = ge(2,7) = g(3) + ek(2,7).

We would like to study the effective behavior of the coupled system (3.2), in particular
the effective influence of the perturbative coupling. This could be done using some
generalized notions of amplitude and relative phase to form slow charts in the state
space.

Suppose that, in the limit € — 0, the trajectory of each oscillator approaches a stable
periodic limit cycle. Two possibilities may occur [19, 21, 29, 32]. First, the limit
cycle may be attractive, in which case any trajectory that starts close enough will
be asymptotically close to it. Second, there may a continuous one parameter family
of periodic orbits. In either case, one can often use this parameter to describe the
closeness of the trajectory to the limit cycle [19]. In the first case, the parameter is a
dissipative, “fast” variable. In the second case it is slow. We think of this parameter
as some generalized amplitude, in the sense that it identifies the periodic limit cycle
of the oscillators. See, for example the discussion on the Van der Pol oscillator in [19].
The generalized amplitudes of the two oscillators are denoted I; and I, respectively.

3.1. Slowly changing observables along the trajectories. We observe that
along each trajectory of (3.2), a slow variable defines a slowly changing quantity .
First, consider the unperturbed equation (3.1) and a slow variable a(z,~y). We denote

d 1
(3.3) Ea(z(t)ﬁ(t)) = Z(vza|z(t),7(t) fHeVaal.wqa) - 9) = 6L (t 20,70),

where V, and V, denote the gradients with respect to z and -y, respectively. Because
a(z,7) is slow, we have that [¢/9(¢; z0,70)| < Cy. If this bound is valid for 0 < € < ¢,
then V,a - f = 0. Next, consider the perturbed equation (3.2). We may directly
consider integrating a slow observable ¥(¢) satisfying

d
(3.4) =0 = 0L (ty0), 9(0) = vo.

Notice that
1
du? = ~(Vaala@y@ - fe T €Vhalaw ) - 9e) = Vaal:wae b+ Vaalwe k.

Hence, 9(t) is slowly varying on a O(1) time scale.



3.2. Relative phase defined by time. We first consider the unperturbed sys-
tem (3.1). Time may be used to defined what the phase of the trajectory of an
oscillator means. Suppose that there exists two functions 7,(z) and 7.,(y) such that
7:(2(t)) = e 't + ¢ and 7, (y(t)) = €'t + ¢1. Then, the relative phase between the
z(t) and (t) can be defined as 6(z(t),y(t)), where

0(z,7) :==72(2) — (7).

We see that 6(z(t),v(t)) is constant which is independent of €. For the coupled system
(3.2), we find that the quantity defined by

(35) 0 = CH(2(1),3(1) = V- < f(é)“h(?z) ) ~ Vo < Zgz; )

measures how the relative phase between z and ¥ is changing under the coupling.

In oscillatory systems, inverse functions such as 7, and 7., cannot usually exist globally.
To define the relative phase this way, we have to allow for the possibility of using a
collection of locally defined inverse functions whose domains collectively cover a given
periodic orbit of the problem. Consider the case in which two patches Tz(l) and 72(2)
are needed. We can glue the two patches together via a partition of unity {¢1, ¢}
supported on the domain of Tz(l) and TZ(Q). Enforcing that the values of Tz(l) and ’7'2(2)
are identical where they are both defined, we have that

7o = 17 + gt
and
Vr, = ¢1VT§1) + ¢2VTZ(2).

Performing similar procedures to obtain V7, the relative phase can then be defined
as (3.5).

For many problems, even though the inverse function 7 does not exist globally, we
can obtain a smooth, globally well-defined gradient from the locally defined inverses.
In this case, we may employ (3.3) to integrate a slow quantity. For example, the
derivative of arctan(z) is defined on the whole real line. Similarly, on the complex
plane, the derivative of the arg function is defined everywhere except at the origin.
In the latter case, the integral of 7,(z) and () over closed orbits can be thought
of as the winding numbers around z = 0 and v = 0, respectively, and (3.3) defines a
continuous 6(¢) on a Riemann sheet.

4. Examples. For simplicity, we consider two coupled planar oscillators, (1, y1)
and (z2,y2). Generalizations to systems with a larger number of oscillators can be
performed in a similar fashion.

4.1. Harmonic oscillators. We begin with the simple case in which f(x) is
linear, i.e. f(x) = Ax for some diagonalizable matrix whose eigenvalues are purely
imaginary. Such systems were already considered in [2]. Here we apply the alternative
approach proposed in Section 3 so that the effect of the coupling with fully nonlinear
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oscillators can be studied systematically via the notion of relative phase. Without
loss of generality, we assume that the ODE is in diagonalized form

€Tr = wrYk + egr(x)
(4.1) €Y = — Wik + €hp(x),

for k =1...1, where wy # 0 and x = (x1,¥1,--.,2;,y1).- Note that g and hy are not
necessarily linear.

Under the dynamics of (4.1), it it easy to identify the r slow variables relating to the
square of the amplitudes:

(4.2) Ii(x) = @} + v,

for all K = 1...1. In [2], it was shown that if the frequencies {wy/27}}_, are ra-
tionally related, i.e., wy/w; is rational for all k, j, then there exists additional { — 1
polynomials J; (x), ..., Ji—1(x) that are slow. The variables .Jj, correspond to a notion
of relative phases between the oscillators. Adding a single additional fast variable, ¢,
yields a maximal slow chart with respect to (4.1), denoted (I, ..., I, J1,. .., Ji—1,®).
Following our previous notations, r = 2] — 1.

Consider a harmonic oscillator on the unit circle

X (t) = sin(wt + ¢o)
(4.3) Y (t) = cos(wt + ¢o).

X (t) and Y (¢) thus satisfy

X =wY
(4.4) Y =—wX, X(0)2+Y(0)2=1.

Time t can be uniquely defined up to a constant term using the arctan function:

(4.5) t=w;! {arctan(%) — ¢0] .

Furthermore, the derivative of arctan is globally defined for all values of X and Y.
Thus, arctan(Y/X) is a good candidate to find time. From our discussion in Section
3, for the system (4.1), the relative phase between the two oscillators can be defined
as

(4.6) 0(x1,y1, T2, y2) = wy " arctan(g) —wyt arctan(y—z).

z1 T2
Hence, 6 represents the angle, or phase difference between two points, (z1,y1) and
(z2,y2), when written in the polar coordinates. If we evaluate 6 along the trajectories
of the solutions of (4.1), we have that

_ g1y1 — z1hy _92Y2 — Z2ho
w1I1 WQIQ

4.7) Zo(x(t)) = VO -x , and |%9(x(t))| < Co.

—0
dt
Hence 6(x) is slow with respect to (4.1).

Since the inverse tangent function is only defined locally, so is #(x). Nonetheless, as

discussed in Section 3.1, ¥(t) = fg(d/dr)ﬁ(x(r))dr defines a continuously changing
quantity or observable.



10

As an example, consider a Van der Pol oscillator (1.1) with v = €, weakly coupled to
a harmonic oscillator with frequency (27)~!:

€T = Y1 + EA{EQ,
ein = —x1 + €(1 — a)y,
€Ty = Yo + €wya,

(48) €l = —T3 + €EWTo.

with initial conditions 1 = y3 = 2 = 1 and y3 = 0. The parameter A is a coupling
constant and is independent of e. With A = 0, (z1,y1) is a Van der Pol oscillator
(1.1) with v = € and (z2,y2) is a harmonic oscillator with frequency (1 + ew)/(27).
Hence, the difference between the frequencies of the two oscillators is of order e. For
A # 0 the two oscillators are coupled weakly. It follows from our discussion above
that I7, Is and 6 given by (4.2) and (4.6) are slow variables with respect to (4.8).

The algorithm described in Section 2.2 was implemented using the slow chart £ with
€ =107* and w = 10. Other parameters are H = 0.5, h = ¢/15, = 25¢ and (2.6) as
a kernel. Both micro and Macro solvers employ a fourth order Runge-Kutta scheme.
We compare results for A = 0 and A = 10. Figure 4.1 depicts the time evolution
of the amplitude of the Van der Pol oscillator, I; = 22 4+ y?. In order to observe
the effect of the relative phase, we plot in Figure 4.2 the values of x; and x5 during
three different runs of the micro-solver. In Figure 4.2a; A = 0 and the two oscillators
are decoupled. We see that the two oscillators slowly drift out of phase due to the
slightly different frequencies. With A = 10 the oscillators are coupled and maintain a
constant relative phase. The phenomenon of phase locking, (also called entrainment
or synchronization) is well known for nonlinear oscillators [16, 28].

A=0
0 . . .
0 5 10 15 20

Fic. 4.1. The amplitude of the Van der Pol oscillator described by (4.8). A = 0: decoupled
and A = 10: coupled to a harmonic oscillator with a slightly different frequency.

4.2. The Volterra-Lotka oscillator. In this section we consider the Volterra-
Lotka oscillator, which is treated as a benchmark case for oscillators that admit a
conserved quantity. The Volterra-Lotka oscillator is given by the ODE

=21 -vly)
(4.1) g=vlylz 1),
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LEE L E TS S . . . . . . .
t=1.24 t=1.48 t=1 t=1.24 t=1.48

Fic. 4.2. The phase of the Van der Pol and harmonic oscillators described by (4.8). (a)
A = 0: decoupled, and (b) A = 10: coupled to a harmonic oscillator with a slightly different
frequency. Dotted line: z1(t) — Van der Pol oscillator, solid line: x2(t) — harmonic. The two
oscillators are synchronized when coupled.

where 0 < v < 1 is a small parameter. Equation (4.1) admits a family of periodic
solutions with period Tp(v) that can be parametrized according to the initial condi-
tions 0 < z(0) < 1 and y(0) = 1. An example of such periodic trajectories is depicted
in Figure 4.3.

It can be verified that
(4.2) Iyp(z,y) = —lnzx+y—viny

is a conserved quantity along each periodic solution of equation (4.1), and it may play
the role of the oscillator’s amplitude.

Each periodic orbit can be divided into the union of two continuous open segments
which are joined by two points, (zr,v) and (z;7, ), where z1,and z; are the solutions
of Ivr(x,v) = Cy. We denote the first segment by I'; which consists of a relatively
slow movement close to the x-axis. The second segment, I';;, corresponds to the
trajectory along the upper arc depicted in Figure 4.3. In a duration proportional to
v, the solution goes through the upper arc and comes downs to the first segment. The
trajectory goes from one segment to the other whenever its y component equals v,
at which location, # = 0. Away from y = v, £ > 0 when the trajectory is on I'; and
& < 0 on I'y;. This suggests that an inverse function mapping the trajectory to some
reference time coordinate can be defined separately on each segment:

T1(x(t), y(t)) =t, for (x(t),y(t)) €T1
and
Trr(z(t),y(t)) =t + Crr, for (x(t),y(t)) € I'rr.
Hence, for (z,y) €'y,

On(@.y),  Onlwy) 1

(4.3)

Oz Oy €

Further more, it is convenient to take V77 - VIy = 0.
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1=0.046, 3.373

o 05 1 15 2 25 3 35
X

Fic. 4.3. The trajectory of the Volterra-Lotka oscillator (4.1) with v = 0.01, z(0) = 0.5 and
y(0) = 1.

Away from the turning points at y = v, the gradient for 7o(z,y) are exactly the same
as that of 71(x,y). Denoting 1r as the indicator function of the set T' we formally
define 7 and V7 by

T = lfj (m,y)ﬁ(x, y) + ]'FII (xa y)TII(xvy)a

and

V1 = 11_“1 (.23, y)VT](J?, y) +1r,, (Z‘, y)VTII (.23, y)

Let (X;(t),Y1(t)) denote a periodic solution of (4.1) and (Xs(t),Y2(t)) denote an
unperturbed harmonic oscillator with frequency w. Similar to the approach described
in Section 4.1, we define

Y5

4.4 0(X1,Y1, X2,Ys) = 7(X1,Y1) —w larctan 22,
X
2

From the discussion of Section 3.2, the slow observable 1) defined by

X,
d . Vi
—V=V0- X
Ys

is a well-defined continuous function of time, which is related to the relative phase
between the oscillators.

Now, consider the weak coupling of a Volterra-Lotka and a harmonic oscillator:

ei; = 21(1 — v yy) + eg1(x),
€y = Vﬁlyl(xl —1) + eh1(x),
(4.5) €to = wys + €g2(X),

€2 = —wx2 + €ha(X).
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Thus, as we argued in Section 3.1, along each trajectory of (4.6) we can define the
relative phase between the two oscillators as a slowly changing observable satisfying

D= (V0-( ) b 90) =0,

where f denotes the right hand side of (4.6).

As an example, the HMM algorithm was applied to (4.6) with e = 107°, v = 0.2, g1 =
Y3, h1 =0, go = 0 and hy = x1. The frequency of the harmonic oscillator is taken to be
close to that of the Volterra-Lotka one, w = 3.77/27. The singularity at y; = v is not
problematic since V6-x is integrable. Hence, we apply a cutoff around |y; —v| < 1074,
which introduces an additional error evaluated by changing the cutoff value. Improved
accuracy can be obtained by using methods such as Padé approximations in order to
integrate over the problematic region. Additional parameters are H = 0.25, n = 40
(which is about 11 periods) and the integration kernel is (2.6). The micro-solver is
a fourth order Runge-Kutta scheme with step size h = 0.03¢. The Macro-solver is
the midpoint rule. In addition, as explained in Section 3.2, we made sure that the
macro-step is not taken with y; values close to v. Figure 4.4 compares the solution
of the amplitudes I (z1,y1) = Ivr(z1,y1) and Iy = 23 + y3 obtained by the HMM
algorithm (plus signs) with that of the fourth order Runge-Kutta method (solid line)
with the same step size h = 0.03e¢.

0 1 2 3 4

Fic. 4.4. The amplitude of the Volterra-Lotka oscillator, Iy = Iy, =1 —lnz1 +y1 —vinyg,
and the harmonic oscillator, Is = x%erg. Fourth order Runge-Kutta (solid line) compared to HMM

(plus signs).

4.3. Relaxation oscillators. Consider the following example system suggested
by Dahlquist et. al. [8]

b=—1—x+8°
(4.1) j=v i~ +y-y°),

where v < 1 is a small parameter. The dynamics of (4.1) has a limit cycle that
is defined by the cubic polynomial # = y — y and the turning points dz/dy = 0
on it. The limit cycle consists of four parts, I'r, I'rr, I'rrr, and I'yy. I'y and T'ypy
denote, respectively, the upper and lower branches of this cubic polynomial which
are stable up to the turning points. For any initial condition, the solution of (4.1) is
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attracted to one of the stable branches on an O(v) time scale. The time derivative
T stays positive when the trajectory is close to I'; and negative when close to I'ysy.
Thus, trajectories of (4.1) move close to a branch until it becomes unstable. At this
point the solution is quickly attracted to the other stable branch. During the transient
states, the trajectories stay close to I';; and I'jy,. The trajectory of the oscillator near
the limit cycle is depicted in Figure 4.5. Van der Pol dubbed the name relaxation
oscillators due to the fast relaxation process at the instabilities. We shall use the
structure of this limit cycle to parametrize time.

The amplitude of the relaxation oscillator can be defined by some notion of distance
between the trajectory and the limit cycle, for example, as the difference in the y
coordinates of the trajectory and the limit cycle at some fixed . This is effectively
a particular realization of the Poincaré map with a transversal segment x = const.
Under the dynamics of (4.1), this distance converges to zero exponentially fast in a
time scale of order v. Hence, the amplitude of the oscillator can be considered a
dissipative variable.

Next, we discuss how to define the phase of the oscillator. In order to do so, we need
to make our description of the limit cycle more precise. As we alluded above, it consist
of four parts: The vertical segments, I';; and I'jy, are defined by the intersections of
r==42V3/9and z =y — y>:

2V/3

FII:{(xvy):x: 9 7y€I2}7

2v/3
FIV = {(xay) T = _T\/_vy € 14}7

where Iy = (bs,2v/3/9) and I, = (—2v/3/9,b4) are the intervals bounded by the two
solutions of y — y® = 2v/3/9 and y — y> = —2v/3/9, respectively. Hence,

1
F1={(9c,y)ms:y—zf?’,ﬁ<y<b4},

1
Tir={(zy) :z=y—y’ ba<y< _ﬁ}'

We shall assume that the solution of (4.1) is already sufficiently close to the limit
cycle T'. Near either I'; or I'yyy, x(¢) is strictly monotone, therefore, away from a
neighborhood of the two turning points, we define 7; and 777 to be the inverse function
of z(t) on these two branches. Again, we formally define

T(x,y) = 1r,71 + Lo, 71 + oy, Trrr + 1oy, Trv
and the gradient
V1= ]-FIVTI + ]-FHVTII + ]-FI”VTIII + ]'FIVVTIV'

Finally, the phase is defined as the solution of

d



15

05

Y.

Fia. 4.5. The trajectory and slow manifold of the relazation oscillator (4.1).

We use this strategy to study the following system in which a relaxation oscillator
with v = € is weakly coupled to a harmonic oscillator:

ety = —1 — 21 + 8y + €Ay
eh =¢ N~z +y — )
(4.2) €T = WoY2 + €wWys

€Yo = —WoT2 + EWT2.

Since the relaxation from one stable branch to the other occurs on a O(e?) time scale,
we simply ignore effects of those terms related to I';; and I'yy for convenience of
computation. We define the interior of I'; and I'jj;:

1
FI:{(xay):x:y_y37%+006<y<b4_006}a

- 1
FH[:{(x,y):x:y—yg,b2+Coe<y< —— — Cpe}.

V3

We can formally define

V%ZlfIVT[+1~ VI,

Crrr

where

1 3y—1
V1=V = ( (-1 x10+ 8y1) > .

The relative phase between the (z1,y1) and (z2,y2) is then given by

B 1
0(21, y1, 2, y2) = 7(x1) — — arctan(2).
wo i)

As an example, we take wg = 27/Ty, Ty = 0.28416 is the angular velocity of the
decoupled (z1,y1) oscillator. The initial conditions are ;1 = 0, y; = —1, and zy =
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Fic. 4.6. An asymmetric HMM for problems involving transients.

yo = 1/4/2. The parameter A is a coupling constant and is independent, of e. With
A =0, (z1,y1) is the relaxation oscillator (4.1) and (z2,y2) is a harmonic oscillator
with angular velocity wo + ew. Hence, the frequencies of the two oscillators are close.
For A # 0 the two oscillators are coupled weakly. The dynamics of (4.3) evolves
on three time scales. The fastest scale, of order €2, is the relaxation time of the
relaxation oscillator between stable branches. On an intermediate time scale of order
€, the coupling between the oscillators is negligible. The coupling becomes significant
on a longer O(1) time scale. We apply HMM to take advantage of the scale separation
between the two slowest modes.

The slow variables for (4.3) can be taken to be the amplitude of the harmonic oscilla-
tor, I, = 22 + y2, and the relative phase 6(x), which is well-defined in this example.
Away from turning points, these variables describe a two dimensional slow manifold.
Recall that the amplitude of the relaxation oscillator is dissipative.

The algorithm described in Section 2.2 was implemented using the above slow variables
with ¢ = 107 and w = 10. The micro-solver, integrating the full system (4.3)
was implemented using a forth order Runge-Kutta scheme with variable step size in
order to speed up integration along the stable branches of the limiting cycle. Hence,
our scheme operates on three time scales: €2, € and 1. The Macro-solver uses a
forward Euler scheme plus projection of the (z2,y2) oscillator onto the unit circle.
Additional parameters are H = 0.25 and 1 = 25¢. Due to the dissipative nature of
the fast oscillations, the micro-solver only integrates the system forward in time and
the resulting algorithmic structure is shown in Figure 4.6. Finally, it is important that
macroscopic steps are not taken too close to the boundary of a chart, particularly if
the boundary corresponds to a turning point of the trajectory. This can be avoided
by running the micro-solver to time 1+ Tp, and then choosing a sub-segment of length
n with a convenient mid-point for taking the macro-step.

We compare results for A = 0 and A = 40. Figure 4.2 depicts the values of x; and
xo during three different runs of the micro-solver. In Figure 4.7a, A = 0 and the
oscillators are decoupled. We see that the two oscillators slowly drift out of phase
due to the slight difference in oscillator frequencies. With A = 40 the oscillators
are coupled and maintain a constant relative phase. Figure 4.8 depicts the solution
of (4.3) with wy = 47/Tp, i.e, the frequency of the harmonic oscillator is slightly
different than twice the frequency of the relaxation oscillator. With A = 40 the
relaxation oscillator is synchronized with exactly half the frequency of the harmonic
one. This phenomenon is referred to 1-2 entrainment or resonance.

5. Conclusion. Previously in [2], we have proposed an approach for decompos-
ing a vector field into its fast and slow constituents using the concept of slow variables.
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t=1 t=5 t=9 t=1 t=5 t=9

Fic. 4.7. The phase of the relazation and harmonic oscillators described by (4.3). (a) A =0:
decoupled, and (b) A = 40: coupled to a harmonic oscillator with a slightly different frequency.
Dotted line: x2(t) — harmonic oscillator, solid line: x1(t) — relazation. The two oscillators are
synchronized when coupled.

t=1 t=5 t=9

Fic. 4.8. Ezample of 1-2 entrainment between a relazation oscillator and a harmonic one.
Dotted line: x2(t) — harmonic oscillator, solid line: x1(t) — relazation.

The decomposition is used in an algorithm that efficiently integrates the slow parts
of the dynamics without fully resolving the fast parts globally in time. In this pa-
per we further develop this idea and extend it to fully nonlinear oscillators. This
includes oscillators which are very different in nature from harmonic oscillators. The
slow variables are classified as amplitudes and relative phases, in analogy to corre-
sponding variables for harmonic oscillators. The notion of relative phase is defined
by constructing inverse functions that maps the periodic orbits to time. Following
the HMM framework, the time evolution of the slow variables in the coupled system
is computed using on the fly short-time simulations of the full system. Thus, we are
able to compute efficiently the slow behavior of the system using large time steps.
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