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Abstract. A strong limit theorem is proved for a version of the well-known Kac-

Zwanzig model, in which a “distinguished” particle is coupled to a bath of N free

particles through linear springs with random stiffness. It is shown that the evolution
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equations, converges pathwise toward the solution of an integro-differential equation

with a random noise term. Both the canonical and micro-canonical ensembles are

considered.
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1. Introduction

Deterministic dynamical systems with a large number of degrees of freedom typically

display complicated behavior that often seem random. It is not surprising that the

evolution of certain observables in these systems can be approximated by a stochastic

process. Results in this direction abound in the literature. Most of these results,

however, are of weak convergence-type, i.e., it is shown that the evolution of the

observables tends to that of a stochastic process in some distributional sense. It is more

surprising that the evolution of some observables in deterministic dynamical systems

converges pathwise to that of a stochastic process. The present paper offers a result in

this direction within the context of a dynamical system first introduced by Ford, Kac

and Mazur [4, 5], and later by Zwanzig [18], as a simplified model to investigate several

issues in nonequilibrium statistical mechanics.

Kac-Zwanzig model is an Hamiltonian dynamical system with Hamiltonian:

H(x,v) =
1

2
p2

0 + V (x0) +
1

2

N
∑

i=1

miv
2
i +

γ

2N

N
∑

i=1

(xi − x0)
2, (1.1)

where for shorthand we use the notation x = (x0, x1, . . . , xN) and similarly for writing

vectors in R
N+1. Here x0(t) and v0(t) denote the position and velocity at time t of
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a one dimensional, unit mass particle whose dynamics we are interested in describing.

This particle, referred to as the distinguished particle, is placed in an external potential

V (·) and coupled to N additional particles (or oscillators), referred to as the bath.

The position, velocity and mass of the i’th oscillator are denoted xi(t), vi(t) and mi,

respectively. The coupling between the distinguished particle and each oscillator is

taken as harmonic, with spring constant γ/N > 0. The scaling with N emphasizes

the fact that the pair interactions are weak. The equations of motion derived from the

Hamiltonian (1.1) can be written as: for i = 1, . . . , N ,

ẌN
0 = f(XN

0 ) − γ

N

N
∑

i=1

(XN
0 −XN

i ), XN
0 (0) = x0, Ẋ

N
0 (0) = v0

ẌN
i = ω2

i (X
N
0 −XN

i ), XN
i (0) = xi, Ẋ

N
i (0) = vi, (1.2)

where f(·) = −V ′(·) and we have defined the frequencies

ω2
i =

γ

Nmi
. (1.3)

Kac-Zwanzig model has been the subject of extensive research in both the physics

and mathematical literature [3, 6, 7, 9, 10, 11, 12, 14, 16, 17], and it is known that

the trajectory of the distinguished particle can be approximated by a stochastic process

under specific scaling of the initial conditions for the bath, {xi, vi}N
i=1 and the frequencies,

{ωi}N
i=1. The core of these results can be summarized as follows.

Let β > 0 be a parameter and suppose that, for fixed initial conditions of the

distinguished particle, x0 and v0, and fixed frequencies, {ωi}N
i=1, the initial conditions

for the bath, {xi}N
i=1 and {vi}N

i=1 are random variables with probability distribution:

dµx0,v0

β,ω (x1, . . . , xN , v1, . . . , vN) = Z−1e−βH̄(x,v)dx1 . . . dxNdv1 . . . dvN (1.4)

where Z is a normalization constant such that µ(RN × R
N) = 1 and

H̄(x,v) =
γ

2N

N
∑

i=1

(

v2
i

ω2
i

+ (xi − x0)
2

)

. (1.5)

The distribution (1.4) is the marginal (at x0, v0, {ωi}N
i=1 fixed) of the Boltzmann-Gibbs

canonical distribution associated with the Hamiltonian H (here written in terms of the

velocities vi instead of the momenta pi), which is an invariant measure for Kac-Zwanzig

model (1.2). Because of the specific form of the Hamiltonian, (1.4) implies that, for

fixed {ωi}N
i=1, {xi}N

i=1 and {vi}N
i=1 are independent Gaussian variables with mean x0 and

0 and variance N/βγ and Nω2
i /βγ, respectively. For convenience we define

hi =

√

βγ

N
(xi − x0); gi =

√

βγ

Nωi
2
vi. (1.6)

With this definition, {hi}N
i=1 and {gi}N

i=1 are independent, normally distributed random

variables (i.e., Gaussian with zero mean and unit variance).

Suppose in addition that the frequencies {ωi}N
i=1 are independent and identically

distributed (i.i.d.) random variables, absolutely continuous with respect to the Lebesgue

measure on [0,∞), and with probability density p(·). We assume that p(ω) > 0 in a
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connected support and has a finite second moment. Then, as N → ∞, the trajectory

of the distinguished particle in phase-space, {XN
0 (t), ẊN

0 (t)}, converges weakly to

the solution of the following integro-differential equation with random noise called a

generalized Langevin equation:

Ẍ0 = f(X0) −
∫ t

0

R(t− τ)Ẋ0(τ)dτ +
1√
β
ξ(t), (1.7)

where the memory kernel R : [0,∞) 7→ R is given by

R(t) = γ

∫ ∞

0

p(ω) cos(ωt)dω, (1.8)

and ξ : [0,∞) 7→ R is a Gaussian random function with mean zero and covariance R(·).
This implies that, given any smooth function with compact support φ ∈ C∞

0 (R × R)

and for any T <∞, we have that, as N → ∞,

sup
0≤t≤T

∣

∣

∣
EωE

ω
c

[

φ(XN
0 (t), ẊN

0 (t))
]

− Eξ

[

φ(X0(t), Ẋ0(t))
]
∣

∣

∣
→ 0, (1.9)

where Eω
c [·] denotes expectation of the initial condition of the bath with respect to the

canonical distribution (1.4) at {ωi}N
i=1 fixed, Eω[·] the expectation with respect to the

statistics of the frequencies, and Eξ the expectation with respect to the statistics of the

noise ξ(·).
As mentioned earlier, the purpose of this paper is to offer a stronger convergence

result, namely the pathwise convergence of {XN
0 (t), ẊN

0 (t)} toward {X0(t), Ẋ0(t)} as

N → ∞. This falls under the general strategy of the Skorokhod embedding theorem

(c.f. [2], Theorem 13.28) which states that every sequence of stochastic processes that

converge in law can be realized on a common probability space in a way such that

the new sequence will converge almost surely or strongly. This paper offers an explicit

construction for such an embedding for the problem at hand. We note that one such

strong convergence result has already been proven by Stuart and Warren [16] who

considered a variant of this model in which the frequencies are not random but rather

are fixed to be ωi = i. It is then proven that in the limit N → ∞, and on a fixed time

segment t ∈ [0, π], the solution XN
0 (t) and ẊN

0 (t) of (1.2) converges in L2(0, π) to the

solution of a limiting equation of the form of (1.7) in which ξ(t) is the time derivative

of a Brownian bridge of [0, π], i.e.,

Eg,h

[
∫ π

0

{

(

XN
0 (t) −X0(t)

)2
+

(

ẊN
0 (t) − Ẋ0(t)

)2
}

dt

]

≤ C(T, x0, v0)

N1−ε
,

(1.10)

for any ε > 0. The Brownian bridge is constructed as a geometric series with coefficients

{hi}∞i=1 and {gi}∞i=1.

In contrast, in the model considered here, the frequencies {ωi}∞i=1 are random.

This requires a new approach to represent the limiting random noise ξ(t). The precise

statement of our result, and the assumptions under which it holds are given in section 2.
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However, it can be roughly stated as follows. Given the density p(·), it is possible to

represent the Gaussian noise ξ(·) as

ξ(t) =
√
γ

∫ ∞

0

p1/2(ω) (cosωt dhω + sinωt dgω) . (1.11)

where hω and gω are two independent copies of the standard Brownian motion on [0,∞).

Using the Itô isometry it is easy to see that ξ(t) is indeed a Gaussian process with zero

mean and covariance

Eg,h [ξ(t1)ξ(t2)] = γ

∫ ∞

0

p(ω) cosω(t1 − t2)dω = R(t1 − t2). (1.12)

where Eg,h[·] denotes expectation over the statistics of the Brownian motions hω and

gω. Now, let us denote

ω̄i = P−1(i/N), (1.13)

where P−1(z) is the inverse function of the distribution of the frequencies, i.e.,

P (z) =
∫ z

0
p(ω)dω. In addition, given a realization of the frequencies, {ωi}N

i=1, let

us denote by {ω∗
i }N

i=1 the frequencies obtained from {ωi}N
i=1 by ordering them, i.e.,

there exists a permutation σ of {1, . . . , N} such that ω∗
i = ωσ(i), i = 1, . . . , N and

0 ≤ ω∗
i ≤ ω∗

2 · · · ≤ ω∗
N . Then, as N → ∞, (XN

0 (t), ẊN
0 (t)) converges pathwise toward

(X0(t), Ẋ0(t)), the solution of (1.7) with ξ(·) given by (1.11), in the sense that, given

any T ≤ ∞,

sup
0≤t≤T

EωE
ω
c E

(C1)
g,h

[

(XN
0 (t) −X0(t))

2 + (ẊN
0 (t) − Ẋ0(t))

2
]

→ 0. (1.14)

Here Eω
c [·] and Eω[·] are the expectations defined in (1.9) and E

(C1)
g,h [·] denotes the

expectation over the statistics of the Brownian motions hω, gω, conditioned on the

event, labeled (C1)

√
N

∫ ω̄i

ω̄i−1

p1/2(ω)dhω =

√

βγ

N
(x∗i − x0) = h∗i

√
N

∫ ω̄i

ω̄i−1

p1/2(ω)dgω =

√

βγ

Nω∗
i
2v

∗
i = g∗i (1.15)

for i = 1, . . . , N , where the star denoted reordering according to the permutation σ, i.e.,

x∗i = xσ(i), v
∗
i = vσ(i), h

∗
i = hσ(i) and g∗i = gσ(i).

It is not obvious a priori how to condition the Brownian motions gω and hω so that

they satisfy (1.15). One of the main results of this paper is the construction of a pair of

stochastic processes hc
ω and gc

ω that satisfy the constraints (1.15) almost surely, thereby

given a precise meaning to this conditioning. This is detailed in section 2.

The precise rate of convergence in (1.14) is given in section 2 (see Theorem 2.2).

Theorem 2.3 offers a generalization of this result when the initial condition are

distributed microcanonically instead of canonically as in (1.4) – a choice which is more

natural in the context of Kac-Zwanzig model. Notice that, unlike (1.9), (1.14) requires

that the noise term in the limiting equation (1.7) be related to the initial condition for
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the bath and the frequencies. It is known that this can always be done, i.e. if (1.9)

holds then (1.14) holds for some specific choice of the noise term. Our result, however,

is constructive in the sense that it tells explicitly how to pick the noise in the limiting

equation (1.7) given the choice of the parameters in the original system (1.2).

The organization of the remainder of this paper is as follows. Section 2 presents

the assumptions underlying our model, the strong convergence theorems proved and

their implications. Section 3 contains the proof of Theorem 2.2, which holds when the

initial conditions of the bath particles are distributed canonically. Section 4 contains

the proof Theorem 2.3, which holds when the initial conditions of the bath particles

are distributed microcanonically. Finally, in Section 5 we give some concluding remarks

and discuss possible extensions and generalizations of the model.

2. Assumptions and main results

Recall a few definitions from the previous Section. Let P (z) denote the distribution

function of the frequencies, P (z) =
∫ z

0
p(ω)dω, P−1(z) its inverse, and ω̄i = P−1(i/N).

Also, given {xi, vi, ωi}N
i=1, let {ω∗

i }N
i=0 be the frequencies obtained by ordering the ωi’s

in ascending order using the permutation σ as explained before and adding ω∗
0 = 0 to

the set. The random permutation σ can be defined on the space of all permutations

of length N (with the discrete σ-algebra). Its probability measure is induced from the

measure on N independent copies of the frequencies. Similarly, for fixed N and i, ω∗
i is

a random variable defined on the probability space [0,∞)N (with the Borel σ-algebra).

Furthermore, it is absolutely continuous with respect to the Lebesgue measure. Since

all the random variables defined above are derived from p(ω), we denote expectations

with respect to all of their measures by Eω[·]. Using the permutation σ, we also denote

{x∗i = xσ(i) and v∗i = vσ(i)}N
i=1. Since the random permutation σ is independent of the

initial condition, {x∗i , v∗i }N
i=1 are equal in law to {xi, vi}N

i=1.

Given two independent copies of standard Brownian motion, hω and gω, define

dh⊥ω = dhω −
N

∑

i=1

ah
i p

1/2(ω)1[ω̄i−1,ω̄i)(ω)dω

dg⊥ω = dgω −
N

∑

i=1

ag
i p

1/2(ω)1[ω̄i−1,ω̄i)(ω)dω, (2.1)

where

ah
i = N

∫ ω̄i

ω̄i−1

p1/2(ω)dhω, ag
i = N

∫ ω̄i

ω̄i−1

p1/2(ω)dgω (2.2)

and 1S(·) is the indicator function of the set S, i.e., 1S(ω) = 1 if ω ∈ S and 1S(ω) = 0

otherwise.

Define also

dH(ω) =
N

∑

i=1

bhi p
1/2(ω)1[ω̄i−1,ω̄i)(ω)dω
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dG(ω) =

N
∑

i=1

bgi p
1/2(ω)1[ω̄i−1,ω̄i)(ω)dω, (2.3)

where

bhi =
√
Nh∗i , bgi =

√
Ng∗i . (2.4)

Finally, let

hc
ω = H(ω) + h⊥ω

gc
ω = G(ω) + g⊥ω , (2.5)

Using the Itô isometry, it is easily shown that for almost every choice of {ωi, xi, vi}N
i=1

Eg,h

[√
N

∫ ω̄i

ω̄i−1

p1/2(ω)dhc
ω

]

= h∗i ,

Eg,h

[√
N

∫ ω̄i

ω̄i−1

p1/2(ω)dgc
ω

]

= g∗i , (2.6)

and the variance is zero. Hence, denoting by Pg,h the probability space of the two

Brownian motions hω and gω we have that for fixed {ωi, xi, vi}N
i=1, the function hc

ω and

gc
ω satisfy (1.15) Pg,h-almost surely, i.e.,

√
N

∫ ω̄i

ω̄i−1

p1/2(ω)dhc
ω = h∗i ,

√
N

∫ ω̄i

ω̄i−1

p1/2(ω)dgc
ω = g∗i . (2.7)

On the other hand, if Pω
c denotes the probability space of the bath initial conditions

{xi, vi}N
i=1 equipped with the canonical distribution (1.4), Pω the probability space of

the N independent frequencies {ωi}N
i=1, each equipped with the probability distribution

p(ω)dω, we also have:

Lemma 2.1. Pω-almost surely for every {ωi}N
i=1, hc

ω and gc
ω are two independent

Brownian motions defined on the product space Pg,h ×Pω
c .

Proof: It is easily verified that hc
ω is a Gaussian process with zero mean. In addition, a

direct calculation shows that EωE
ω
c Eg,h[h

c
ω1
hc

ω2
] = Eg,h[hω1

hω2
] = |ω1−ω2|, and similarly

for gc
ω. �

Thus, for fixed {ωi, xi, vi}N
i=1, h

c
ω and gc

ω qualify as Brownian motions conditioned as

in (1.15), and they will allow us to now formulate one of our main results.

Define ξc(·) as

ξc(t) =
√
γ

∫ ∞

0

p1/2(ω) (cosωt dhc
ω + sinωt dgc

ω) . (2.8)

We have:

Theorem 2.2 (Canonical case). Assume that the potential V (·) in (1.2) is ∈ C2(R) and

that V ′(·) is globally Lipschitz. Then, for T < ∞ and every choice of initial condition

(x0, p0) for the distinguished particle, there exists a constant C(T, x0, p0), independent

of N , such that,

sup
0≤t≤T

EωE
ω
c Eg,h

[

∣

∣XN
0 (t) −Xc

0(t)
∣

∣

2
+

∣

∣

∣
ẊN

0 (t) − Ẋc
0(t)

∣

∣

∣

2
]

≤ C(T, x0, v0)

N2l
,

(2.9)
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where Xc
0(·) is the solution of (1.7) with ξ(t) = ξc(t) and the rate of convergence, l,

depends only on the tail of p(ω). Let p(ω) denote a continuously differentiable probability

function on [0,∞) such that for all ω, p(ω) > 0, p′(ω) < 0 and p has a polynomial tail,

i.e., limω→∞ ωqp(ω) = D, for some q > 3 and 0 < D < ∞. Then, we have that

l = (q − 1)/(2q). If the tail of p(ω) is exponential or better, then l = 1/2.

Unlike most results known in the literature, Theorem 2.2 is a pathwise convergence

result. By this we mean that if we pick a set of frequencies and some initial condition

for the bath, Theorem 2.2 tells us how to construct a random noise such that the

solution of the limiting equation (1.7) remains close to the trajectory of the distinguished

particle satisfying (1.2) in the L2 sense. In fact, Theorem 2.2 implies that this trajectory

converges Pg,h ×Pω ×Pω
c -almost surely towards the solution of the limiting equation as

N → ∞, at least on some subsequence.

It is also clear that the convergence result in Theorem 2.2 remains valid if the

statistics of the initial condition for the bath are changed. More precisely, the theorem

holds if {xi, vi}N
i=1 at {ωi}N

i=1 fixed are not distributed according to the canonical

distribution (1.4) but rather according to some other distribution equivalent to (1.4)

(i.e. such that (1.4) is absolutely continuous with respect to this new distribution and

vice-versa). In this case, however, Lemma 2.1 will not hold in general, i.e. hc
ω and gc

ω

will not be Brownian motions on Pg,h × Pω
c . As a result, the noise term ξc(·) may no

longer be a zero-mean Gaussian process, which means that the fluctuation-dissipation

relation which says that the covariance of ξ(·) is R(·) will be lost as well. We will not

consider situations of this type any further here.

Another modification of the statistics of the initial condition of the bath is more

natural. Since the Hamiltonian H̄(x,v) given by (1.5) is left invariant under the

dynamics of Kac-Zwanzig model (1.2), it is natural to assume that, given the frequencies

{ωi}N
i=1, the initial condition for the bath are distributed according to the distribution

(compare (1.4))

dµ̄x0,v0

β,ω (x1, . . . , xN , v1, . . . , vN) = Z̄−1dσ(x1, . . . , xN , v1, . . . , vN)

|∇H̄(x,v)| , (2.10)

where ∇H̄ = (∂H̄/∂x1, . . . , ∂H̄/∂xN , ∂H̄/∂v1, . . . , ∂H̄/∂vN ), | · | is the Euclidean norm

in R
2N , dσ(x1, . . . , xN , v1, . . . , vN) denotes the surface element (Lebesgue measure) on

the constant energy hypersurface S = {(x1, . . . , xN , v1, . . . , vN) : H̄(x,v) = N/β}, and

Z̄ is a normalization constant such that µ̄x0,p0

β,ω (S) = 1. The distribution (2.10) is the

marginal (at x0, p0 fixed) of the microcanonical probability distribution associated with

the Hamiltonian (1.1).

Theorem 2.2 can be generalized to the microcanonical situation. To prepare for

this result, define

hm
ω = rH(ω) + h⊥ω , (2.11)

gm
ω = rG(ω) + g⊥ω , (2.12)

where H(·), G(·), h⊥ω and g⊥ω are as before, and r ∈ [0,∞) is a random variable,
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independent of all previous ones, and with probability density

p(r) = C−1r2N−1e−βNr2/2, C =

∫ ∞

0

r2N−1e−βNr2/2dr. (2.13)

Define also

ξm(t) =
√
γ

∫ ∞

0

p1/2(ω) (cosωt dhm
ω + sinωt dgm

ω ) . (2.14)

Then we have

Theorem 2.3 (Microcanonical case). For all T < ∞ and every choice of initial

condition (x0, p0) for the distinguished particle, there exists a constant C(T, x0, p0),

independent of N , such that,

sup
0≤t≤T

EωE
ω
mErEg,h

[

∣

∣XN
0 (t) −Xm

0 (t)
∣

∣

2
+

∣

∣

∣
ẊN

0 (t) − Ẋm
0 (t)

∣

∣

∣

2
]

≤ C(T, x0, v0)

N2l
, (2.15)

where Xm
0 (·) is the solution of (1.7) with ξ(t) = ξm(t) and the rate of convergence, l, is

as in Theorem 2.2.

The remainder of this paper is devoted to proving the statements made in this

section.

3. The canonical case

In this Section we prove Theorem 2.2, relative to the cases in which the bath initial

conditions are distributed according to the canonical distribution (1.4). Most authors

studying the Kac-Zwanzig model consider only the canonical ensemble [6, 7, 9, 10, 11,

12, 14, 15, 16, 17].

We begin with a few preliminary calculations. Using either variation of parameters

or the Laplace transform, (1.2) can be solved for XN
1 . . .XN

N . Substituting into the

equation for XN
0 (t) and integrating by parts, the equation for XN

0 (t) can be written as

ẌN
0 = f(XN

0 ) −
∫ t

0

RN (t− τ)ẊN
0 (τ)dτ +

1√
β
ξN(t), (3.1)

where

RN(t) =
γ

N

N
∑

i=1

cosωit. (3.2)

and ξN(t) is given by

ξN(t) =
√

β
γ

N

N
∑

i=1

(

(xi − x0) cosωit+ vi
sinωit

ωi

)

. (3.3)

Note that the bath initial conditions appear only in ξN . For this reason we will refer

to ξN(t) as a random noise term. Changing variables into dimensionless, centered
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coordinates (1.6) the noise term ξN(t) can be written as

ξN(t) =

√

γ

N

N
∑

i=1

(hi cosωit+ gi sinωit)

=

√

γ

N

N
∑

i=1

(h∗i cosω∗
i t+ g∗i sinω∗

i t) , (3.4)

where, in the last line, the sums were reordered according to the permutation σ.

We prove Theorem 2.2 in three steps. The first considers convergence of the memory

kernel RN (t). The second step considers the noise, and finally the position and velocity

of the distinguished particle. Strong convergence of XN
0 (t) to Xc

0(t) and of ẊN
0 (t) to

Ẋc
0(t) is proved in Theorem 2.2. All steps consider a finite time interval 0 ≤ t ≤ T ,

T <∞. The initial conditions of the bath have the Gibbs distribution (1.4). Hence, hi

and gi, defined by (1.6), are i.i.d. normal random variables (Gaussian with zero mean

and variance one).

Lemma 3.1. For all T <∞ we have,

sup
0≤t≤T

Eω

[

(RN(t) −R(t))2
]

≤ 2γ2

N
, (3.5)

and

sup
0≤t≤T

Eω

[

(RN(t) −R(t))4] ≤ 16γ4

N2
. (3.6)

Proof: For fixed time t, the random variable cosωt is bounded. Hence, the law of large

numbers implies that RN(t) converges to its average for almost all ω,

lim
N→∞

RN(t) = lim
N→∞

γ

N

N
∑

i=1

cosωit = γEω [cosωt] ≡ R(t). (3.7)

In order to find the rate of convergence, we write

Eω

[

(RN(t) −R(t))2
]

=

=
γ2

N2

N
∑

i,j=1

Eω [cosωit cosωjt] +R2(t) − 2R(t)
γ

N

N
∑

i=1

Eω [cosωit] . (3.8)

Splitting the double sum to diagonal (i = j) and off diagonal terms, using the

independence of different ωi and the definition (3.7) of R(t) we arrive at (3.5). The

estimation (3.6) is proven by a similar calculation. �

It is interesting to note that the calculations above imply that ξN(t) converges in

distribution to ξ(t). The rate of this weaker convergence is always N−1/2 and does not

depend on the tail of p(ω).

Next, we show that for all 0 ≤ t ≤ T <∞,

EωEg,h

[

(ξN(t) − ξc(t))2
]

≤ C(T )

N2l
, (3.9)

for some l > 0 and where the constant C(T ) depends only on T and the probability

density function p(ω).
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Let

kN = bN(1 −N−a)c, (3.10)

where 0 ≤ a < 1/2 and bxc = max{i ∈ Z|i ≤ x}. The following Lemmas will be used in

proving convergence of the noise. For simplicity, we will only consider a particular case in

which the density function of the frequencies p(ω) is continuously differentiable, strictly

positive, monotonically decreasing, and has a polynomial tail, i.e., limx→∞ ωqp(ω) = D,

for q > 3 and some 0 < D < ∞. In particular, this implies that there exists ωC > 0

such that, for all ω > ωC

Cω−q ≤ p(ω) ≤ Dω−q, (3.11)

for some C,D > 0. Other cases can be considered in a similar way. This condition

implies that Eω[ω2] < ∞. Below we use C and D to denote generic constants whose

values may vary between expressions.

We have

Lemma 3.2. For all i = 0, . . . , N − 1

ω̄i ≤
D

(

1 − i
N

)1/(q−1)
. (3.12)

Proof:

1 − i

N
=

∫ ∞

ω̄i

p(ω)dω ≤
∫ ∞

ω̄i

D

ωq
dω =

D

ω̄q−1
i

. (3.13)

Solving for ω̄i yields (3.12). �

Lemma 3.3. For all i = 1, . . . , N − 1,

|ω̄i − ω̄i−1|2 ≤
C

N2p2(ω̄i)
(3.14)

Proof:

1

N
=

∫ ω̄i

ω̄i−1

p(ω)dω ≥ C(ω̄i − ω̄i−1)p(ω̄i). (3.15)

�

Theorem 3.4. For all i = 0, . . . , N − 1

Eω

[

(ω̄i − ω∗
i )

2] ≤ D

Np2(ω̄i)
, (3.16)

The term on the right hand side of (3.16) has a form similar to the setup of the

Kolmogorov-Smirnov statistics. The proof, detailed in Appendix A, extends some results

of Kolmogorov-Smirnov to random variables that are not uniformly distributed.

Lemma 3.5. For all t ≤ T

EωEg,h

[

(ξN(t) − ξc(t))2] ≤ CT 2

(

1

N2−a(q+1)/(q−1)
+

1

Na

)

. (3.17)
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Proof: Substituting in the representation for ξc(t), (2.8), and the representation for

ξN(t), (3.4), in which we use (2.7) to express h∗i and g∗i in terms of dhc
ω and dgc

ω, we

have,

EωEg,h

[

(ξN(t) − ξc(t))2
]

= 2γ(1 − SN) (3.18)

where

SN = EωEg,h

[{
∫

R

p1/2(x) cos(xt)dhc
x +

∫

R

p1/2(x) sin(xt)dgc
x

}

×

×
{

N
∑

i=1

(
∫ ω̄i

ω̄i−1

p1/2(x)dhc
x cos(ω∗

i t) +

∫ ω̄i

ω̄i−1

p1/2(x)dgc
x sin(ω∗

i t)

)

}]

. (3.19)

Clearly, we need to show that SN → 1 in the limit N → ∞. Using the Itô isometry

yields

SN =
N

∑

i=1

Eω

[
∫ ω̄i

ω̄i−1

p(x) cos((x− ω∗
i )t)dx

]

. (3.20)

Bounding the cosine by 1 yields an upper bound, SN ≤ 1. To get a lower bound, we

prove that for most i, (x− ω∗
i ) is small, and the cosine is almost one. The reason why

(x−ωσ(i)) is not small for all i is due to the tail of the density p(ω). We therefore break

the sum into two parts: up to kN and above. For i ≤ kN we use cos x ≥ 1 − x2/2. The

left over, kN < i ≤ N , is trivially bounded by -1. The last N − kN terms in the sum

(3.20) contribute

N
∑

i=kN+1

Eω

[
∫ ω̄i

ω̄i−1

p(x) cos((x− ω∗
i )t)dx

]

≥ −
N

∑

i=kN+1

Eω

[
∫ ω̄i

ω̄i−1

p(x)dx

]

= −N − kN

N
= −N−a, (3.21)

where we used the fact that
∫ ω̄i

ω̄i−1

p(x)dx = 1/N . The first kN terms in the sum (3.20)

contribute
kN
∑

i=1

Eω

[
∫ ω̄i

ω̄i−1

p(x) cos((x− ω∗
i )t)dx

]

≥
kN
∑

i=1

Eω

[
∫ ω̄i

ω̄i−1

p(x)
(

1 − (x− ω∗
i )

2T 2/2
)

dx

]

=
kN

N
− T 2

2

kN
∑

i=1

∫ ω̄i

ω̄i−1

p(x)Eω

[

(x− ω∗
i )

2
]

dx. (3.22)

For x ∈ [ω̄i−1, ω̄i], we have

Eω

[

(x− ω∗
i )

2
]

≤ 2(ω̄i − ω̄i−1)
2 + 2Eω

[

(ω̄i − ω∗
i )

2
]

. (3.23)

Comparing (3.14) with (3.16) we see that the latter is the dominant term. Substituting

(3.16) into (3.22), we need to evaluate

1

N

kN
∑

i=1

1

Np2(ω̄i)
≤ C

N2

kN
∑

i=1

1
(

1 − i
N

)2q/(q−1)
, (3.24)
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where we used (3.12) to bound ω̄i. The behavior of the sum in (3.24) can be compared

to the integral
∫ 1−δ

0
x−2q/(q−1)dx with δ = 1 − kN/N ≤ CN−a. The integral diverges

asymptotically like δ−(q+1)/(q−1). Substituting into (3.24), the sum is bounded by

CN2aq/(q−1)−2. Substituting into (3.22) yields (3.17). �

Lemma 3.6. Strong convergence of noise:

sup
0≤t≤T

EωEg,h

[

(ξN(t) − ξc(t))2] ≤ CT 2

N2l
, (3.25)

where l = (q − 1)/(2q).

Proof: The optimal bound on EωEg,h[(ξ
N(t) − ξc(t))2] is obtained by choosing a =

2 − 2aq/(q − 1). Taking the supremum over 0 ≤ t ≤ T yields (3.25). �

This concludes our proof for convergence of the noise for the case of a density

function p(ω) with a polynomial tail. Similar calculations can be done with other

examples. For instance, with an exponential, square exponential, or a density function

that has a compact support, the rate of convergence of the noise is found to be

l = sup
q>3

q − 1

2q
=

1

2
. (3.26)

We are now finally in a position for proving Theorem 2.2, which is done using a

Gronwall-type argument:

Proof: [Theorem 2.2] Let (Xc
0(t), V

c
0 (t)) denote the solutions of the limiting equation:

Ẋc
0(t) = V c

0 (t)

V̇ c
0 (t) = f(Xc

0(t)) − γ

∫ t

0

R(t− τ)V c
0 (τ)dτ +

1√
β
ξc(t), (3.27)

and (XN
0 (t), V N

0 (t)) the solution of the equations of motion at finite N :

ẊN
0 (t) = V N

0 (t)

V̇ N
0 (t) = f(XN

0 (t)) − γ

∫ t

0

RN(t− τ)V N
0 (τ)dτ +

1√
β
ξN(t). (3.28)

For shorthand, for the rest of the section we drop the subscript zero from XN
0 (t),V N

0 (t),

Xc
0(t) and V c

0 (t). We also write E[·] for EωEg,h[·]. We wish to show that

sup
0≤t≤T

E
[

(

Xc(t) −XN(t)
)2

+
(

V c(t) − V N (t)
)2

]

≤ C(T )

N2l
. (3.29)

The standard way to obtain strong convergence is using the Gronwall inequality. Denote

φ(t) = E
[

(Xc(t) −XN(t))2 + (V c(t) − V N(t))2
]

. (3.30)

From the equations for Xc(t) and XN (t) we have

E
[

(Xc(t) −XN(t))2
]

= E

[

(
∫ t

0

(

V c(τ) − V N(τ)
)

dτ

)2
]

≤ t

∫ t

0

E
[

(V c(τ) − V N(τ))2dτ
]

≤ T

∫ t

0

φ(τ)dτ, (3.31)
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where the last step was obtained using the Jensen inequality. From the equations for

V c(t) and V N(t) we obtain

E
[

(V c(t) − V N(t))2
]

=

E

[{
∫ t

0

{

f(Xc(s)) − f(XN(s)) + β−1/2 (ξc(s) − ξN(s))

+γ

∫ s

0

(

R(s− τ)V c(τ) − RN(s− τ)V N(τ)
)

dτ

}

ds

}2
]

(3.32)

Using (a + b + c)2 ≤ 3(a2 + b2 + c2), we need to control three terms. Since f(x) is

uniformly Lipschitz, the first is bound by

E

[
∫ t

0

{

f(Xc(t)) − f(XN(t))
}2
dt

]

≤ DT

∫ t

0

φ(s)ds. (3.33)

Note that, as before, D denotes a generic constant. Using (3.25), the second term in

(3.32) is

1

β
E

[
∫ t

0

(ξc(s) − ξN(s))2 ds

]

≤ DT 2

N2l
. (3.34)

The third term in (3.32) is

γ2E

[
∫ t

0

∫ s

0

{

R(s− τ)V c(τ) −RN (s− τ)V N(τ)
}2
dτds

]

≤ 2γ2E

[
∫ t

0

∫ s

0

R2
N(s− τ)

(

V c(τ) − V N (τ)
)2
dτds

]

(3.35)

+ 2γ2E

[
∫ t

0

∫ s

0

(V c(τ))2 (R(s− τ) − RN (s− τ))2 dτds

]

≤ 2γ4T 2

∫ t

0

∫ s

0

φ(τ)dτds+ 2γ2

{
∫ t

0

∫ s

0

E
[

(V c(τ))4 dτds
]

}1/2

×
{

∫ t

0

∫ s

0

E
[

(R(s− τ) − RN(s− τ))4] dτds

}1/2

,

where, in the last line we used the fact that RN(t) is bounded by γ and the Cauchy-

Schwartz inequality. Using a Gronwall inequality argument, similar to the one used for

φ, one can show that E[(V c(t))4] is bounded. In addition, using the estimate (3.6) on

the fourth moment of |R(t) − RN(t)|, the last term in (3.35) is bounded by DT/N .

Combining the above bounds for the three terms in (3.32) yields

φ(t) ≤ D(T )

[
∫ t

0

∫ s

0

φ(τ)dτds+

∫ t

0

φ(s)ds+
1

N2l

]

, (3.36)

with initial conditions φ(0) = φ̇(0) = 0. Here, D(T ) is polynomial in T . The following

is a second order generalization of Gronwall’s inequality:

Lemma 3.7. Let 0 ≤ T <∞. Then, for all t ∈ [0, T ] we have that

φ(t) ≤ C1(T )

N2l
eC2(T ), (3.37)

for some C1(T ), C2(T ) > 0 independent of N and polynomial in T .
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Proof: Let ψ(t) be a non-negative function that satisfies ψ̈ = Aψ̇+Bψ +C with initial

conditions ψ(0) = ψ̇(0) = 0. Solving for ψ, it is easily verified that ψ(t) ≤ C3Ce
C4t for

some C3, C4 > 0. Denoting η(t) =
∫ t

0

∫ s

0
φ(τ)dτds, we have that η̈ ≤ Dη̇+Dη+DN−2l.

Hence, η(t) ≤ ψ(t). Differentiating twice and taking the supremum in t ∈ [0, T ] yields

(3.37).

This concludes the proof of Theorem 2.2. �

Remark: Lemma 5 implies that in the limit N → ∞, the i’th largest frequency, ω∗
i ,

tends towards ω̄i. The L2 convergence rate is also calculated. This suggests another

representation for ξ(t), in which ω̄i is replaced by w∗
i . This representation will also

satisfy Theorem 2.2. Let us denote by

dh̃⊥ω = dhω −
N

∑

i=1

ãh
i p

1/2(ω)1[ω∗

i−1
,ω∗

i
)(ω)dω

dg̃⊥ω = dgω −
N

∑

i=1

ãg
i p

1/2(ω)1[ω∗

i−1
,ω∗

i
)(ω)dω, (3.38)

where

ãh
i =

∫ ω∗

i

ω∗

i−1

p1/2(ω)dhω

∫ ω∗

i

ω∗

i−1

p(ω)dω
, ãg

i =

∫ ω∗

i

ω∗

i−1

p1/2(ω)dgω

∫ ω∗

i

ω∗

i−1

p(ω)dω
. (3.39)

Define also

dH̃(ω) =
N

∑

i=1

b̃hi p
1/2(ω)1[ω∗

i−1
,ω∗

i
)(ω)dω

dG̃(ω) =

N
∑

i=1

b̃gi p
1/2(ω)1[ω∗

i−1
,ω∗

i
)(ω)dω, (3.40)

where

b̃hi =
h∗i

(

∫ ω∗

i

ω∗

i−1

p(ω)dω
)1/2

, b̃gi =
g∗i

(

∫ ω∗

i

ω∗

i−1

p(ω)dω
)1/2

, (3.41)

and

h̃c
ω = H̃(ω) + h̃⊥ω

g̃c
ω = G̃(ω) + g̃⊥ω , (3.42)

Finally, let

ξ̃c(t) =
√
γ

∫ ∞

0

p1/2(ω)
(

cosωt dh̃c
ω + sinωt dg̃c

ω

)

. (3.43)

Then, we have the following Lemma and Theorem, analog to the case considered in

Theorem 2.2.

Lemma 3.8. Pω-almost surely for every {ωi}N
i=1, h̃c

ω and g̃c
ω are two independent

Brownian motions defined on the product space Pg,h ×Pω
c .
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Theorem 3.9. For all T < ∞ and every choice of initial condition x0, p0 for the

distinguished particle, there exists a constant C(T, x0, p0), independent of N , such that,

sup
0≤t≤T

EωE
ω
c Eg,h

[

(XN
0 (t) − X̃c

0(t))
2 + (ẊN

0 (t) − ˙̃X
c

0(t))
2
]

≤ C(T, x0, v0)

N2l

where X̃c
0(·) is the solution of (1.7) with ξ(t) = ξ̃c(t) and the rate of convergence, l, is

the same as in Theorem 2.2.

4. The microcanonical case

In this Section we study the microcanonical situation and prove Theorem 2.3. As we

will see the proof is a straightforward generalization of that of Theorem 2.2.

Recall that we assume that the initial conditions of the bath are distributed

according to the microcanonical distribution, conditioned on the position and velocity

of the distinguished particle, x0 and v0. This distribution is given by (2.10). Recall

the definition of hm
ω and gm

ω in (2.11) and ξm(·) in (2.14). Notice the presence of the

random variable r in (2.11). The role this variable is to make up for fluctuations in the

total energy that exist is the canonical measure, but are absent in the microcanonical

one. Let X1 . . .X2N be independent, normally distributed random variables. Then,

R =
√

X2
1 + . . .+X2

2N/2N is a random variable with probability density function (2.13)

and the following Lemma holds (compare to Lemma 2.1):

Lemma 4.1. Pω-almost surely for every {ωi}N
i=1, h

m
ω and gm

ω are two independent

Brownian motions defined on the product space Pg,h ×Pr ×Pω
m.

Proof: As before, an elementary calculation shows that hm
ω is a Gaussian process with

zero mean and, using (1.15), covariance EωErE
ω
mEg,h[h

m
ω1
hm

ω2
] = |ω1 − ω2|, where Er

denotes expectation with respect to (2.13). gm
ω is handled similarly. �

The above Lemma shows that

ξm(t) =
√
γ

∫ ∞

0

p1/2(ω) (cosωt dhm
ω + sinωt dgm

ω ) (4.1)

is a new realization of the limiting noise ξ(t), i.e., a Gaussian process with zero mean

and covariance function R(t).

Proof:[Theorem 2.3] We can follow the exact route detailed in Theorem 2.2 with

one small difference. In the canonical case, the constraints (1.15) implied that the noise

at fixed N , ξN(t) = −
√

γ/N
∑

(hi cosωit + gi sinωit) could be identified as ξc. This

does not hold in the microcanonical case. Instead, the correct relation is rξN(t) = ξm.

However, this additional factor of r does not change any of the consequences of

the Lemmas proved in Section 3 since var[r] = O(N−1). Hence, the conclusions of

Theorem 2.2 remain unchanged. This concludes the proof of Theorem 2.3. �

5. Outlook

The model considered in this paper can be easily generalized to a case in which both the

coupling constant γ and the probability density function p(ω) depend explicitly on N .
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Let ωN
1 , . . . , ω

N
N denote N independent samples from a distribution with PDF pN(ω).

Also, denote the coupling coefficient between the distinguished particle and the i’th bath

particle by γN
i = γ(N,ωN

i ). If the product γ(N,ω)pN(ω) converge in L1(ω) to a limiting

function p(ω), then the cosine transform of p(ω) is bounded and continuous. We denote

RN(t) =
∫ ∞
0
γ(N,ω)pN(ω) cosωtdω and R(t) =

∫ ∞
0
p(ω) cosωtdω. Under the additional

assumptions that γ(N,ω)pN(ω) converge also in L2(ω), and that γ(N,ω) ≤ CN for

some constant C > 0, it is easily shown that RN (t) converges to R(t) in L2(ω). The

proof is the same as in Lemma 3.1. However, the convergence rate may be smaller.

Once strong convergence of the covariance function is established, strong convergence of

the noise ξN(t) and of the trajectory (XN
0 (t), ẊN

0 (t)) follows. For instance, Kupferman

et al [12] and Stuart et al [15] suggest the following example

pN(ω) =
1

Na
χ[0,Na](ω)

γ(N,ω) =
2γ

π

1

α2 + ω2
Na, (5.1)

where α, γ > 0 and 0 < a < 1. Since limN→∞
∫

pN(ω)γ(N,ω) cosωtdω = e−α|t|, the

limiting equation is an Ornstein-Uhlenbeck at equilibrium.

If the requirement for L1(ω) convergence is removed, the model admits a much

larger variety of limiting processes. For instance, taking pN(ω) = Na/π/(N2a +ω2) and

γi = Na, yields, for any 0 < a < 1/2, RN (t) = Nae−Na|t| → δ(t). The limiting noise

in this example is white and the limiting stochastic process is given by the Langevin

equation. Additional parametrization that also lead to a limiting Langevin equation can

be found in [8, 18]. These models should not be fundamentally different than the one

considered here. They do, however, involve some additional technical difficulties since

the limiting noise ξ(t) is a generalized process whose covariance is given by a distribution.

Another example is given by Kupferman [10] who suggests pN (ω) = N−aχ[N−c,n−c+Na]

and γi = Na 2
π
Γ(1 − γ) sin(γπ/2)ωγ−1

i , where 0 < a, c, γ < 1 and Γ(z) denotes the Euler

Gamma function. He then proves that
∫ t

0
ξN(s)ds converges weakly to a fractional

Brownian motion with Hurst parameter H = 1 − γ/2 [13].
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Appendix A. Proof of Theorem 3.4

In this Appendix we prove Theorem 3.4, which gives a bound on the variance of (ω∗
i −ω̄i).

Recall that, for fixed N , ω∗
1, . . . , ω

∗
N denote the ordering of N independent samples of
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frequencies {ωi}N
i=1 with probability density function p(ω), i.e., ω∗

1 ≤ ω∗
2 ≤ . . . ≤ ω∗

N .

With probability one the frequencies are disjoint. Recall also that ω̄i = P−1(i/N). As

before, we use C and D to denote generic, positive constants that are independent of

N . The values of the constants may change between expressions.

Breiman ([2], Theorem 13.16) gives a proof for the following result:

Proposition 1. Let U1, . . . , UN denote N independent samples from a random variable,

uniformly distributed on [0, 1]. Let Uσ(1), . . . , Uσ(N) denote the same set of samples

arranged in increasing order. Then, the random variable

DN =
√
N max

i≤N
| i
N

− Uσ(i)|,

has a limiting distribution with finite variance.

This implies that,

max
i≤N

E

[

(

i

N
− Uσ(i)

)2
]

≤ C

N
. (A.1)

Noting that P (ωσ(i)) is uniformly distributed in [0, 1], i/N − Uσ(i) = P (ω∗
i ) − P (ω̄i) ∼

p(ω̄i)(ω
∗
i − ω̄i). It is therefore expected that Eω [(ω∗

i − ω̄i)
2] ≤ p2(ω̄i)/N . The rest of the

appendix is dedicated to proving this statement.

For fixed N and i = 0, . . . , N − 1 denote ∆ωi = ω∗
i − ω̄i. We first prove that the

expectation of (∆ωi)
2 exists.

Lemma 2. For all i = 0, . . . , N − 1,

Eω(∆ωi)
2 <∞. (A.2)

Proof: Since ω∗
i ≤ ω∗

N , it is sufficient to show that Eω[(ω∗
N)2] < ∞. Denote the density

of the random variable ω∗
N by p∗N(ω). We have,

P [w∗
N ≤ x] = (P [w1 ≤ x])N =

(
∫ x

0

p(ω)dω

)N

. (A.3)

Hence,

p∗N(x) = Np(x)

(
∫ x

0

p(ω)dω

)N−1

. (A.4)

This implies that,

Eω[(ω∗
N)2] =

∫ ∞

0

x2p∗N(x)dx = N

∫ ∞

0

x2p(x)

(
∫ x

0

p(ω)dω

)N−1

dx

≤ N

∫ ∞

0

x2p(x)

(
∫ ∞

0

p(ω)dω

)N−1

dx

= N

∫ ∞

0

x2p(x)dx <∞. (A.5)

�

Let fi : [0,∞) → [−i/N, 1 − i/N) be defined by

fi(x) = P (x) − i

N
. (A.6)
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It is a monotonically increasing function of x and hence invertible. Let ∆Pi =
√
Nfi(ω

∗
i ).

Since f−1
i (ω) is uniformly distributed on [−i/N, 1−i/N ], then the Kolmogorov -Smirnof

theorem implies that ∆Pi converges in distribution to a Gaussian random variable ∆P∞.

We further define gi : [−i/
√
N, (1 − i/N)

√
N ] → [0,∞) as

gi(z) = N [p(ω̄i)]
2[f−1

i (z/
√
N) − ω̄i]

2. (A.7)

Then, (∆ωi)
2 = gi(∆Pi)/(N [p(ω̄i)]

2), and we have

Lemma 3. For all i = 0, . . . , N − 1

Eω[gi] ≤ D. (A.8)

Before proving the lemma, we note that it implies

Corollary 4. For all i = 0, . . . , N − 1 we have

Eω(ω∗
i − ω̄i)

2 ≤ D

N [p(ω̄i)]2
. (A.9)

This proves Theorem 3.4.

Proof: (lemma 3). Lemma 2 implies that there exist εi such that

Eωgi(∆Pi)χPi>(1−i/N)
√

N−εi
(∆Pi) < 1. (A.10)

Let I = (−(1−i/N)
√
N+εi, (1−i/N)

√
N−εi). We wish to Taylor expand f−1

i (∆Pi/
√
N)

around z = 0 in I. Note that for i/N < 1/2, the expansion defines an extension of f−1(z)

in I ∩ {z < −i/N}. Recall that f−1(0) = ω̄i. The first order Taylor expansion together

with the residue read

f−1
i (∆Pi/

√
N) = ω̄i +

1

p(ω̄i)

∆Pi√
N

− 1

2

p′(ω̃)

p2(ω̃)

∆P 2
i

N
, (A.11)

where ω̃ is between zero and ω̄i. Substituting into gi(∆Pi),

gi(∆Pi) = ∆P 2
i

[

1 − 1

2

p′(ω̃)

p(ω̃)

∆Pi√
N

]2

≤ ∆P 2
i

[

2 +
1

2

(

p′(ω̃)

p(ω̃)

)2
∆P 2

i

N

]

.

(A.12)

If the tail of p(ω) decays polynomially with exponent q then, there exists C,D > 0 such

that for all ω > ω̄i, p(ω) > Cω−q and p′(ω) < Dω−q. This implies that, for ∆Pi ≥ 0,

p′(ω̃)/p(ω̃) ≤ Cω̃ ≤ Cω∗
i . Therefore, for ∆Pi ≥ 0,

gi(∆Pi) ≤ ∆P 2
i +

C

N
(ω∗

i )
2∆P 4

i . (A.13)

From (3.12) we have that for all i ≤ N − 1, ω̄i ≤ ω̄N−1 ≤ DN1/(q−1). Hence,

(ω∗
i )

2/N ≤ 2(ω∗
i − ω̄i)

2/N + 1, and we have that

gi(∆Pi) ≤ 2∆P 2
i +

C

N
gN∆P 4

i , (A.14)

In the limit N → ∞, ∆Pi converges in distribution to a Gaussian random variable ∆P∞.

Hence, for large enough N , both Eω[∆P 2
i ] and Eω[∆P 4

i ] are bounded by a constant that



A strong limit theorem in Kac-Zwanzig model 19

is independent of i and N . Multiplying (A.14) by χ∆P≥0(·) and taking expectations

yields

Eω[gi(∆Pi)χ∆P≥0(∆Pi)] ≤ C. (A.15)

For ∆Pi < 0 the situation is simpler since ω∗
i < ω̄i and

|∆Pi| =
√
N

∫ ω̄i

ω∗

i

p(ω)dω ≥
√
N |ω∗

i − ω̄i| min
ω<ω̄i

p(ω). (A.16)

Hence,

∆2ωi = (ω∗
i − ω̄i)

2 ≤ 1

N [minω<ω̄i
p(ω)]2

∆P 2
i ≤ 1

N [p(ω̄i)]2
∆P 2

i , (A.17)

where we used the fact that p(ω) is decreasing. Taking expectations yields

Eω[gi(∆Pi)χ∆Pi≤0(∆Pi)] = Np2(ω̄i)Eω[∆2ωiχ∆Pi≤0(∆Pi)]

≤ Eω[∆P 2
i ] < D, (A.18)

Combining (A.10), (A.15) and (A.18) yields (A.8). �

It is interesting to note that the bound obtained in (A.8) is optimal. Noting that

gi(z) is convex, we have

Eω[gi(∆Pi)] ≥ gi(Eω[∆Pi]) = gi([1 + o(N)]/
√
N). (A.19)

Expanding in a Taylor series around zero yields

Eω[gi] ≥ C. (A.20)
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