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We introduce the concept of the boundary of a complex network as the set of nodes at distance
larger than the mean distance from a given node in the network. We study the statistical properties
of the boundary nodes of complex networks. We find that for both Erdös-Rényi and scale-free model
networks, as well as for several real networks, the boundary has fractal properties. In particular, the
number of boundary nodes B follows a power-law probability density function which scales as B−2.
The size of the clusters, which are formed by the boundary nodes after removing the non-boundary
nodes, also follows a power-law probability density function which scales as s−3. These clusters are
fractals with a fractal dimension df ≈ 2. We present analytical and numerical evidence supporting
these results for a broad class of networks.

Many complex networks are “small world” due to the
very small average distance d between two randomly cho-
sen nodes. Usually d ∼ lnN , where N is the number
of nodes [1–6]. Thus, starting from a randomly chosen
node following the shortest path, one can reach any other
node in a very small number of steps. This phenomenon
is called “six degrees of separation” in social networks
[4]. That is, for most pairs of randomly chosen people,
the shortest “distance” between them is not more than
six. Many random network models, such as Erdös-Rényi
network (ER) [1], Watts-Strogatz network (WS) [5] and
random scale-free network (SF) [3, 7, 8], as well as many
real networks, have been shown to possess this small-
world property.

Much attention has been devoted to the structural
properties of networks within the average distance d from
a given node. However, almost no attention has been
given to nodes which are at distances greater than d from
a given node. We define these nodes as the boundary
nodes of the network. An interesting question is how
many “friends of friends of friends etc...” one has at dis-
tance greater than the average distance d? What is their
probability distribution and what is the structure of the
boundary? The boundary nodes have an important role
in several cases, such as in the spread of viruses or infor-
mation in a human social network. If the virus (informa-
tion) spreads from one node to all its nearest neighbors,
and from them to all next nearest neighbors and further
on until the average distance, how many nodes do not
get the virus (information), and what is their probability
distribution?

In this Letter, we find theoretically and numerically
that the nodes at the boundary, which are of order N ,
exhibit similar fractal features for many types of net-
works, including ER and SF models as well as several real
networks. Song et al. [9] found that some networks have
fractal properties while others do not. Here we show that
almost all model and real networks including non-fractal

networks have fractal features at their boundaries.
Fig. 1 demonstrates our approach and analysis. For

each node, we identify the nodes at distance ℓ from it
as nodes in shell ℓ. We chose a random origin node and
count the number of nodes Bℓ at shell ℓ. We see that
B1=10, B2=11, B3=13, etc... We estimate the average
distance d ≈ 2.9 by averaging the distances between all
pairs of nodes. After removing nodes with ℓ < d = 2.9,
the network is fragmented into 12 clusters, with sizes
s3={1, 1, 2, 5, 1, 3, 1, 1, 8, 1, 2, 3}.

FIG. 1: (Color on line) Illustration of shells and clusters orig-
inating from a randomly chosen node, which is shown in the
center (red). Its neighboring nodes are defined as shell 1, the
nodes at distance ℓ are defined as shell ℓ. When removing all
nodes with ℓ < 3, the remaining network becomes fragmented
into 12 clusters.

We begin our study by simulating ER and SF networks,
and later present analytical proofs. Fig. 2a shows simu-
lation results for the number of nodes Bℓ reached from
a randomly chosen origin node for an ER network. The
results shown are for a single network realization of size
N = 106, with average degree 〈k〉 = 6 and d ≈ 7.9 [10].
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For ℓ < d, the cumulative distribution function P (Bl ),
which is the probability that shell ℓ has more than Bℓ

nodes, decays exponentially for Bℓ > B∗
ℓ , where B∗

ℓ is
the maximum typical size of shell ℓ [11]. However, for
ℓ > d, we observe a clear transition to a power law decay

behavior, where P (Bℓ) ∼ B−β
ℓ , with β ≈ 1 and the pdf

of Bℓ is P̃ (Bℓ) ≡ dP (Bℓ)/dBℓ ∼ B−2
ℓ . Thus, our results

suggest a broad “scale-free” distribution for the num-
ber of nodes at distances larger than d. This power law
behavior demonstrates the fractal nature of the bound-
aries of network, suggesting that there is no characteristic
size and a broad range of sizes can appear in a shell at
the boundaries. Further fractal features of the boundary
structure will be shown below.

In SF networks, the degrees of the nodes, k, follow
a power law distribution function q(k) = ck−λ, where
c ≈ (λ − 1)kλ−1

m and km is the minimum degree of the
network, which we chose here to be 2. The largest degree
K is the natural upper cutoff, K ≈ kmN1/(λ−1) [12, 13].
Fig. 2b shows, for SF networks with λ = 2.5, similar

power law results, P (Bℓ) ∼ B−β
ℓ for ℓ > d as for ER,

with a similar power β ≈ 1. We find similar results also
for λ > 3 (not shown).
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FIG. 2: The cumulative distribution function, P (Bℓ), for two
random network models: (a) ER network with N = 106 nodes
and 〈k〉 = 6, and (b) SF network with N = 106 nodes and
λ = 2.5, and two real networks: (c) the High Energy Parti-
cle (HEP) physics citations network and (d) the Autonomous
System (AS) Internet network. The shells with ℓ > d are
marked with their shell number. The thin lines from left to
right represent shells ℓ =1, 2 ... respectively, with ℓ < d. For
ℓ > d, P (Bℓ) follows a power-law distribution P (Bℓ) ∼ B−β

ℓ
,

with β ≈ 1 (corresponding to P̃ (Bℓ) ∼ B−2

ℓ for the pdf). The
appearance of a power law decay only happens for ℓ larger
than d ≈ 7.9 for ER and d ≈ 4.7 for the SF network. The
straight lines represent a slope of −1.

To test how general is our finding, we also study several
real networks (Figs. 2c, 2d), including the High Energy
Particle (HEP) physics citations network [14] and the
Autonomous System (AS) Internet network [15, 16]. Our

results suggest that the fractal properties of the bound-
aries appear also in both networks, with similar values of
β ≈ 1 for ℓ > d [17].
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FIG. 3: (Color on line) (a) Normalized average number of
nodes at shell ℓ, 〈Bℓ〉/N as a function of ℓ−ln N/ ln〈k〉 for ER
network with < k >=6. For different N , the curves collapse.
(b) k̃ℓ + 1, which is 〈k2

ℓ 〉/〈kℓ〉, as function of ℓ shown for both
ER and SF network. (c) The probability distribution function

P̃ (Bℓ) in shells ℓ ≤ d for ER network. For small values of Bℓ,

P̃ (Bℓ) ∼ Bµ

ℓ , where µ depends on the 〈k〉 of the network (Eq.
(4)). (d) The fraction of nodes outside shell ℓ+m, xℓ+m, as a
function of xℓ for ER network, where xℓ is calculated for any
possible ℓ. The (red) lines represent the theoretical iteration
function (Eq. (6)).

Next we ask how many nodes are on average at the
boundaries? Are they a finite fraction of N , or less?
In Fig. 3a, we study the mean number 〈Bℓ〉 in shell ℓ,
and plot 〈Bℓ〉/N as function of ℓ − lnN/ ln〈k〉 for differ-
ent values of N for ER network, where N denotes the
size of the giant component of the network. The term
lnN/ ln〈k〉 represents the average distance d of the net-
work [2]. We find that, for different values of N , the
curves collapse, supporting a relation independent of net-
work size N . Since 〈Bℓ〉/N is apparently constant and
independent of N , it follows that 〈Bℓ〉 ∼ N , i.e., a finite
fraction of N nodes appear at each shell including shells
with ℓ > d. We find similar behavior for SF network
with λ = 3.5 (not shown). The branching factor [12]

of the network is k̃ = 〈k2〉/〈k〉 − 1, where the averages
are calculated for the entire network. Similarly, we define
k̃ℓ = 〈k2

ℓ 〉/〈kℓ〉−1, where the averages are calculated only

for nodes in shell ℓ. Above the average distance, k̃ℓ + 1
decreases with ℓ for both ER and SF networks (Fig. 3b).
Thus, at the shells where power law behavior of P (Bℓ)

appears (Fig. 2), the nodes have much lower k̃ℓ + 1 com-

pared with the entire network. The approach of k̃ℓ +1 to
1 (ER network) and 2 (SF network) is consistent with a
critical behavior at the boundaries of the network [12].

Fig. 3c shows that P̃ (Bℓ) for ℓ < d and small values of
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Bℓ increase as a power law, P̃ (Bℓ) ∼ Bµ
ℓ for ER network,

where µ depends on k̃ (supporting the theory developed
below). We define the fraction of nodes outside shell m
as xm = 1 − (

∑m
ℓ=1 Bℓ)/N . There exists a functional

relation which is independent of ℓ between any two xℓ

and xℓ+m (m = 1, 2, 3...), for ER network in Fig. 3d.
Figs. 3c, 3d provide empirical evidences for the theory
developed below.
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FIG. 4: The number of clusters of sizes sℓ, n(sℓ), as function
of sℓ after removing nodes within shell ℓ for: (a) SF network
with N = 106 and λ = 2.5, (b) HEP citations network, and
sℓ as function of average distance dℓ of the clusters for (c) SF
network with N=106 and λ = 2.5, (d) HEP citations network.
The relation between n(sℓ) and sℓ is characterized by a power
law, n(sℓ) ∼ s−θ

ℓ , with θ ≈ 3. Also, sℓ is power law with dℓ,
sℓ ∼ dϕ

ℓ , with ϕ ≈ 2.

Next, we study the structural properties of the bound-
ary. Removing all nodes that are within a distance ℓ > d
(not including shell ℓ), the network will become frag-
mented into several clusters (see Fig. 1). We denote the
size of those clusters as sℓ, the number of clusters of size
sℓ as n(sl), and the average distance in the clusters as dℓ

[21]. We find n(s) ∼ s−θ, with θ ≈ 3.0 (Figs. 4a and 4b).
Similar relations are also found for ER and other real
networks. The relation between the size of the clusters
sℓ and their mean distance dℓ is shown in Figs. 4c and 4d,
for SF (λ = 2.5) and HEP citations networks respectively.
These plots suggest a power law relation, sℓ ∼ dϕ

ℓ , with
ϕ ≈ 2. It indicates that the clusters at the boundaries
are fractals with fractal dimension df = 2 as percula-
tion clusters at criticality [22]. Note that, for very large
clusters their average distances dℓ decrease with size, sug-
gesting that the largest clusters are not fractals. We find
that the fractal dimension is df = ϕ ≈ 2 also for ER, SF
with λ = 3.5 and some real networks.

Next we present analytical derivations supporting the
above numerical results. We denote the degree distri-
bution of a network as q(k). The probability of reach-
ing a node with k outgoing links through a link is

q̃(k) = (k + 1)q(k + 1)/〈k〉. We define the generating
function of q(k) as G0(x) ≡

∑∞
k=0 q(k)xk, the generating

function of q̃(k) as G1(x) =
∑∞

k=0 q̃(k)xk = G
′

0(x)/〈k〉.

For ER networks we have G0(x) = G1(x) = e〈k〉(x−1).
The generating function for the number of nodes, Bm, at
the shell m is [23]:

G̃m(x) = G0(G1(...(G1(x)))) = G0(G
m−1
1 (x)), (1)

where G1(G1(...)) ≡ Gm−1
1 (x) is the result of applying

G1(x), m − 1 times. P̃ (Bm), which is the pdf of Bm, is

the coefficient of xBm in the Taylor expansion of G̃m(x).
For shells with large m but still much smaller than d,

we expect [23] that the number of nodes will increase by a

factor of k̃. Hence, we conclude that Gm−1
1 (x) converges

to a function of the form f((1−x)k̃m) for large m (m <<
d), and f(x) satisfies the functional relation:

G1(f(y)) = f(yk̃), (2)

where y = 1 − x.
The solution of G1(f∞) = f∞ gives the probability

that a link is not connected to the giant component of the
network [24]. We can assume an asymptotic functional
form, f(y) = f∞ + ay−δ + 0(yδ). Expanding both sides
of Eq. (2) we obtain:

G1(f∞) + G
′

1(f∞)ay−δ = f∞ + ak̃−δy−δ + 0(yδ). (3)

Since G1(f∞) = f∞, we have δ = − lnG′
1(f∞)/ ln k̃.

If q(1) = 0 and q(2) 6= 0, from G1(f∞) = f∞, we have

f∞ = 0 and G
′

1(f∞) = 2q(2)/〈k〉. If q(2) = q(1) = 0,
then δ = ∞, which indicates that f(y) has an exponential
singularity. Therefore, networks with minimum degree
km ≥ 3 do not exhibit the following properties for m <<
d, and therefore have no fractal boundaries.

Applying the Tauberian theorem [25] to f(y), which
has a power law singularity, we conclude that the Taylor
expansion coefficient of G̃m(x) = G0(f((1 − x)k̃m−1)),
P (Bm), behaves as Bµ

m with an exponential cutoff at

B∗
m ∼ k̃m. When q(1) 6= 0 and q(2) 6= 0, we have

µ = δ − 1 and when q(1) = 0 and q(2) 6= 0, we have
µ = 2δ−1. Thus the distribution of the number of nodes
in the shell m with m << d has a power law tail for small
values of Bm:

P (Bm) ∼ Bµ
m. (4)

For ER network, Eq. (4) is supported by simulations
for m ≤ d in Fig. 3c.

The above considerations are correct only for m < d,
for which the depletion of nodes with large degree in the
network is insignificant.

In the network, the shells behave almost deterministi-
cally and there exists a functional relation between any
two shell m and shell n with n > m (a detailed proof will
be given elsewhere):

xn = G0(G
n−m
1 (G−1

0 (xm))), (5)
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where xm = 1 − (
∑m

ℓ=1 Bℓ)/N is the fraction of nodes
outside shell m.

For ER networks, Eq. (5) yields:

xℓ+1 = e〈k〉(xℓ−1) = Σ∞
ℓ=0q(k)xk

ℓ , (6)

which is valid for all possible ℓ. We test it in Fig. 3d.
When m << d and n >> d, using the same consider-

ations as before it can be shown that:

xn = [ak̃(1 − xm)]−µ−1 + x∞, (7)

where x∞ = G0(f∞) = f∞, a is a constant.
Based on Eqs. (4) and (6), expressing xm and xn in

terms of Bm and Bn, we find that for m << d and
n >> d, Bn ∼ B−µ−1

m . Using P (Bn)dBn = P (Bm)dBm,

we obtain P (Bn) ∼ B
−1−µ/(µ+1)−1/(µ+1)
n = B−2

n , sup-
porting the numerical findings in Fig. 2.

These results are rigorous when k̃ exists and when the
minimum degree km ≤ 2. For SF networks with λ < 3,
k̃ diverges for N → ∞. But for finite N , k̃ still exists.
Thus the above results can also be applied to the case of
λ < 3. For both ER and SF networks with km ≥ 3, the
power law of P (Bn) with n >> d cannot be observed, as
we indeed confirm by simulations.

The cluster size distribution in percolation at some
concentration p close to pc is determined using the for-

mula [12]:

Pp(s > S) ∼ S−τ+1 exp(−S|p − pc|
−1/σ) . (8)

In the case of random networks the percolation threshold
is given by pc = 1/k̃. In the exterior of the shell n (n >>

d), we can estimate |p−pc| ∼ (k̃(xn)−1)/k̃, where k̃(xn)
is calculated from nodes in the exterior of the shell n.

The cluster size distribution can be estimated by con-
sidering introducing a sharp exponential cutoff at s =
S∗

n ∼ |k̃(xn) − 1|−
1

σ , so that Pn(s > S) ∼ S−τ+1P (S∗
n >

S), where P (S∗
n > S) is the probability for a given shell

to have S∗
n > S.

Since xn − x∞ has a smooth power law distribution
and k̃(x∞) < 1, |k̃(xn) − 1| < S−σ = ε, it is propor-
tional to ε. Thus P (S∗

n > S) ∼ S−σ and Pn(s > S) =
S−τ+1−σ. Therefore the cluster size distribution follows
n(s) ∼ s−(τ+σ).

For ER networks and SF networks with λ > 4, τ = 2.5
and σ = 0.5, the above derivations lead to n(s) ∼ s−3.
For SF networks with 2 < λ < 4, τ = (2λ−3)/(λ−2) and
σ = |λ − 3|/(λ − 2) [22]. Thus, for λ > 3, there will be
ns ∼ s−3 for SF networks. We conjecture ns ∼ s−3 even
for 2 < λ < 3, although in this case k̃(xn) does not exist
and the above derivations are not valid. Our numerical
simulations support these results in Fig. 4a, b.
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