
Joint Monitoring and Routing in
Wireless Sensor Networks using

Robust Identifying Codes
Moshe Laifenfeld∗, Ari Trachtenberg∗, Reuven Cohen∗ and David Starobinski∗

∗Department of Electrical and Computer Engineering
Boston University, Boston, MA 02215

Email:{ moshel,trachten,cohenr,staro@bu.edu}

Abstract— Wireless Sensor Networks (WSNs) provide an im-
portant means of monitoring the physical world, but their
limitations present challenges to fundamental network services,
such as routing. In this work we utilize an abstraction of
these networks based on the theory of identifying codes. This
abstraction has been useful in recent literature for a number
of important monitoring problems, such as localization and
contamination detection. In our case, we use it to provide a joint
infrastructure for efficient and robust monitoring and rout ing
in WSNs. Specifically, we provide an efficient and distributed
algorithm for generating robust identifying codes with a loga-
rithmic performance guarantee based on a novel reduction to
the set k-multicover problem; to the best of our knowledge,
this is the first such guarantee for robust identifying codes. We
also show how to reuse this same identifying-code infrastructure
for near-optimal routing with very small routing tables. We
provide various experimental results to demonstrate the benefits
of our approach over previous identifying code approaches (for
monitoring) and shortest path solutions (for routing).

I. I NTRODUCTION

Sensor networks provide a new and potentially revolutionary
means of reaching and monitoring our physical surroundings.
Important applications of these networks include environmen-
tal monitoring of the life-cycle of trees and various animal
species [1, 2] and the structural monitoring of buildings,
bridges, or even nuclear power stations [3, 4].

A. Identifying code abstraction

For several fundamental monitoring problems, such as local-
ization [5, 6] and identification of contamination sources [7, 8],
the theory ofidentifying codes[9] has been found to provide
an extremely useful abstraction. Under this abstraction, a
monitoring area is divided into a finite number of regions
and modeled as a graph, wherein each vertex represents a
different region as in Figure 1. In this model, two vertices
are connected by a link if they are within communication
range. An identifying code for the graph then corresponds to
a subset of vertices where monitoring sensors (i.e., codewords
of the code) are located, such that each vertex is within the
communication range of a different set of monitors (referred
to as anidentifying set). Thus, a collection of monitors in a
network forms an identifying code if any given identifying set
uniquely identifies a vertex in the graph.

An important benefit of identifying codes is that they allow
monitoring of an area without the need to place or activate a
(possibly expensive) monitor in each sub-region. Since thesize
of identifying code is typically much smaller than that of the
original graph (e.g.,for very large random graphs ofn vertices,
the size of an identifying code is roughlylog(n) [10]), this
construction can result in a substantial savings of monitors.
Alternatively, for a fixed number of monitors, systems based
on identifying codes can achieve much higher resolution and
robustness than proximity-based systems in which each sensor
only monitors the region surrounding it.

Identifying codes provide also means to quantify en-
ergy/robustness trade-offs through the concept ofrobust iden-
tifying codes, introduced in [5]. An identifying code isr-
robust if the addition or deletion of up tor codewords in the
identifying set ofany vertex does not change its uniqueness.
Thus, with anr-robust code, a monitoring system can continue
to function properly even if up tor monitors per locality
experience failure. Of course, the size of anr-robust code
increases withr (typically linearly).

Despite the importance of identifying codes for sensor
monitoring applications, the problem of constructing efficient
codes (in terms of size) is still unsolved. Specifically, the
problem of finding a minimum identifying code for an ar-
bitrary graph has been shown to be NP-hard [11, 12]. In Ray
et al. [5], a simple algorithm called ID-CODE was proposed
to generate irreducible codes in which no codeword can be
removed without violating the unique identifiability of some
vertex. However, in some graphs, the size of the resulting code
using the ID-CODE algorithm can be arbitrarily poor [13]).

B. Related Work

Considerable work (see e.g., [14–16]) has been done on
compact routing using dominating sets, and, in paticular
connected dominating sets. Dominating sets are sets of nodes
whose combined neighborhoods include all nodes in the graph.
Therefore, if information for routing to each node in a domi-
nating set is stored, any node can be reached through one of its
neighbors in the dominating set with an almost optimal path
length. Most works [14, 16] concentrate on finding connected
dominating sets, such that all routing is done only using nodes
from the dominating set. This has the advantage that other ndes

can be added and removed from the network without affecting
the routing, but also the disadvantage of possibly lengthening
the routing distance considerably.

The scheme presented here is base on identifying codes,
which are supersets of dominating sets. Dominating sets exist
for every graph, while an identifying code may not exist. In
such a case we propose here to extend the “almost” identifying
code to a dominating set and use this construction for rout-
ing. The proposed scheme has the advantage of combining
neturally with the monitoring scheme. Furthermore, it has
the advantage of naturally producing the labeling of nodes,
using the identifying code structure, rather than assumingit is
externally given, as in dominating set routing. The scheme
gives the same penalty in terms of the routing length as
dominatingset routing. The size of the code is in many cases
not considerably larger than the dominting set. For example,
in a random graph, the identifying code is only larger than a
dominating set by a logarithmic factor. The method suggested
here uses all nodes, rather than a connected dominating set,for
routing. This guarantees a small penalty in the routing length,
but uses non code nodes for routing. It may be extended to a
dominating set only routing by extending the identifying code
to a connected dominating set using similar methods to the
literature above.

C. Contributions

Our first contribution is to propose a new polynomial-time
approximation algorithm for the minimumr-robust identifying
code problem with provable performance guarantees; to the
best of our knowledge, this is the first such approximation in
the literature. Our algorithm, calledrID− LOCAL, generates
a robust identifying code whose size is guaranteed to be at
most 1 + 2 log(n) times larger than the optimum, wheren
is the number of vertices (a sharper bound is provided in
Section II). This approximation is obtained through a reduction
of the original problem to a minimum setk-cover problem,
for which greedy approximations are well known, and utilizes
only localized information that lends itself to a distributed
computation.

As such, we also proposerID− SYNC and rID− ASYNC,
two distributed implementations of our algorithm. The first
implementation provides a tradeoff between runtime and per-
formance guarantees while using a low communications load
and only coarse synchronization; the second implementation
requires no synchronization at the expense of more commu-
nication. Through simulations on Erdos-Renyi random graphs
and geometric random graphs, we show that these algorithms
significantly outperforms the earlier ID-CODE algorithm.

Finally, we demonstrate that the same identifying code-
based monitoring infrastructure can be reused to efficiently
implement routing between any two nodes in the network.
Specifically, we show how to use routing tables of the same
size as the network’s identifying code to route packets between
any two nodes within two hops of the shortest path. The
significance of this result is two-fold: (i) we can perform near-
optimal routing while significantly compressing routing table

Fig. 1. A floor plan quantized into 5 regions represented by 5 vertices
(circles). An edge in the model graph (blue line) representsRF connectivity
between a pair of vertices, and the 3 vertices marked by red stars denote an
identifying code for the resultant graph.

memory in each sensor; (ii) one algorithm can be run to simul-
taneously setup both monitoring and routing infrastructures,
thus reducing the network setup overhead.

D. Outline

Next, in Section II, we provide a brief introduction to robust
identifying codes followed by a centralized approximation
algorithm with proven performance bounds. Thereafter, in
Section III we provide and analyze a distributed version of this
algorithm. Section IV describes a novel technique for reusing
identifying codes for routing, and Section V provides some
simulation data for the various algorithms considered.

II. ROBUST IDENTIFYING CODES AND THE SET

MULTICOVER PROBLEM

In this work, we provide a polynomial-time greedy ap-
proximation of the NP-complete [11, 12] (robust) identifying
code problem. Our approximation is based on an efficient
reduction from the setk-multicover problem, for which a
greedy approximation is known.

Given a base setU of m elements and a collectionS of
subsets ofU , the set cover problem asks to find a minimum
sub-collection ofS whose elements haveU as their union
(i.e., they coverU). The set cover problem is one of the
oldest and most studied NP-hard problem [17] and it ad-
mits a simple greedy approximation: iteratively choose the
heretofore unselected set ofS that covers the largest number
of uncovered elements in the base set. The classic results
of Johnson [18] showed that, for minimum coversmin and

greedy coversgreedy, we have that
sgreedy

smin
= Θ(lnm).

Hardness results [19] suggest that this greedy approach is one
of the best polynomial approximations to the problem.

The minimum setk-multicoverproblem is a natural gener-
alization of the set cover problem, in which given(U,S) we
are seeking the smallest sub-collection ofS that covers every
element inU at leastk times (more formal definitions are in
Section II-C). Often this problem is addressed as a special case
of the covering integer problem[20]. The setk-multicover
problem admits a similar greedy heuristic to the set cover
problem, with a corresponding performance guarantee [20] of
at most1 + log (maxSi∈S(|Si|)).

0

1

2

3

4

5

6

7

0

B

B

B

B

B

B

B

B

B

@

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

1

C

C

C

C

C

C

C

C

C

A

Fig. 2. A 1-robust identifying code (codewords are solid circles) andthe
graph’s adjacency matrix. The identifying set of vertex1 is {0, 1, 5}.

A. Technical definitions

Given an undirected graphG = (V, E), the ball B(v)
consists of all vertices adjacent to the vertexv, together with
v itself. It is possible to generalize this definition (and the
corresponding results in the paper) to directed graphs, butthis
significantly complicates the notation and we omit such results.

A non-empty subsetC ⊆ V is called acodeand its elements
arecodewords. For a given codeC, the identifying setIC(v)
of a vertexv is defined to be the codewords directed towards
v, i.e., IC(v) = B(v) ∩C (if C is not specified, it is assumed
to be the set of all verticesV). A codeC is anidentifying code
if each identifying set of the code is unique, in other words

∀u, v ∈ V u = v ←→ IC(u) = IC(v).

In our applications, we shall further require thatIC(v) 6= ∅
for all verticesv, so that an identifying code is also avertex
cover or dominating set.

Definition 1 An identifying codeC over a given graphG =
(V, E) is said to ber-robust if IC(u) ⊕ A 6= IC(v) ⊕ D for
all v 6= u and A, D ⊂ V with |A|, |D| ≤ r. Here⊕ denotes
the symmetric difference.

B. Reduction intuition

Consider a three dimensional cube as in Figure 2 and let
C = {0, 1, 2, 4, 5, 6, 7}. Clearly, the identifying sets are all
unique, and hence the code is an identifying code. A closer
look reveals thatC is actually a1-robust identifying code,
so that it remains an identifying code even upon removal or
insertion of any codeword into any identifying set.

A graph’s adjacency matrix provides an alternate perspective
to the identifying code problem; in this matrix, rows or
columns arecharacteristic vectorsof corresponding balls, in
that their i-th entries are1 if the i-th element ofU is in
the corresponding ball. Selecting codewords can be viewed
as selecting columns to form a matrix of sizen × |C|. We
will refer to this matrix as thecode matrix. A code is thus
identifying if the Hamming distancebetween every two rows
in the code matrix is at least one (recall that the Hamming
distance of two binary vectors is the number of ones in their
bitwise XOR). It has been shown in [6] that if the Hamming
distance of every two rows in the code matrix is at least2r+1
then the set of vertices isr-robust.

We next form then(n−1)
2 ×n differencematrix by stacking

the bitwise XOR results of every two different rows in

the adjacency matrix. The problem of finding a minimum
size r-robust identifying code is thus equivalent to finding
a minimum number of columns in the difference matrix for
which the resulting matrix has minimum Hamming distance
2r + 1 between any two rows. This equivalent problem is
nothing but a set2r+1-multicover problem, if one regards the
columns of the difference matrix as the characteristic vectors
of a collection of subsetsS over the base set of all pairs of
rows in the adjacency matrix).

In the next subsection we formalize this intuition into a
rigorous reduction.

C. Reduction

In this section we formally reduce the problem of finding
the smallest sizedr-robust identifying code over an arbitrary
graphG to a2r+1-multicover problem. Formally we connect
the following problems:

a) SET MULTI-COVER (SCk):

INSTANCE: SubsetsS of U , an integerk ≥ 1.
SOLUTION: S′ ⊆ S such that for every elementu ∈ U ,

|{s ∈ S′ : u ∈ s}| ≥ k.
MEASURE: The size of the multicover:|S′|.

b) Robust ID-CODE (rID):

INSTANCE: GraphG = (V, E), and integerr ≥ 0.
SOLUTION: An r-robust identifying codeC ⊆ V .
MEASURE: The size|C|.

Theorem 1 Given a graphG of n vertices, finding anr-
robust identifying code requires no more computations thana
(2r+1)-multicover solution over a base set ofn(n−1)

2 elements
together withO(n3) operations of lengthn binary vectors.

To prove the theorem we start with few definitions.

Definition 2 Thedifference setDC(u, v) is defined to be the
symmetric difference between the identifying sets of vertices
u, v ∈ V :

DC(u, v)
.
= IC(u)⊕ IC(v),

For simplicity of notation, we shall omit the subscript when
looking at identifying codes consisting of all graph vertices,
i.e., D(u, z) = DV (u, z).

Definition 3 Let U = {(u, z)|u 6= z, u, z ∈ V }. Then the
distinguishing setδc is the set of vertex pairs inU for which
c is a member of their difference set:

δc = {(u, z) ∈ U | c ∈ DC(u, z)}.

It has been shown in [6] that a code isr-robust if and
only if the size of the smallest difference set is at least2r+1.
Equivalently, a code isr-robust if and only if its distinguishing
sets2r + 1-multicover all the pairs of vertices in the graph.

Lemma 1 Given G = (V, E) the following statements are
equivalent:

1) C = {c1, ..., ck} is an r-robust identifying code.

2) |DC(u, v)| ≥ 2r + 1, for all u 6= v ∈ V

3) The collection{δc1
, ..., δck

} forms a(2r+1)-multicover
of U = {(u, v) | ∀ u 6= v ∈ V }.

Proof of Theorem 1: Consider the following construction
of an r-robust identifying code.

ID(G, r)→ C

1. Compute{I(u)|u ∈ V }.
2. Compute∆ = {δu|u ∈ V }.
3. C← Minimum− Set−MultiCover(2r + 1, U, ∆)
4. OutputC← {u ∈ V |δu ∈ C}

The resulting code,C, is guaranteed by Lemma 1 to be an
r-robust identifying code, and the optimality of the set cover
in step 3 guarantees that no smaller identifying code can be
found. To complete the proof we observe that computing
the identifying setsI(u) naively requiresθ(n2) additions of
binary vectors, and computing∆ requiresn operations for
each of then(n−1)

2 elements in|U |.

D. Localized robust identifying code and its approximation

It was observed in [6, 21] that anr-robust identifying code
can be built in a localized manner, where each vertex only
considers its two-hop neighborhood. The resultinglocalized
identifying codesare the subject of this section, and the
approximation algorithm we derive is critical to the distributed
algorithm of the next section.

Let G = (V, E) be an undirected graph, we define the
distance metricρ(u, v) to be the number of edges along the
shortest path from vertexu to v. The ball of radiusl around
v is denotedB(v; l) and defined to be{w ∈ V |ρ(w, v) ≤ l}.
So far we encountered balls of radiusl = 1, which we simply
denoted byB(v).

Recall that a vertex cover (or dominating set) is a set of
vertices, such that the union of their balls of radius 1 covers
V . We further extend this notion and define ar-dominating
set as the set of vertices whichr-multicoversV .

Lemma 2 Given a graphG = (V, E), anr+1-dominating set
C is also anr-robust identifying code if and only|D(u, v)| ≥
2r + 1 for all u, v ∈ V such thatρ(u, v) ≤ 2.

Proof: The forward implication is an application of
Lemma 1. For the reverse implication we takeC to be an
r + 1 dominating set and assume that|D(u, v)| ≥ 2r + 1 for
ρ(u, v) ≤ 2; we will show that this assumption is also valid
for ρ(u, v) > 2. This is because, forρ(u, v) > 2, we have that
B(v) ∩B(u) = ∅, meaning that|D(u, v)| = |B(v)|+ |B(u)|.
Since C is an r + 1 dominating set, it must be that
|B(y)| ≥ r+1 for all verticesy, giving that|D(u, v)| > 2r+1.
Applying Lemma 1 we thus see thatC must ber-robust.

The localized robust identifying code approximation
Lemma 2 can serve as the basis for a reduction from an
identifying code problem to a set cover problem, similar to

the one in Theorem 1. The main difference is that we will
restrict basis elements to vertex pairs that are at most two
hops apart, and we then need to guarantee that the resulting
code is stillr-robust.

Towards this end we defineU2 = {(u, v) | ρ(u, v) ≤ 2}, the
set of all pairs of vertices (including(v, v) that are at most
two hops apart. Similarly, we will localize the distinguishing
setδv to U

2 as follows:

δ2
v = (δv ∩U

2) ∪ {(u, u)|u ∈ B(v)},

The resultinglocalized identifying code approximationis thus
given by Algorithm 1 and can be shown to provide anr-robust
identifying code for any graph that admits one (we omit the
proof due to space considerations).

Algorithm 1 Localizedr-robust coderID− LOCAL(r, G)

We start with a graphG = (V, E) and a non-negative integer
r. The greedy set multicover approximation is denoted SET-
MULTICOVER(k,U,S).

1) Compute{D(u, v)|u ∈ V, v ∈ B(u; 2)}
2) Compute∆2 = {δ2

u|u ∈ V }.
3) C←SET-MULTICOVER(2r + 1,U2, ∆2)
4) OutputClocal ← {u ∈ V |δ2

u ∈ C}

Theorem 2 Given an undirected graphG = (V, E) of n

vertices, the performance ratiorID− LOCAL is upper bounded
by: cgreedy

cmin
< ln γ + 1,

whereγ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)| + 1|.

Proof: The proof derives from the performance guarantee
of the greedy set multicover algorithm [20], which is upper
bounded by1 + lnα with α denoting the largest set’s size.
The size ofδ2

v is |B(v)|(|B(v; 3)| − |B(v)| + 1), which, at
its maximum, can be applied to the performance guarantee
in [20] to complete the proof.

In the next subsection we present a distributed imple-
mentation of the identifying code localized approximation.
The following lemma supplements Lemma 2 by providing
additional “localization”. At the heart of this lemma lies the
fact that each codeword distinguishes between its neighbors
and the remaining vertices.

Lemma 3 The distinguishing setsδ2
v and δ2

u are disjoint for
every pair(u, v) with ρ(u, v) > 4.

Proof: Clearly, δ2
v includes all vertex pairs(x, y) ∈ U

2

where x is a neighbor ofv and y is not. More precisely,
(x, y) ∈ δ2

v if

x ∈ B(v) andy ∈ B(x; 2)−B(v). (1)

Moreover, for all such(x, y), ρ(x, v) ≤ 3 and ρ(y, v) ≤ 3.
On the other hand, for(x′, y′) ∈ δ2

u with ρ(u, v) > 4, either

x′ or y′ must be a neighbor ofu, and hence of distance> 3
from v. Thus,δ2

v andδ2
u are disjoint.

Lemma 3 implies that when applying the greedy algorithm,
a decision on choosing a codeword only affects decisions on
vertices within four hops; the algorithm is thus localized to
vicinities of balls of radius four.

III. D ISTRIBUTED ALGORITHMS

Several parallel algorithms exist in the literature for set
cover and for the more general covering integer programs
(e.g., [22]). There are also numerous distributed algorithms
for finding a minimum (connected) dominating set based
on set cover and other well know approximations such as
linear programming relaxation (e.g., [23]). In a recent work
Kuhn et. al. [24] devised a distributed algorithm for finding
a dominating set with a constant runtime. The distributed
algorithm uses a design parameter which provides a tradeoff
between the runtime and performance.

Unfortunately the fundamental assumption of these algo-
rithms is that the elements of the basis set are independent
computational entities (i.e., the nodes in the network); this
makes it non-trivial to apply them in our case where elements
correspond to pairs of nodes that can be several hops apart.
Moreover, we assume that the nodes are energy constrained
so that reducing communications is very desirable, even at the
expense of longer execution times and reduced performance.

We next provide two distributed algorithms. The first
is completely asynchronous, guarantees a performance ratio
of at most ln γ + 1, and requiresΘ(cdist) iterations at
worst. The second is a randomized algorithm, which re-
quires a coarse synchronization, guarantees a performance
ratio at most ln γ + 1 for some design parameterK ≥

2, and operates withinO

(

γn
K+2+ǫ

K−1

K

)

subslots (resulting in

O(cdistmaxv∈V |B(v; 4|)) communication messages).
In the next subsection we describe the setup and initializa-

tion stages that are common to both distributed algorithms.

A. Setup and initialization

With a setup similar to [6] we assume that every vertex
(node) is pre-assigned a unique serial number and can com-
municate reliably and collision-free (perhaps using higher-
layer protocols) over a shared medium with its immediate
neighborhood. Every node can determine its neighborhood
from the IDs on received transmissions, and higher radius balls
can be determined by multi-hop protocols. In our case, we will
need to knowG(v; 4) the subgraph induced by all vertices of
distance at most four fromv.

Our distributed algorithms are based on the fact that, by def-
inition, each nodev can distinguish between the pairs of nodes
which appear in its corresponding distinguishing setδ2

v given
in (1). This distinguishing set is updated as new codewords are
added to the identifying code being constructed; their presence
is advertised by flooding their four-hop neighborhood.

Fig. 3. Asynchronous distributed algorithm state diagram in nodev ∈ V

B. The asynchronous algorithmrID− ASYNC

The state diagram of the asynchronous distributed algo-
rithm is shown in Figure 3. All nodes are initially in the
unassignedstate, and transitions are effected according to
messages received from a node’s four-hop neighborhood. Two
types of messages can accompany a transition:assignment
anddeclarationmessages, with the former indicating that the
initiating node has transitioned to theassignedstate, and the
latter being used to transmit data. Both types of messages
also include five fields: thetype, which is either “assignment”
or “declaration”, theID identifying the initiating node, the
hop number, theiteration number, anddata, which contains
the size of the distinguishing set in the case of a declaration
message.

Following the initialization stage, every node declares its
distinguishing set’s size. As a node’s declaration message
propagates through its four hop neighborhood, every forward-
ing node updates two internal variables,IDmax and δmax,
representing the ID and size of themost distinguishingnode
(ties are broken in favor of the lowest ID). Hence, when a
node aggregates the declaration messages initiated by all its
four hop neighbors (we say that the node reached itsend-of-
iteration event),IDmax should hold the most distinguishing
node in its four hop neighborhood. A node that reaches end-
of-iteration event transitions to either thewaitfor assignment
state or to the finalassignedstate depending if it is the most
distinguishing node.

The operation of the algorithm is completely asynchronous;
nodes take action according to their state and messages re-
ceived. During the iterations stage, nodes initiate a declaration
message only if they receive an assignment message or if
an updated declaration (called anunassignmentmessage) is
received from the most distinguishing node of the previous
iteration. All messages are forwarded (and their hop number
is increased) if the hop number is less than four. To reduce
communications load, a mechanism for detecting and elimi-
nating looping messages should be applied.

Every node,v, terminates in either an “unassigned” state
with |δ2

v | = 0 or in the “assigned” state. Clearly, nodes that
terminate in the “assigned” state constitute a localizedr-robust
identifying code.

1) Performance evaluation:

Theorem 3 The algorithm rID− ASYNC requires Θ(cdist)

iterations and has a performance ratio

cdist
cmin

< ln γ + 1,

whereγ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)| + 1|.

The first part of the Theorem follows from Theorem 2
and the fact that only the most distinguishing sets in a four
hop neighborhoods is assigned to be a codeword. To see the
number of iterations of the algorithm, we first note that in
each iteration at least one codeword is assigned. The case ofa
cycle graph demonstrates that, in the worst case, exactly one
node is assigned per iteration.

It follows that the amount of communications required in
the iteration stage isΘ(cdist|V |max(|B(v; 4)|)), which can be
a significant load for a battery powered sensor network. This
can be significantly reduced if some level of synchronization
among the nodes is allowed. In the next section we suggest a
synchronized distributed algorithm that eliminates declaration
messages altogether.

C. A low-communications randomized algorithmrID− SYNC

In this subsection we assume that a coarse time synchro-
nization among vertices within a neighborhood of radius
four can be achieved. In particular we will assume that the
vertices maintain a basic timeslot, which is divided into
L subslots. Each subslot duration is longer than the time
required for a four hop one-way communication together with
synchronization uncertainty and local clock drift. After an
initialization phase, the distributed algorithm operateson a
time frame, which consists ofF slots arranged in decreasing
fashion fromsF to s1. In general,F should be at least as
large as the largest distinguishing set (e.g.,F = n(n−1)

2 will
always work). A frame synchronization within a neighborhood
of radius four completes the initialization stage.

Algorithm 2 Asynchronousr-robust algorithm (rID− ASYNC)
We start with a graphG, with vertices labeled byID, and
a non-negative integerr. The following distributed algorithm
run at nodev ∈ V produces anr-robust identifying code.

Precomp• SetU = {∅} and compute|δ2
v
(U)| = δ2

v
∩ U using (1).

• Initiate a declaration message and set state= “unassigned”.
• Set IDmax = ID(v), δmax = |δ2

v
(U)|, andms to be an empty

assignment message.
Iteration • Incrementhop(ms) and forward all messages ofhop(ms) < 4.

• if received an assignment messagems with state 6= assigned then

– UpdateU and |δ2
v
(U)|.

– Initiate a declaration message and set state = “unassigned”.
– ReinitializeIDmax = ID(v) andδmax = |δ2

v
(U)|.

• if state = waitfor assignment and received anun-assignment
message then initiate a declaration message.

• if received a declaration messagems with state 6= assigned then

– if δmax < data(ms) or δmax = data(ms) && IDmax >
ID(ms) thenδmax = data(ms), IDmax = ID(ms)

• if end-of-iterationreached then,

– if IDmax = ID(v) and|δ2
v
(U)| > 0 thenstate = assigned,

initiate an assignment message.
– otherwisestate = waitfor assignment.

The frame synchronization enables us to eliminate all the
declaration messages of the asynchronous algorithm. Recall
that the declaration messages were required to perform two
tasks: (i) determine the most distinguishing node in its four
hop neighborhood, and (ii) form an iteration boundary,i.e.,
end-of-iteration event. The second task is naturally fulfilled
by maintaining the slot synchronization. The first task is per-
formed using the frame synchronization: every node maintains
a synchronized slot counter, which corresponds to the size
of the currentmost distinguishingnode. If the slot counter
reaches the size of a node’s distinguishing set, the node assigns
itself to the code. The subslots are used to randomly break ties.

1) Iterations stage:Each iteration takes place in one time
slot, starting from slotsF . During a slot period, a node
may transmit a messagems indicating that it is assigning
itself as a codeword; the message will have two fields: the
identification number of the initiating node,id(ms), and the
hop number,hop(ms). A node assigns itself to be a codeword
if its assignment time, which refers to a slotas and subslot
l, has been reached. Every time an assignment message is
received, the assignment slotas of a node is updated to
match size of its distinguishing set; the assignment subslot is
determined randomly and uniformly at the beginning of every
slot.

Algorithm 3 Synchronousr-robust algorithm (rID− SYNC)
We start with a graphG and non-negative integerr. The
following distributed algorithm run at nodev ∈ V produces
an r-robust identifying code.

Precomp• Set:slot = sF , subslot = L, state = unassigned.
• Calculate the assignment slot.

Iterate: whilestate = unassigned andslot ≥ s1 do,

• l = random{1, ..., L}
• if received assignment message,ms then,

– if hop(ms) < 4 forward ms with hop(ms) + +.
– Recalculate the assignment slot.

• elseif subslot = l andslot = as then,

– state = assigned
– Transmitms with id(ms) = id(v),andhop(ms) = 1

2) Performance evaluation:Algorithm rID− SYNC re-
quires at mostO(n2) slots (O(Ln2) subslots), though it
can be reduced toO(Lγ) if the maximum size of a dis-
tinguishing set is propagated throughout the network in the
precomputation phase. The communications load is low (i.e.,
O(cdist ·maxv∈V (|B(v; 4)|))), and includes only assignment
messages, which are propagated to four hop neighborhoods.

In the case of ties,rID− SYNC can provide a larger code
than gained from the localized approximation. This is because
ties in the distributed algorithm are broken arbitrarily, and
there is a positive probability (shrinking as the number of
subslotsL increases) that more than one node will choose
the same subslot within a four hop neighborhood. As such,
the L is a design parameterL, providing a tradeoff between
performance ratio guarantees and the runtime of the algorithm
as suggested in the following Theorem.

Theorem 4 For asymptotically large graphs, Algorithm
rID− SYNC guarantees with high probability a performance

ratio of
cdist
cmin

< K(ln γ + 1),

where γ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)| + 1|. The

algorithm also requiresO

(

γn
K+2+ǫ

K−1

K

)

subslots to complete

for design parameterK ≥ 2 and arbitrarily small ǫ > 0.

Proof: If no more thanK tied nodes assign themselves
simultaneously on every assignment slot, then we can upper
bound the performance ratio by a factorK of Theorem 2,
as in the theorem statement. We next determine the number
of subslotsL needed to guarantee the above assumption
asymptotically with high probability.

Let P (K) denote the probability that no more thanK tied
nodes assign themselves in every assignment slot. Clearly,
P (K) ≥ (1− p̄(K))

cdist, wherep̄(K) is the probability that,
whent nodes are assigned independently and uniformly toL

subslots, there are at leastK < t assignments to the same
subslot. One can see that

p̄(K) =
∑t

k=K L
(

t
k

)

L−k
(

1− 1
L

)t−k
≤
∑t

k=K

(

t
k

)

L1−k

≤
∑t

k=K L
(

te
Lk

)k
≤ tL

(

te
LK

)K
,

wheree being the natural logarithm and based on the assump-
tion that te

LK
< 1. Let t = cdist = n (this only loosens the

bound) andL = e
K

n
K+2+ǫ

K−1 . Then,

P (K) ≥

(

1− tL

(

te

LK

)K
)cdist

≥

(

1−
e

K

1

n1+ǫ

)n

→ 1.

IV. ROUTING WITH IDENTIFYING CODES

The existence of an identifying code for a networks permits
a natural routing scheme using small routing tables (typically
referred to as “compact routing schemes” [25–27]).

By routing scheme we mean a combination of a labeling
schemeL, where Li is the label (address) of the nodei,
routing tablesTi located at every nodei, and a routing
function f(Ls, Lt, Li, Ti) using the labels of the source node
s, the destination nodet, and the current nodei and the
information in the local routing tableTi to choose the next
port through which a packet should be sent. For the scheme
to be consideredcompact, the table size should be small (i.e.,
∀i|Ti| ≪ O(N)), and the label size should also be small
(usually polylogarithmic inN). Furthermore, the description
of f should be of constant size (e.g.,we do not want to include
the whole graph structure inf) and its time complexity should
be low (usually polynomial in label sizes and logarithmic or
constant in the table size).

Compact routing has been studied for some time in the
computer science literature, with the typical focus being de-
signing routing schemes that give good performance in the
worst case scenario for all graphs, or for some class of graphs;
a good survey of existing approaches is provided by [28]. The

closest related routing scheme in the literature is based ona
dominating set, and this is not surprising because identifying
codes are a special type of dominating set. Though identifying
codes for a graph tend to be slightly larger than the more
general dominating sets (e.g., for large random graphs, they
both have roughlyO(log N) nodes), they have the significant
advantage of providing, for free, a natural labeling on the
graph. They can also be utilized for distributed data storage
(see future work below).

A. Routing with an identifying code

For a given identifying code for a graphG, our scheme
induces a compact routing scheme in the following manner:
Number the nodes inC (codewords) asc0, . . . , c|C|−1; the
label of nodei will be the characteristic vector of its identify-
ing set (and is thus unique). At every node, the routing table
will include one entry for each of the codewords, which will
include the port leading to the shortest path to this codeword.

The routing functionf at some nodei will be as follows:

1) If t is i’s neighbor, send directly tot.
2) Otherwise, choose a codewordcj , such thatcj ∈ B(i),

i.e.,such that thej-th bit of Li is one. Route by the port
assigned tocj in the routing tableTi.

We note that the routing scheme presented here may be
extended to a hierarchical routing scheme using higher radius
identifying codes to further reduce the size of the routing
table [29].

For a graph allowing an identifying code we can see that
the routing table size is at most|C|2 bits, the label size is|C|,
and the routing function performs linearly in the label size.
If |C| is large but the size ofIC(u) is small for all u ∈ V ,
a more compact label may be used by choosing a different
representation of the list, linked list of codewords or a run
length encoding of the label.

Theorem 5 The functionf is a valid routing function.

Proof: At every node the routing table includes an entry
for each of the codewords. The entry contains the next port in
the shortest path routing to the codeword. Therefore, shortest
path routing to the selected codeword is guaranteed. Since
the selected codeword is a neighbor of the destination, the
packet will be directly routed once the codeword is reached.

Interestingly, the routing distancer(s, t) between nodess
and t is almost identical to the shortest path distanced(s, t).

Theorem 6 The routing scheme above guarantees that
r(s, t) ≤ d(s, t) + 2.

Proof: If t is a codeword then routing tot is done using
the shortest path by the routing tables.

Supposet is not a codeword. Assumec is in the identifying
set oft. The routing scheme routes toc by shortest path, and
then tot by one more hop. Thereforer(s, t) ≤ d(s, c)+1. By

the triangle inequalityd(s, c) ≤ d(s, t)+ d(t, c) = d(s, t)+ 1.
The theorem follows.

The possibility of routing using the codewords is based
on the code being also a dominating set. The creation of
an identifying set for identification purposes allows also the
use of this set in a natural way to achieve compact routing.
The usage of the identifying code rather than a possibly
smaller dominating set has the advantage of labeling the
nodes in a natural way without demanding an agreement on
arbitrary identification or numbering of all nodes (but rather
just the codewords) to begin with. It also allows the distributed
construction of the labeling scheme and routing tables based
on the distributed algorithm presented above.

V. SIMULATIONS

We have simulated the centralized, localized and synchro-
nized distributed identifying code algorithms, and applied
them to random graphs, with different edge probabilities, and
to geometric random graphs with different nodes densities.
As a performance measure, we use the averaged size of the
identifying code. For the case ofr = 0 (i.e.,simple identifying
code) the simulation results are compared to the algorithm
suggested by Ray et. al. in [6]. In addition, we show a
combinatorial lower bound derived first by Karpovsky et. al.
in [9], and the asymptotic (inn - the size of the graph) result of
Moncel et. al. [10], who showed that an arbitrary collectionof
a threshold number of codewords is an identifying code with
high probability and that this number is asymptotically tight.

Fig. 4(a) shows the theoretic lower bound and the results
of the centralized greedy algorithm. It can be seen that a
significant enhancement in performance over the algorithm
devised by Ray et. al. is achieved. It should be noted that
as n grows the curves for basically any algorithm, should
converge to Moncel’s asymptotic result, as illustrated in Fig. 5.
Still, the convergence rate appears to be very slow, suggesting
that for reasonably large networks there is a lot to gain from
the suggested algorithms compared to the simple approach of
arbitrarily picking a code, which size satisfies the threshold
number of [10].

Fig. 4(b) shows the simulation results for the localized
and distributed algorithms compared to the centralized one.
Recall that the performance of the asynchronous algorithm,
rID− ASYNC, is identical to the localized approximation. It
can be observed that the results of the localized algorithm
nearly match the results of the centralized algorithms. Di-
vergence is evident for low edge probabilities where it is
harder to find a dominating set. Recall that there is a tradeoff
between performance and the runtime of the synchronized
distributed algorithm,rID− SYNC. The smaller the number
of subslots parameter,L, the shorter the runtime and the
larger the degradation in performance due to unresolved ties.
Degradation in performance is also more evident when ties
are more likely to happen,i.e., when the edge probability
is approaching0.5. The results of the centralized r-robust
identifying code algorithm are shown in Figure 4(c).

32 64 128 256 384
2

3

4

5

6

7

8

9

10

11

Number of nodes (n)

|C
|/l

og
(n

)

Normailized average size of the identifying code (r=0)
for random graphs with edge probability p=0.1.

Moncel et al
Assymptotic bound

Ray et al

Centralized

Karpovsky et al
Lower bound

Fig. 5. Average size of the simple identifying code (r = 0) for random
graphs with edge probabilityp = 0.1, and different number of vertices.

Fig. 6 shows the codeword density for geometric random
graphs using the localized and distributed approaches, and
the fraction of such graphs admitting an identifying code. It
also presents the largest fraction of indistinguishable nodes
obtained in the simulation. As can be seen the localized and
distributed approaches (withL = 10) yield very similar code
sizes. The fraction of graphs admitting identifying codes is
rather small (less than half the graphs) even for high node
densities. However, the monitoring and routing functionality
can still be restored by a special treatment of a small fraction
of indistinguishable nodes. It should be noted that approaches
such that of ID-CODE [6] are not designed to cope with graphs
which do not have identifying codes, resulting in a code of all
vertices.

Fig. 7 presents the ratio of the size of the full routing
table containing all nodes to the random table containing only
codewords for geometric random graphs. In cases where no
identifying code exists, information on indistinguishable nodes
was added to the routing table. As can be seen the table size
is significantly lower for routing using codewords. It should
be noted that for non-geometric random graphs the improve-
ment will be significantly higher since small (logarithmic)
identifying codes exist. For geometric random graphs further
improvement can be obtained using a hierarchical approach as
discussed above.

VI. FUTURE WORK

The connections to traditional identifying codes has been
sufficiently size-preserving to produce an approximation algo-
rithm, and should be useful for the number of identifying code
applications that have been developed in the literature.

Several extensions of identifying codes may prove to hold
some promise as future research directions:

Distributed storage and identifying codes Another ex-
tension of routing based upon identifying codes is routing
object location in distributed data storage systems. In these
systems, a physical or virtual network of storage location is
used, and every object can be found in one or more of the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5

10

15

20

25

30
n=128 random graph

Edge probability

A
ve

ra
ge

 ID
 c

od
e

si
ze

Lower bound (Karpovsky et. al.)

Ray et. al.
Centralized

(a) Centralized greedy algorithm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
8

10

12

14

16

18

20

22

24

26
n=128 random graph

Edge probability

A
ve

ra
ge

 ID
 c

od
e

si
ze

Centralized

Distributed

Localized

L=5

L=10

L=20

(b) Localized (andrID− ASYNC) and distributed algo-
rithm, rID − SYNC, for different subslot (L) values

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

n=128 random graph

Edge probability

A
ve

ra
ge

 g
re

ed
y

ID
 c

od
e

si
ze

r=1

r=0 (IDcode)

r=2

r=7

(c) Centralizedr-robust identifying codes algorithm.

Fig. 4. Average size of the minimum identifying code for random graphs with edge probabilityp, andn = 128 vertices.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

nodes density

GRG with different nodes densities

Distributed (L=10)
codewords density

Localized approx.
codewords density

precentage of
 identifying codes

Largest normailized number of
undestinguishable nodes

Fig. 6. Normalized size of the code for the localized (andrID − ASYNC) and
distributedrID − SYNCalgorithms, fraction of graphs admitting an identifying
code, and maximum fraction of indistinguishable nodes for geometric random
graphs with different node densities.

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

Routing table size gain compared to shortest path scheme
for GRGs with different node density

node density

R
ou

tin
g

ta
bl

e
si

ze
 g

ai
n

Fig. 7. Ratio of the graph size to the size of the routing tableusing the
identifying code approach. This represents the ratio of thefull routing table
containing all nodes to the more compact routing table presented here. Results
are for geometric random graphs with different node densities.

locations in the network.In this case there is a routing scheme
based upon(1,≤ l)-identifying codes [30]. These identifying
codes produce a different identifying set (and therefore a
different label) for every different set of up tol nodes. To
locate an object one can use its label (which may also be
derived from the object’s description by an appropriate hash
function), and then use the above routing method to reach
one of the codewords neighboring one of the object’s storage
locations similarly to the scheme presented above.

Robust routing using robust identifying codes In this
paper we have discussed the construction of robust identify-
ing codes. Robust identifying codes provide some minimum
number of monitors,r, adjacent to each node of the network.
This property may be useful in devising methods for compact
routing which are resilient to a constant number of failures
in the network. It may be possible to construct appropriate
routing tables that will allow such resilient routing.

REFERENCES

[1] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: designtradeoffs and
early experiences with zebranet,” inASPLOS-X: Proceedings of the
10th international conference on Architectural support for programming
languages and operating systems, 2002, pp. 96–107.

[2] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A
macroscope in the redwoods,” inSenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, 2005,
pp. 51–63.

[3] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-
dan, and D. Estrin, “A wireless sensor network for structural monitor-
ing,” in SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, 2004.

[4] “Pump monitoring at a nuclear generating sta-
tion,” 2005, sensicast Systems, Inc. [Online]. Available:
http://www.sensicast.com/solutions/casestudys.php

[5] S. Ray, R. Ungrangsi, F. D. Pellegrinin, A. Trachtenberg, and
D. Starobinski, “Robust location detection in emergency sensor net-
works,” Proc. INFOCOM, April 2003.

[6] S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungrangsi, “Robust
location detection with sensor networks,”IEEE Journal on Selected
Areas in Communications (Special Issue on Fundamental Performance
Limits of Wireless Sensor Networks), vol. 22, no. 6, August 2004.

[7] T. Berger-Wolf, W. Hart, and J. Saia, “Discrete sensor placement
problems in distribution networks,”SIAM Conference on Mathematics
for Industry, October 2003.

[8] ——, “Discrete sensor placement problems in distribution networks,”
Journal of Mathematical and Computer Modelling, vol. 42, no. 13, 2005.

[9] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin, “A newclass of
codes for identification of vertices in graphs,”IEEE Transactions on
Information Theory, vol. 44, no. 2, pp. 599–611, March 1998.

[10] J. Moncel, A. Frieze, R. Martin, M. Ruszink, and C. Smyth, “Iden-
tifying codes in random networks,”IEEE International Symposium in
Information Theory, Adelaide, 4-9 Sept., 2005.

[11] I. Charon, O. Hudry, and A. Lobstein, “Minimizing the size of an iden-
tifying or locating-dominating code in a graph is NP-hard,”Theoretical
Computer Science, vol. 290, no. 3, pp. 2109–2120.

[12] ——, “Identifying and locating-dominating codes: Np-completeness
results for directed graphs,” pp. 2192–2200, August 2002.

[13] J. Moncel, “Optimal graphs for identification
of vertices in networks,” preprint at www-
leibniz.imag.fr/NEWLEIBNIZ/LesCahiers/2005/Cahier138/CLLeib138.pdf.

[14] A. T. Jeremy Blum, Min Ding and X. Cheng, inHandbook of Combina-
torial Optimization, D.-Z. Du and P. Pardalos, Eds. Kluwer Academic
Publishers, 2004, ch. Connected Dominating Set in Sensor Networks
and MANETs.

[15] J. Wu and H. Li, “A dominating-set-based routing schemein ad hoc
wireless networks,”‘Telecommunication Systems.

[16] J. Wu, in Handbook of Wireless Networks and Mobile Computing,
I. Stojmenovic, Ed. Wiley, 2002, ch. Dominating-Set-BasedRouting
in Ad Hoc Wireless Networks.

[17] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to
Algorithms. MIT Press, 2001.

[18] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
Joutnal of Computer and System Sciences, vol. 9, pp. 256–278, 1974.

[19] U. Feige, “A threshold ofln n for approximating set cover,”In. Proc.
ACM Symposium on Theory of NP-Completeness, New York., 1996.

[20] V.Vazirani, Approximation Algorithms. Springer-Verlag, July 2001.
[21] M. Laifenfeld and A. Trachtenberg, “Disjoint identifying codes for

arbitrary graphs,”IEEE International Symposium on Information Theory,
Adelaide Australia, 4-9 Sept 2005.

[22] S. Rajagopalan and V. Vazirani, “Primal-dual rnc approximation algo-
rithms for set cover and covering integer programs,”SIAM Journal on
Computing, vol. 28, pp. 525–540, 1998.

[23] Y. Bartal, J. W. Byers, and D. Raz, “Global optimizationusing local
information with applications to flow control,” inIEEE Symposium
on Foundations of Computer Science, 1997, pp. 303–312. [Online].
Available: citeseer.ist.psu.edu/bartal97global.html

[24] F. Kuhn and R. Wattenhofer, “Constant-time distributed
dominating set approximation,” 2003. [Online]. Available:
citeseer.ist.psu.edu/kuhn03constanttime.html

[25] D. Peleg and E. Upfal, “A tradeoff between space and efficiency for
routing tables,”J. ACM, vol. 36, pp. 510–530, 1989.

[26] M. Thorup and U. Zwick, “Compact routing schemes,” inProceedings
of the thirteenth annual ACM symposium on Parallel algorithms and
architectures. ACM Press, 2001, pp. 1–10.

[27] L. Cowen, “Compact routing with minimum stretch,”Journal of Algo-
rithms, vol. 38, no. 1, pp. 170–183, 2001.

[28] C. Gavoille, “A survey on interval routing schemes,”Theoret. Comput.
Sci., vol. 249, pp. 217–253, 1999.

[29] I. Abraham and D. Malkhi, “Compact routing on euclideanmetrics,” in
23rd ACM Symposium on Principles of Distributed Computing (PODC
2004). ACM Press, 2004.

[30] S. Gravier and J. Moncel, “Construction of codes identifying sets of
vertices,”The Electronic Journal of Combinatorics, vol. 12, no. 1, 2005.

