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Abstract— Wireless Sensor Networks (WSNs) provide an im-  An important benefit of identifying codes is that they allow
portant means of monitoring the physical world, but their monitoring of an area without the need to place or activate a
limitations present challenges to fundamental network serices, (possibly expensive) monitor in each sub-region. Sincesite

such as routing. In this work we utilize an abstraction of . T ; .
these networks based on the theory of identifying codes. Thi of identifying code is typically much smaller than that ogéth

abstraction has been useful in recent literature for a numbe Original graph €.g. for very large random graphs ofvertices,

of important monitoring problems, such as localization and the size of an identifying code is roughlgg(n) [10]), this
contamination detection. In our case, we use it to provide agint  construction can result in a substantial savings of mositor
infrastructure for efficient and robust monitoring and routing  awernatively, for a fixed number of monitors, systems based
in WSNs. Specifically, we provide an efficient and distributd . . - . .
algorithm for generating robust identifying codes with a loga- ©O" identifying codes can achieve much hlgher _resolut|0n and
rithmic performance guarantee based on a novel reduction to robustness than proximity-based systems in which eactosens
the set k-multicover problem; to the best of our knowledge, only monitors the region surrounding it.

this is the first such guarantee for robust identifying codes We Identifying codes provide also means to quantify en-
also show how to reuse this same identifying-code infrasteiure ergy/robustness trade-offs through the concepbbiist iden-

for near-optimal routing with very small routing tables. We . = . . . o .
provide various experimental results to demonstrate the beefits tifying codes introduced in [5]. An identifying code is-

of our approach over previous identifying code approachesf¢r ~ robust if the addition or deletion of up tocodewords in the

monitoring) and shortest path solutions (for routing). identifying set ofany vertex does not change its uniqueness.
Thus, with anr-robust code, a monitoring system can continue
|. INTRODUCTION to function properly even if up to- monitors per locality

. . .__experience failure. Of course, the size of amobust code
Sensor networks provide a new and potentially revoIutlgbnaffncreases with- (typically linearly)

means of reaching and monitoring our physical surroundings . . " o
LS ) . Despite the importance of identifying codes for sensor
Important applications of these networks include envirenm o C L
onitoring applications, the problem of constructing éit

tsalerggglt([)lrlnz% (gnfjhetr:ge-sct)r/l(jgu(r):\ltrr?w%ii?onr(ijn Vag?usuﬁ‘gi':]sodes (in terms of size) is still unsolved. Specifically, the
bFr)id s or,even nuclear power stations [3 4]9 9 problem of finding a minimum identifying code for an ar-
ges, P T bitrary graph has been shown to be NP-hard [11,12]. In Ray
et al. [5], a simple algorithm called ID-CODE was proposed
to generate irreducible codes in which no codeword can be
For several fundamental monitoring problems, such asdocetmoved without violating the unique identifiability of sem
ization [5, 6] and identification of contamination sourcésd], vertex. However, in some graphs, the size of the resultinig co
the theory ofidentifying codeg9] has been found to provide using the ID-CODE algorithm can be arbitrarily poor [13]).
an extremely useful abstraction. Under this abstraction, a
monitoring area is divided into a finite number of region8- Related Work
and modeled as a graph, wherein each vertex represents @onsiderable work (see e.g., [14-16]) has been done on
different region as in Figure 1. In this model, two verticesompact routing using dominating sets, and, in paticular
are connected by a link if they are within communicationonnected dominating sets. Dominating sets are sets ofsnode
range. An identifying code for the graph then corresponds whose combined neighborhoods include all nodes in the graph
a subset of vertices where monitoring sensaes,(codewords Therefore, if information for routing to each node in a domi-
of the code) are located, such that each vertex is within thating set is stored, any node can be reached through ore of it
communication range of a different set of monitors (reférreneighbors in the dominating set with an almost optimal path
to as anidentifying set Thus, a collection of monitors in alength. Most works [14, 16] concentrate on finding connected
network forms an identifying code if any given identifyingts dominating sets, such that all routing is done only usingasod
uniquely identifies a vertex in the graph. from the dominating set. This has the advantage that othess nd

A. Ildentifying code abstraction



can be added and removed from the network without affecting
the routing, but also the disadvantage of possibly lengtigen
the routing distance considerably.

The scheme presented here is base on identifying codes,
which are supersets of dominating sets. Dominating sett exi
for every graph, while an identifying code may not exist. In
such a case we propose here to extend the “almost” iderdifyin

code to a dominating set and use this construction for ro tn}; 1. A floor plan quantized into 5 regions represented byeffices

ing. The pr_oposed SCh?m? has the advantage of Combindagles). An edge in the model graph (blue line) repres@fsconnectivity
neturally with the monitoring scheme. Furthermore, it hastween a pair of vertices, and the 3 vertices marked by @ senote an

the advantage of naturally producing the labeling of noddgentifying code for the resultant graph.
using the identifying code structure, rather than assuriiisy

externally given, as in dominating set routing. The scheme ) - ) _
gives the same penalty in terms of the routing length &&€mory in each sensor; (ii) one algorithm can be run to simul-

dominatingset routing. The size of the code is in many cas@geously setup both monitoring and routing infrastruesyr
not considerably larger than the dominting set. For exampl8Us reducing the network setup overhead.

in a random graph, the identifying code is only larger than a

dominating set by a logarithmic factor. The method suggest®. Outline

here uses all nodes, rather than a connected dominatirfgiset,

routing. This guarantees a small penalty in the r()Utir'gﬂ%gidentifying codes followed by a centralized approximation

but USes non code nodgs for routlng._lt may .be e>.<te.nded t%llaorithm with proven performance bounds. Thereafter, in
dominating set only routing by extending the identifyingleo Section Il we provide and analyze a distributed versiorhf t

It'ct) a tconnebcted dominating set using similar methods to tQF‘gorithm. Section IV describes a novel technique for negisi
lterature above. identifying codes for routing, and Section V provides some
C. Contributions simulation data for the various algorithms considered.

Next, in Section Il, we provide a brief introduction to robus

Our first contribution is to propose a new polynomial-time
approximation algorithm for the minimumrobust identifying
code problem with provable performance guarantees; to the

best of our knowledge, this is the first such approximation in |, this work. we provide a polynomial-time greedy ap-

the literature. Our algorithm, calledID — LOCAL, generates proximation of the NP-complete [11,12] (robust) identifgi

a robust identifying code whose size is guaranteed t0 be Qe problem. Our approximation is based on an efficient
most 1 + 2log(n) times larger than the optimum, where oqyction from the sek-multicover problem, for which a

is the number of vertices (a sharper bound is provided Yteedy approximation is known.

Section Il). This approximation is obtained through a reituc Given a base set/ of m elements and a collectiof of

of the_original problem FO a.minimum setcover problem, subsets ofU, the set cover problem asks to find a minimum
for which _greed_y approximations are w_eII known, ar_1d qtd'zesub-collection ofS whose elements hav€ as their union
only localized information that lends itself to a distribdt (i.e., they coverl’). The set cover problem is one of the
computatﬁ)n. | q oldest and most studied NP-hard problem [17] and it ad-
As such, we also proposelD — SYNC and rID — ASYNC, g simple greedy approximation: iteratively choose the

_tWOI d'St”bUt_ed mplg(;nentaﬂogs (f?ff bour algorlthm. Thedf'rsltleretofore unselected set Sfthat covers the largest number
Implementation provides a tradeoff between runtime ane pet ncovered elements in the base set. The classic results

formance guarantees while using a low communications logdl j,1,1<on [18] showed that, for minimum cove,i, and
and only coarse synchronization; the second implemenmtatio ' sgreedy n
t

requires no synchronization at the expense of more comn@ljé€dy Coversgreeqy We have tha Smin O(Inm).
nication. Through simulations on Erdos-Renyi random gsaphlardness results [19] suggest that this greedy approadateis o
and geometric random graphs, we show that these algorithpfighe best polynomial approximations to the problem.
significantly outperforms the earlier ID-CODE algorithm. The minimum set-multicoverproblem is a natural gener-

Finally, we demonstrate that the same identifying codedization of the set cover problem, in which givél, S) we
based monitoring infrastructure can be reused to effigientire seeking the smallest sub-collectionsthat covers every
implement routing between any two nodes in the networklement inU at leastk times (more formal definitions are in
Specifically, we show how to use routing tables of the sanBection II-C). Often this problem is addressed as a speasa ¢
size as the network’s identifying code to route packets betw of the covering integer problenj20]. The setk-multicover
any two nodes within two hops of the shortest path. Theoblem admits a similar greedy heuristic to the set cover
significance of this result is two-fold: (i) we can performane problem, with a corresponding performance guarantee [20] o
optimal routing while significantly compressing routindle at mostl + log (maxg,es(|Si]))-

Il. ROBUST IDENTIFYING CODES AND THE SET
MULTICOVER PROBLEM



the adjacency matrix. The problem of finding a minimum
; ‘» size r-robust identifying code is thus equivalent to finding
' ! a minimum number of columns in the difference matrix for

which the resulting matrix has minimum Hamming distance
2r + 1 between any two rows. This equivalent problem is

0 <>° nothing but a se?r + 1-multicover problem, if one regards the
) columns of the difference matrix as the characteristic asesct

of a collection of subset§ over the base set of all pairs of
rows in the adjacency matrix).

In the next subsection we formalize this intuition into a
rigorous reduction.
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Fig. 2. A 1-robust identifying code (codewords are solid circles) amel
graph’s adjacency matrix. The identifying set of verteis {0, 1,5}.

A. Technical definitions

Given an undirected graptiy = (V,E), the ball B(v) . . _—
: : . . In this section we formally reduce the problem of finding
consists of all vertices adjacent to the vertexogether with . : o )
the smallest sized-robust identifying code over an arbitrary

v itself. It is possible to generalize this definition (and the .
. . ; -~ graphG to a2r+ 1-multicover problem. Formally we connect

corresponding results in the paper) to directed graphsthimit . i

o ) : . the following problems:
significantly complicates the notation and we omit suchlissu a) SET MULTI-COVERSC)):

A non-empty subsef C V is called acodeand its elements _ kieo

are codewords For a given code, the identifying set/c(v) ' NSTANCE: SlubsetsS of U, an integerk > 1.
of a vertexv is defined to be the codewords directed towards SO-UT! O\ / S’ € § such that for every elemente U,
v, i.e., Ic(v) = B(v) N C (if C is not specified, it is assumed |{5_€ S":ue st = k. _ .
to be the set of all verticei). A codeC is anidentifying code ~ VEASURE: The size of the multicover:5’|.
if each identifying set of the code is unique, in other words ~ b) Robust ID-CODE (rID):
I NSTANCE:  GraphG = (V, E), and integer > 0.
SCLUTI ON:  An r-robust identifying code” C V.
In our applications, we shall further require that(v) # 0 MEASURE: The size|C.
for all verticeswv, so that an identifying code is alsovartex

C. Reduction

Yu,v eV u=v— Ic(u) = Ic(v).

cover or dominating set Theorem 1 Given a graphG of n vertices, finding anr-
o _ o _ robust identifying code requires no more computations than
Definition 1 An identifying codeC over a given grapiG' = (24 1)-multicover solution over a base setd.-2) elements

(V. E) is said to ber-robust if Ic(u) & A # Ic(v) & D for  together withO(n®) operations of lengt binary vectors.
all v#wandA,D Cc V with |A|,|D| < r. Here ® denotes
the symmetric difference. To prove the theorem we start with few definitions.

B. Reduction intuition Definition 2 Thedifference setD¢(u,v) is defined to be the
Consider a three dimensional cube as in Figure 2 and stmmetric difference between the identifying sets of ogsti
C = {0,1,2,4,5,6,7}. Clearly, the identifying sets are allu,v € V:
unique, and hence the code is an identifying code. A closer Dc(u,v) = Igc(u) & Ic(v),
look reveals thatC is actually al-robust identifying code,
so that it remains an identifying code even upon removal
insertion of any codeword into any identifying set.
A graph’s adjacency matrix provides an alternate perspect

to the identifying code problem; in this matrix, rows or_ . ..
fying P Definition 3 Let U = {(u,2)|u # z,u,z € V}. Then the

columns arecharacteristic vectorof corresponding balls, in distinquishi 6 is th t of vert irs ity f hich
that their i-th entries arel if the i-th element ofU is in '.S INguIshing S€b. 'S. gse of vertex pairs 1 for whic
sa member of their difference set:

the corresponding ball. Selecting codewords can be viewé
as selecting columns to form a matrix of sizex |C|. We 6e = {(u,2) € U|c € De(u,2)}.

will refer to this matrix as thecode matrix. A code is thus

identifying if the Hamming distanc&etween every two rows It has been shown in [6] that a code #srobust if and
in the code matrix is at least one (recall that the Hammirjlly if the size of the smallest difference set is at least 1.
distance of two binary vectors is the number of ones in thdrduivalently, a code is-robust if and only if its distinguishing
bitwise XOR). It has been shown in [6] that if the Hamming§ets2r + 1-multicover all the pairs of vertices in the graph.

distance of every two rows in the code matrix is at le€ast 1
then the set of vertices isrobust. Lemma 1 Given G = (V, E) the following statements are

n(n—1

We next form the”=1) x i, differencematrix by stacking equivalent:
the bitwise XOR results of every two different rows in 1) C={c,...,cx} is anr-robust identifying code.

r simplicity of notation, we shall omit the subscript when
ooking at identifying codes consisting of all graph vess¢
f.e., D(u,z) = Dy (u, 2).



2) |De(u,v)|>2r+1,forallu £veV the one in Theorem 1. The main difference is that we will
3) The collection{é.,, ..., d, } forms a(2r+1)-multicover restrict basis elements to vertex pairs that are at most two
of U= {(u,v)|Vu#veV} hops apart, and we then need to guarantee that the resulting

. _ __code is stillr-robust.
Proof of Theorem 1: Consider the following construction  Tqwards this end we defidg? — {(u, ) | p(u,v) < 2}, the

of an r-robust identifying code. set of all pairs of vertices (including, v) that are at most
ID(G,r) — C two hops apart. Similarly, we will localize the distinguiish
1. Compute{I(u)|u € V}. setd, to U? as follows:

2. Computed = {duu € V. 52 = (6, N U?) U{(w,w)lu € B(v)},

3. C — Minimum — Set — MultiCover(2r + 1, U, A) _ _ _ o o

4. OutputC « {u € V|4, € C} The resultingocalized identifying code approximatias thus

given by Algorithm 1 and can be shown to providerarobust

The resulting code(, is guaranteed by Lemma 1 to be amyentifying code for any graph that admits one (we omit the
r-robust identifying code, and the optimality of the set GOV‘?tJJroof due to space considerations).

in step 3 guarantees that no smaller identifying code can be
found. To complete the proof we observe that computinggorithm 1 Localizedr-robust coderID — LOCAL(r, G)
the identifying setsl(u) naiV(_er requirgs?(nQ) addi'Fions of We start with a grapltz = (V, E) and a non-negative integer
binary vectg(rngnd comput_lng, requiresn. operations for r. The greedy set muIticovér approximation is denoted-S
each of the==— elements inU/|. MULTICOVER(k, U, S).

1) Compute{D(u,v)lu € V, v € B(u;2)}
D. Localized robust identifying code and its approximation 2) ComputeA? = {Z|u € V'}.

2 2
It was observed in [6,21] that anrobust identifying code i) g Tsf(g'MULT'COVER‘gg;F 1bU A7)
can be built in a localized manner, where each vertex only ) OutputCiocar — {u € V|9, € C}
considers its two-hop neighborhood. The resultingalized
identifying codesare the subject of this section, and the
approximation algorithm we derive is critical to the distried Theorem 2 Given an undirected grapliz = (V, E) of n

algorithm of the next section. vertices, the performance ratieID — LOCAL is upper bounded
Let G = (V,E) be an undirected graph, we define th&Y: ‘greedy
distance metrip(u,v) to be the number of edges along the ——— <lhy+1,

o
shortest path from vertex to v. The ball of radiug around min
v is denotedB(v; 1) and defined to béw € V|p(w,v) < i}. Wherey=maxvey [B(v)[(|B(v;3) —[B(v)] +1].

So far we encountered balls of radiuis- 1, which we simply  pyoof: The proof derives from the performance guarantee
denoted by5(v). of the greedy set multicover algorithm [20], which is upper

Recall that a vertex cover (or dominating set) is a set ghynded byl + In« with o denoting the largest set's size.
vertices, such that the union of their balls of radius 1 cevefne size ofs2 is |B(v)|(|B(v;3)| — |B(v)| + 1), which, at

V. We further extend this notion and definer-dominating jts maximum, can be applied to the performance guarantee

set as the set of vertices whiehmulticoversV. in [20] to complete the proof. I
Lemma 2 Given a graph = (V, E), anr+1-dominating set ) o )

C is also anr-robust identifying code if and onlyD (u, v)| > In the next subsection we present a distributed imple-
2r + 1 for all u,v € V such thatp(u,v) < 2. mentation of the identifying code localized approximation

The following lemma supplements Lemma 2 by providing

Proof: The forward implication is an application ofadditional “localization”. At the heart of this lemma lieket
Lemma 1. For the reverse implication we taketo be an fact that each codeword distinguishes between its neighbor
r + 1 dominating set and assume that(u,v)| > 2r + 1 for and the remaining vertices.
plu,v) < 2; we will show that this assumption is also valid
for p(u,v) > 2. This is because, fg#(u, v) > 2, we have that Lemma 3 The distinguishing sets? and é2 are disjoint for
B(v) N B(u) = (), meaning thatD(u,v)| = |B(v)| + |B(u)|. every pair(u,v) with p(u,v) > 4.
Since C is an r + 1 dominating set, it must be that
|B(y)| > r+1 for all verticesy, giving that| D (u, v)| > 2r+1.
Applying Lemma 1 we thus see th@t must ber-robust. J

Proof: Clearly, 62 includes all vertex pair§z,y) € U?
where z is a neighbor ofv and y is not. More precisely,
(z,y) € 62 if
The localized robust identifying code approximation v € B(v) andy € B(x;2) — B(v). (1)
Lemma 2 can serve as the basis for a reduction from Moreover, for all such(z,y), p(z,v) < 3 and p(y,v) < 3.
identifying code problem to a set cover problem, similar t®n the other hand, fofz’, ') € 62 with p(u,v) > 4, either



End-of-iteration &

z' or ¢’ must be a neighbor of, and hence of distance 3 id, , <>id(v)
from v. Thus,é2 andé? are disjoint. 1

15]=0

‘, End-of-iteration &
id,,, ==id(v)
Initiate an

assignment

Iteration++

Waitfor_
assignment

Lemma 3 implies that when applying the greedy algorithm,
a decision on choosing a codeword only affects decisions on
vertices within four hops; the algorithm is thus localized t

Initiate a
declaration

Assignment or un-

vicinities of balls of radius four. assignment received

I1l. DISTRIBUTED ALGORITHMS Fig. 3. Asynchronous distributed algorithm state diagranmadev € V

Several parallel algorithms exist in the literature for set
cover and for the more general covering integer progrargs
(e.g., [22]). There are also numerous distributed algorithms ) o
for finding a minimum (connected) dominating set based The state diagram of the asynchronous distributed algo-
on set cover and other well know approximations such &M is shown in Figure 3. All nodes are initially in the
linear programming relaxatiore(g., [23]). In a recent work unassignedstate, and transitions are effected according to
Kuhn et. al. [24] devised a distributed algorithm for findingnessages received from a node’s four-hop neighborhood. Two
a dominating set with a constant runtime. The distributdP€S of messages can accompany a transit&msignment
algorithm uses a design parameter which provides a tradedfd declarationmessages, with the former indicating that the
between the runtime and performance. initiating node has transitioned to tlassignedstate, and the

Unfortunately the fundamental assumption of these algiiter being used to transmit data. Both typ‘:es of messages
rithms is that the elements of the basis set are independ@isQ include five fields: theype which is either "assignment
computational entitiesi.e., the nodes in the network); this©F “declaration”, thelD identifying the initiating node, the
makes it non-trivial to apply them in our case where elemerft@P Number, theiteration number, anddata which contains
correspond to pairs of nodes that can be several hops ap@?. size of the distinguishing set in the case of a declaratio
Moreover, we assume that the nodes are energy constraif¥pSade: S _
so that reducing communications is very desirable, eveneat t Following the initialization stage, every node declares it
expense of longer execution times and reduced performangéstinguishing set's size. As a node's declaration message

We next provide two distributed algorithms. The firsPropagates through its four hop neighborhood, every fatwar
is completely asynchronous, guarantees a performanae rdtd node updates two internal variablés) ... and iz,
of at mostiny + 1, and requiresO(cgisy) iterations at representmg the !D and size of timeost distinguishinghode
worst. The second is a randomized algorithm, which réli€S are broken in favor of the lowest ID). Hence, when a
quires a coarse synchronization, guarantees a performafiede aggregates the declaration messages initiated bisall i
ratio at mostlny + 1 for some design parametdi > four hop neighbors (we say that the node reacheeérnt-of-

+

The asynchronous algoritheID — ASYNC

L on A2 . iteration event),ID,,.. should hold the most distinguishing
2, and operates withi® i subslots (resulting in ,de in its four hop neighborhood. A node that reaches end-
O(cgistmaxyev | B(v;4])) communication messages). of-iteration event transitions to either tieaitfor_assignment

In the next subsection we describe the setup and initializstate or to the finahssignedstate depending if it is the most
tion stages that are common to both distributed algorithmsdistinguishing node.
The operation of the algorithm is completely asynchronous;
A. Setup and initialization nodes take action according to their state and messages re-

With a setup similar to [6] we assume that every vertesgived. During the iterations_ stage, nodgs initiate a datita _
(node) is pre-assigned a unique serial number and can cdhgssage only if they receive an assignment message or if
municate reliably and collision-free (perhaps using highe?" updated declaration (called amassignmenmessage) is
layer protocols) over a shared medium with its immediaf§C€ived from the most distinguishing node of the previous
neighborhood. Every node can determine its neighborhotigration. All messages are forwarded (and their hop number
from the IDs on received transmissions, and higher radilis bdS increased) if the hop number is less than four. To reduce
can be determined by multi-hop protocols. In our case, we wRommunications load, a mechanism for _detectlng and elimi-
need to knowG(v; 4) the subgraph induced by all vertices of'aling looping messages should be applied.
distance at most four from. Every node,v, terminates in either an “unassigned” state

Our distributed algorithms are based on the fact that, by d&fith _|53| = 0 or in the “assigned” state. Clearly, nodes that
inition, each node can distinguish between the pairs of node§minate in the “assigned” state constitute a localizedbust
which appear in its corresponding distinguishing &given identifying code. _
in (1). This distinguishing set is updated as new codeworels a 1) Performance evaluation:
added to the identifying code being constructed; theirgies
is advertised by flooding their four-hop neighborhood. Theorem 3 The algorithm rID — ASYNC requires O(cgijst)



iterations and has a performance ratio

-
d—'St<1117—i-17

min

wherey = max,ey [B(v)|(|B(v:3)] — | B(v)| + 1]

The frame synchronization enables us to eliminate all the
declaration messages of the asynchronous algorithm. Recal
that the declaration messages were required to perform two
tasks: (i) determine the most distinguishing node in itsrfou
hop neighborhood, and (ii) form an iteration boundary,,
end-of-iteration event. The second task is naturally fetil

The first part of the Theorem follows from Theorem 2y maintaining the slot synchronization. The first task is pe
and the fact that only the most distinguishing sets in a fofsrmed using the frame synchronization: every node maistai
hop neighborhoods is assigned to be a codeword. To see gheynchronized slot counter, which corresponds to the size
number of iterations of the algorithm, we first note that inf the currentmost distinguishingnode. If the slot counter
each iteration at least one codeword is assigned. The case afaches the size of a node’s distinguishing set, the nodignass
cycle graph demonstrates that, in the worst case, exactly aielf to the code. The subslots are used to randomly break ti
node is assigned per iteration.

It follows that the amount of communications required islot, starting from slotsz. During a slot period, a node
the iteration stage i®(cyjgi|V | max(|B(v; 4)[)), which can be may transmit a message.s indicating that it is assigning
a significant load for a battery powered sensor network. Thtself as a codeword; the message will have two fields: the
can be significantly reduced if some level of synchronizatiadentification number of the initiating nodéd(ms), and the
among the nodes is allowed. In the next section we suggedia numberhop(ms). A node assigns itself to be a codeword
synchronized distributed algorithm that eliminates dextlan
messages altogether.

1) Iterations stage:Each iteration takes place in one time

if its assignment timewhich refers to a slotis and subslot
I, has been reached. Every time an assignment message is
received, the assignment slets of a node is updated to

C. A low-communications randomized algoritmID — SYNC match size of its distinguishing set; the assignment sulislo

In this subsection we assume that a coarse time synchfgiermined randomly and uniformly at the beginning of every
nization among vertices within a neighborhood of radiuglot.

I~

four can be achieved. In particular we will assume that t

vertices maintain a basic timslot, which is divided into
L subslots Each subslot duration is longer than the tim%\)lllowing distributed algorithm run at node € V produces
required for a four hop one-way communication together witln »-robust identifying code.

synchronization uncertainty and local clock drift. Aften a
initialization phase, the distributed algorithm operates a
time frame which consists off' slots arranged in decreasing e | =random{l,...,L}
fashion fromsg to s;. In general,FF should be at least as

large as the largest distinguishing setq(, F' =

n(n=1) \will

Algorithm 3 Synchronous~-robust algorithm £ID — SYNC)
e start with a graphG and non-negative integer. The

Precompe Set:slot = s, subslot = L, state = unassigned.
« Calculate the assignment slot.
Iterate: whilestate = unassigned andslot > s; do,

« if received assignment messages then,

— if hop(ms) < 4 forward ms with hop(ms) + +.
— Recalculate the assignment slot.

always work). A frame synchronization within a neighbortioo o elseif subslot = [ and slot = as then,
of radius four completes the initialization stage.

Algorithm 2 Asynchronousg-robust algorithm£ID — ASYNC)

— state = assigned
— Transmitms with id(ms) = id(v),andhop(ms) = 1

2) Performance evaluation:Algorithm rID — SYNC re-

We start with a graphG, with vertices labeled by D, and quires at mostO(n?) slots (O(Ln?) subslots), though it
a non-negative integer. The following distributed algorithm can be reduced t@(L~) if the maximum size of a dis-

run at nodev € V produces an-robust identifying code.
Precomp «

Iteration

SetU = {0} and computgd? (U)| = 62 N U using (1).

Initiate a declaration message and set state= “unassigned”
SetIDyaz = ID(v), Smaz = |[62(U)|, andms to be an empty
assignment message.

Incrementhop(ms) and forward all messages éop(ms) < 4.

if received an assignment messaga with state # assigned then

— Updateld and |62 (U)|.

— Initiate a declaration message and set state = “unassigned”

— Reinitialize IDp 00 = ID(v) andd,maqr = |62 (U)|.

if state = waitfor_assignment and received amn-assignment
message then initiate a declaration message.

if received a declaration messages with state # assigned then

— if Smax < data(ms) Or 6,pae = data(ms) && IDyge >
ID(ms) thendmae = data(ms), IDpmae = ID(ms)

if end-of-iterationreached then,

— if IDyaz = ID(v) and|52(U)| > O thenstate = assigned,
initiate an assignment message.

— otherwisestate = wait for_assignment.

tinguishing set is propagated throughout the network in the
precomputation phase. The communications load is lasv, (
O(cgist - maxyev (|B(v;4)]))), and includes only assignment
messages, which are propagated to four hop neighborhoods.

In the case of tiesyID — SYNC can provide a larger code
than gained from the localized approximation. This is beeau
ties in the distributed algorithm are broken arbitrarilpda
there is a positive probability (shrinking as the number of
subslotsL increases) that more than one node will choose
the same subslot within a four hop neighborhood. As such,
the L is a design parametdr, providing a tradeoff between
performance ratio guarantees and the runtime of the afgorit
as suggested in the following Theorem.

Theorem 4 For asymptotically large graphs, Algorithm
rID — SYNC guarantees with high probability a performance



ratio of closest related routing scheme in the literature is based on

Cdist < K(nvy+1), dominating set, and this is not surprising because idengfy
min codes are a special type of dominating set. Though identifyi
where v = max,ey |B(v)|(|B(v;3)| — |B(v)| + 1|. The codes for a _graph tend to be slightly larger than the more
. . R general dominating set®.g., for large random graphs, they
algorithm also requires) i subslots to complete pyoth have roughly)(log N) nodes), they have the significant
for design parameteK > 2 and arbitrarily smalle > 0. advantage of providing, for free, a natural labeling on the

. . graph. They can also be utilized for distributed data sterag
Proof: If no more thank tied nodes assign themselvegsee future work below).

simultaneously on every assignment slot, then we can upper
bound the performance ratio by a factar of Theorem 2, A. Routing with an identifying code
as in the theorem statement. We next determine the numbeFor a given identifying code for a grapfi, our scheme
of subslots L needed to guarantee the above assumptitnduces a compact routing scheme in the following manner:
asymptotically with high probability. Number the nodes irC (codewords) asy,...,cc|—1; the

Let P(K) denote the probability that no more thénhtied label of nodei will be the characteristic vector of its identify-
nodes assign themselves in every assignment slot. Cleaitty set (and is thus unique). At every node, the routing table
P(K) > (1—p(K))“dist, wherep(K) is the probability that, will include one entry for each of the codewords, which will
whent nodes are assigned independently and uniformly; to include the port leading to the shortest path to this coddwor
subslots, there are at lea&l < t assignments to the same The routing functionf at some nodé will be as follows:

subslot. One can see that 1) If ¢ is i’s neighbor, send directly to.

SK) =S (B Lk (1— L)k <5 £ 1k 2) Otherwise, choose a codewatg] such thatc; € B(3i),

P(K) DK (kz ( Lk) - Zk:}f (i) i.e.,such that the-th bit of L; is one. Route by the port
<Yk L(E) <tL(&)", assigned ta:; in the routing tableT;.

wheree being the natural logarithm and based on the assumpVé note that the routing scheme presented here may be
tion that £ < 1. Let ¢ = cqigt = n (this only loosens the extended to a hierarchical routing scheme using higheusadi

bound) aﬁgL _ £ 52E Then, identifying codes to further reduce the size of the routing
table [29].
re \ K “dist e 1 \" For a graph allowing an identifying code we can see that
P(K) > (1 —tL (ﬁ) ) > ( - ?1—+€) — 1. the routing table size is at moKE|? bits, the label size i§C]|,
and the routing function performs linearly in the label size
g !f |C]| is large but the size ofc(u) is small for allu € V,
a more compact label may be used by choosing a different
representation of the list, linked list of codewords or a run
length encoding of the label.
The existence of an identifying code for a networks permits
a natural routing scheme using small routing tables (tyfyicaTheorem 5 The functionf is a valid routing function.
referred to as “compact routing schemes” [25-27]).

By routing scheme we mean a combination of a labeling Proof: At every node the routing table includes an entry
schemeL, where L, is the label (address) of the node for each of the codewords. The entry contains the next port in

routing tables7; located at every node, and a routing the shortest path routing to the codeword. Therefore, ebbrt
function f (L, L,, L;, T;) using the labels of the source nodd@ath routing to the selected codeword is guaranteed. Since
s, the destination node, and the current node and the the selected codeword is a neighbor of the destination, the
information in the local routing tablé; to choose the next packet will be directly routed once the codeword is reached.
port through which a packet should be sent. For the scheTe

to be consideredompact the table size should be smaille(,

vilT;] < O(N)), and the label size should also be small |iarestingly, the routing distance(s, 1) between nodes
(usually polylogarithmic inV). Furthermore, the descriptiong, 4, is aimost identical to the shortest path distari¢e ¢).
of f should be of constant size.f).,we do not want to include
the whole graph structure ifj) and its time complexity should +1aorem 6 The routing scheme above guarantees that
be low (usually polynomial in label sizes and logarithmic OJ:(s,t) < d(s,t) + 2.
constant in the table size). -

Compact routing has been studied for some time in the Proof: If ¢ is a codeword then routing tbis done using
computer science literature, with the typical focus beig dthe shortest path by the routing tables.
signing routing schemes that give good performance in theSuppose is not a codeword. Assumeis in the identifying
worst case scenario for all graphs, or for some class of grapket oft. The routing scheme routes toby shortest path, and
a good survey of existing approaches is provided by [28]. Thieen tot by one more hop. Thereforés, t) < d(s,c)+ 1. By

IV. ROUTING WITH IDENTIFYING CODES



the triangle inequalityi(s, c¢) < d(s,t) +d(t,c) = d(s,t) + 1.

Normailized average size of the identifying code (r=0)

The theorem follows. I " for random graphs with edge probability p=0.1.
sob SRR SR, ]
T . . . Moncel et al
The possibility of routing using the codewords is based of Assymptotic bound
on the code being also a dominating set. The creation of sl

an identifying set for identification purposes allows alke t I Ray etal

use of this set in a natural way to achieve compact routing. o \
The usage of the identifying code rather than a possibly o /Cemfa"wﬂ |

IClflog(n)

smaller dominating set has the advantage of labeling the

nodes in a natural way without demanding an agreement on ¢ Cower bound ~~y.
arbitrary identification or numbering of all nodes (but &ath T
just the codewords) to begin with. It also allows the disttéul r—— 28 T 4
construction of the labeling scheme and routing tablesdase Number of nodes ()

on the distributed algorithm presented above. _ _ _ o
Fig. 5. Average size of the simple identifying code £ 0) for random

V. SIMULATIONS graphs with edge probabilitp = 0.1, and different number of vertices.
We have simulated the centralized, localized and synchro-
nized distributed identifying code algorithms, and apgplie . .
them to random graphs, with different edge probabilities] a F19- 6 shows the codeword density for geometric random
to geometric random graphs with different nodes densiticd@Phs using the localized and distributed approaches, and
As a performance measure, we use the averaged size of {jfe fraction of such graphs admitting an identifying code. |
identifying code. For the case of= 0 (i.e., simple identifying also presents the largest fraction of indistinguishabldeso

code) the simulation results are compared to the algorittfft@ined in the simulation. As can be seen the localized and
suggested by Ray et. al. in [6]. In addition, we show distributed approaches (with = 10) yield very similar code

combinatorial lower bound derived first by Karpovsky et. afizes: The fraction of graphs admitting identifying codss i
in [9], and the asymptotic (in - the size of the graph) result of@ther small (less than half the graphs) even for high node
Moncel et. al. [10], who showed that an arbitrary collectign densities. However, the monitoring and routing functidgal
a threshold number of codewords is an identifying code wifign still be restored by a special treatment of a small foacti

high probability and that this number is asymptoticallyhtig of indistinguishable nodes. It should.be noted that a_pp'reslc
Fig. 4(a) shows the theoretic lower bound and the resuftdch that of ID-CODE [6] are not designed to cope with graphs

of the centralized greedy algorithm. It can be seen that¥§lich do not have identifying codes, resulting in a code bf al

significant enhancement in performance over the algorithfftices. . . _
devised by Ray et. al. is achieved. It should be noted thatFi9- 7 presents the ratio of the size of the full routing
asn grows the curves for basically any algorithm, shoultpble containing all node_s to the random table containirlg on
converge to Moncel’'s asymptotic result, as illustratedign 5.  codewords for geometric random graphs. In cases where no
Still, the convergence rate appears to be very slow, Suiggestldentlfylng code eX|sts,.|nformat|on on indistinguishablbdes .
that for reasonably large networks there is a lot to gain fro#as added to the routing table. As can be seen the table size
the suggested algorithms compared to the simple approachSofignificantly lower for routing using codewords. It shaul
arbitrarily picking a code, which size satisfies the thréshob® noted that for non-geometric random graphs the improve-
number of [10]. _ment_ WI|| be S|gn|f|(_:antly higher since small (logarithmic)
Fig. 4(b) shows the simulation results for the localizelflentifying codes exist. For geometric random graphs &nth
and distributed algorithms compared to the centralized Oﬁ@provement can be obtained using a hierarchical approsch a
Recall that the performance of the asynchronous algorithfliscussed above.
rID — ASYNC, is identical to the localized approximation. It
can be observed that the results of the localized algorithm
nearly match the results of the centralized algorithms. Di- The connections to traditional identifying codes has been
vergence is evident for low edge probabilities where it isufficiently size-preserving to produce an approximatigoa
harder to find a dominating set. Recall that there is a trddeofhm, and should be useful for the number of identifying €od
between performance and the runtime of the synchronizegplications that have been developed in the literature.
distributed algorithmrID — SYNC. The smaller the number Several extensions of identifying codes may prove to hold
of subslots parameted,, the shorter the runtime and thesome promise as future research directions:
larger the degradation in performance due to unresolved tie Distributed storage and identifying codes Another ex-
Degradation in performance is also more evident when tiemnsion of routing based upon identifying codes is routing
are more likely to happen,e., when the edge probability object location in distributed data storage systems. Isehe
is approaching0.5. The results of the centralized r-robussystems, a physical or virtual network of storage locat®n i
identifying code algorithm are shown in Figure 4(c). used, and every object can be found in one or more of the

VI. FUTURE WORK
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locations in the network.In this case there is a routing s@he
based upor{l, < I)-identifying codes [30]. These identifying
codes produce a different identifying set (and therefore a
different label) for every different set of up tbnodes. To
locate an object one can use its label (which may also be
derived from the object’s description by an appropriatehhas
function), and then use the above routing method to reach
one of the codewords neighboring one of the object’s storage
locations similarly to the scheme presented above.

Robust routing using robust identifying codes In this
paper we have discussed the construction of robust identify
ing codes. Robust identifying codes provide some minimum
number of monitorsy, adjacent to each node of the network.
This property may be useful in devising methods for compact
routing which are resilient to a constant number of failures
in the network. It may be possible to construct appropriate

distributedrID — SYNCalgorithms, fraction of graphs admitting an identifying routing tables that will allow such resilient routing
code, and maximum fraction of indistinguishable nodes &mmetric random ’

graphs with different node densities.

Routing table size gain
w

Fig. 7.

Routing table size gain compared to shortest path scheme
for GRGs with different node density
T T T
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Ratio of the graph size to the size of the routing taldeng the
identifying code approach. This represents the ratio offtitlerouting table
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