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worms), and thereby, focus on the logical Internet topalogy

disasters, such as earthquakes or floods, as well as to humanSome works such as [9], [14] model the Internet using geo-

attacks, such as an electromagnetic pulse (EMP) attack. Shc

real-world events have geographical locations, and therefe, the
geographical structure of the network graph affects the immct of
these events. In this paper we focus on assessing the vulnieitiy
of (geographical) networks to such disasters. In particula we aim
to identify the location of a disaster that would have the maimum
effect on network capacity. We consider a geometric graph natel
in which nodes and links are geographically located on a plaga
Specifically, we model the physical network as a bipartite gaph
(in the topological and geographical sense) and consider ¢hset
of all vertical line segment cuts. For that model, we develom
polynomial time algorithm for finding a worst possible cut. Our
approach has the potential to be extended to general graphsnd
provides a promising new direction for network design to avet
geographical disasters or attacks.

Index Terms—Network survivability, geographic networks,
Internet, cut capacity, network design, Electromagnetic Rlse
(EMP)

I. INTRODUCTION

graphical notions. Yet, these works do not consider theceffe
of failures that are geographically correlated. Finalriants
of the network inhibition problem in which a set of links has
to be removed from a graph such that the effect on the graph
will be maximized have been studied in [11] and reviewed
in [6]. Yet, to the best of our knowledge, this problem was
not studied under the assumption of geographically caaéla
failures. Since disasters affect a specific geographiced,ar
they will result in failures of neighboring network compaong
Therefore, one has to consider the effect of disasters on the
physical layer rather than on the network layer (i.e., tHeaf
on the fibers rather than on the logical links). It should biedo
that fibers are subject to regional attacks, such as eatbgua
floods, and even an EMP attack; as these may affect the
electronic amplifiers that are needed to operate the fibat.pla
Our long-term goal is to understand the effect of a regional
failure on the bandwidth and connectivity of the Internedl an

The U.S. military and civilian communications infrastructo expose the design tradeoffs related to network surviabi

ture is primarily based on fiber-optic networks. This infras-

under an attack/disaster with regional implications. lis {fa-

ture exists physically and has physical vulnerabilitieheF per, we are interested in the location of geographical thsas
links and backbone nodes can be destroyed by anything frémat maximize the capacity of disconnected links. That is, w
electromagnetic pulse (EMP) attacks [8], [12] to draggingrant to identify the worst-case location for a disaster or an
anchors [4], [13]. Such real-world disasters have geodcaph attack.

locations, and therefore, the geography of the infrastinect

We focus on a graph model which can serve as an ab-

affects the impact of these events. For example, since an Eltiaction of the U.S. fiber plant, the transpacific fiber links
attack can affect electronic components in a large geo@rapbr the transatlantic fiber links. In this model, nodes, links
area, such an attack over a city which is a telecommunicsitissnd cuts are geographically located on a plane. We consider
hub would have a disastrous impact on the U.S. telecommuaibipartite graph (in the topological and geographical sgns
cations capabilities. Our approach is to gain insight istoust  which is analogous to the east and west coasts of the U.S.,
network design by developing the necessary theory to find thdere nodes on the left and right sides of the graph represent
most geographically vulnerable areas of a network. This camst and east coast cities (respectivéljnce the continental
provide important input to the construction of network d@si U.S. has a width that is greater than its height, verticalstisrs
tools and can support the efforts to mitigate the effects eéemingly cut mostly east-west links. Therefore, and since

regional disasters.

vertical line segment cuts are somewhat simpler to analyze,

There are several works on the topology of the Internet a& focus in this paper on such cuts.

a random graph [2] and on the effect of link failures in these Under this model, we study the effect of a north-south
graphs [7], [10]. However, most of these works are motivated

by failures of routers due to logical attacks (e.g., viruaed

1Similarly, nodes can represent major cities on both sidesnofcean.
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There are many ways to define a loss of communication
capacity in a network. For simplicity, we define a worst-case
cut as follows.

Definition 1 (Worst-Case Cut)A worst-case cut, denoted
by cut, (2*,y*), is a cut which maximizes the total expected
capacity of the intersected links.

It should be noted that because this is a bipartite graph set-
ting, a worst-case cut is also one which minimizes maximum
flow between the two sides.

In order to formulate an optimization problem which finds
a worst-case cut, we define the followi@, 1) variables:

Fig. 1. A bipartite network and an example of a cut

regional disaster on the east-west capacity of the network. zij (2, y)
We assume that a vertical regional disaster (e.g., a tojnado ) ) o -
affects the electronic components of the network within @\Ven a cut height, link probabilities, and capacities, the
certain region. Hence, the fibers that pass through thabmeg?omt'on to the optimization problem below is an endpoint of
are effectively cut due to such a disaster. The more comni{J€ Worst-case cut.
nication links a vertical cut intersects, the greater thiectf max Y ; iy Pijcijzi (T, Y)
on the communication capacity between the east and west s{ich .thét
coasts. We start by considering a simple case of the bipartit
model and providing motivating examples. We then present a 0<z<l
polynomial time algorithm for finding the location of a cut —h<y<hg
which maximizes the expected capacity of the removed links.
The rest of the paper is organized as follows. In Section I, L
we introduce the network model and formulate the problem._The above optlmlzatlon problem can be formulat_ed as a
In Section 111, we consider a simple case of the bipartite aiodVix€d Integer Linear Program (MILP) as follows. Define the
and provide numerical examples. In Section IV, we develop'@owing (0,1) variables:

polynomial-time algorithm for finding the worst-case cut. | {1 if (i,7) crosses the cut locatiorr) abovey

1 if (4,7) is removed bycuty (x,y)
0 otherwise

2ij (2, Y) = Ly<(r;—1)a+1 Lyth>(r;—1)a+1s 1)

Section V we present numerical results for worst-case euts4i;i = 0 otherwise
the Pacific Ocean and in Section VI we review our results and

discuss future research directions. . )
{1 if (,7) crosses the cut location) belowy + h

0 otherwise

[I. MODEL AND PROBLEM FORMULATION CA
In this section we present a geographical bipartite netwoor i < 1, the solution to the MILP below is a worst-case

model (in the topological and geographic sense) and assuto

that the cuts are vertical line segments. mapr o
We define thegeometricbipartite graph as follows. It has a L T
width of 1 and height (south-to-north) . The height of a (&:3)
left (west) nodei is denoted byi;. Similarly, the height of a such that
right (east) nodg is denoted by;. Nodes cannot overlap; that (rj—l)z—(y—bL)=uw;—1 Vi,j r; =1
isr; #r; Vi, jandl; #1; Vi, j. Also, the number of nodes (y+h—0UL)—(r;—l)z>di; =1 VYi,j r; >

on the_ IefF side is denoted by, the number of nodes on the li—r))(1—2)— (y—rj)) >uy;—1 Vi,j i >r
right side isR, and the total number of nodesAé. We denote Wth—r)=(s—r) (A=) >dij—1 Vi,j L >rs
a link from; to r; as(i,j). We definep;; as the probability y E iy L) Z i 4] i >y

that link (i,j) exists, ande;; as the capacity of linki, ;) wij +dij > 225 Vi, j
wherec;; € [0,00). In order to avoid considering the trivial x >0
case in which there are no links with positive capacity, we y >0

assume that there exist somend j for which c¢;;p;; > 0. Cd s 0.1
We assume that a disaster results in a vertical line segniént ¢ uijs dij, 25 € {0,1}

of heighth whose lowest point is at poifit, y]. We define this  In general, solving integer programs can be computatignall
cut ascuty (x, y). Such a cut removes all links which intersecintensive. However, the geographical (geometric) nattithe

it. To be clear, in this paper we refer to the start and the éndpmroblem lends itself to relatively low complexity algonitis.

a link as nodes and the start and the end of a cut as endpoihisnce, in Section IV we show that the worst-case cut can
Fig. 1 demonstrates a particular construction of the model abe found by searching over a polynomial number of potential
an example of a cut. cuts.
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Fig. 2.  An example of the fully connected bipartite graphtwit = R = 4. Position along the X-axis
Fig. 4. The maximum number of removed links as a function ef th
25 location of the cut forh = 1.6. Note that there are no ‘stand-out’ local
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Fig. 3. Number of links intersected by a worst-case cuttf (z*,y*)) as
a function of the cut heighth) in a bipartite graph with 15 nodes on each
side.
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1. A M OTIVATING EXAMPLE Fig. 5. The maximum number of removed links as a function f th
. . . . location of the cut forh = 0.1. Note that there are ‘stand-out’ local maxima.
In this section we consider a simple case of a fully con-

nected bipartite graph. We Iét = R (number of nodes is the

same on both sides);; = 1, and¢;; = 1V 4,5. We also . ) ) . )
place nodes evenly on each side such that they are separatéffe used the genetic algorithm in order to obtain solutions
by distancea = h¢/L = he/R. An example is shown in for @ graph with 15 nodes on each side £ R = 15) and
Fig. 2. We first develop a lower bound on the worst-case cut B§th @ =1 (he = 15). Fig. 3 illustrates the results obtained
considering cuts down the center. Then, we provide numieri¢ggarding the number of removed links for each cut height (

results for the bipartite graph optimization problem (1). ~ The resultis nearly identical to the lower bound for the eent
cuts in (2). This implies that a worst-case cut is indeedyike

A. A Lower Bound at the center of the graph.

In this simple model we can bound the worst-case by Next, we study the effect of the horizontal cut location on
looking at worst-case cuts down the center where- 0.5. the number of removed links. For a given cut heighy, the
In the very center of the graph there is an intersectiofVg# ~maximum number of removed links at each horizontal position
links. a/2 units vertically up and down from this point, an(¥) is not decreasing monotonically as we move away from
additional(N/2) — 1 links intersect. Anothen,/2 units up and the center. Figures 4 and 5 illustrate the maximum number
down from these points, anothg¥/2)—2 links intersect. This Of removed links versus the horizontal) (position of the cut
pattern continues until all of the links are included. Ttiere, ©ON the graph withl = R = 15. With h = 1.6 the results
the loss of capacity from a the worst-case cut of height Were relatively monotonic, with the largest cut appearing a

(assuming) < h < h¢) is lower bounded by: the center while the number of removed links more or less
descends from there (Fig. 4). When the cut height is reduced
N L2 N i—1 to 0.1, significant local maxima begin to appear (Fig. 5). It
5 + Z (5 -1-1 2 1) (2) seems the smaller the cut height, the more pronounced these
i=1 local maxima are. This possibly results from large intetisas
B. Intuition from Numerical Results of links crossing at different horizontal locations in theagh.

Small cuts can cut these off-center intersections and reraov

We employ genetic algorithms to solve specific cases pfige number of links but these small cuts are not as effectiv
the optimization problem (1). Since the objective functi@® o sewhere in the graph (where links do not intersect).

many points of discontinuity, we rely on Matlab’s genetic h its ab _ ticall dv theceff
algorithm to find probabfeoptimal solutions (worst-case cuts). e results above motivate us to ana ytu_:a y study thece e
of the cut location on the removed capacity. In the following

2Note that genetic algorithms do not provide definitive ressubue to their sec.tlon, we focus on developing a polynomial-time alganith
probabilistic nature, they only find lower bounds for optation problems. for identifying a worst-case cut.



IV. A WORSTCASE CUT (1w, Ju)

In this section we present an(N°) algorithm for finding a
worst-case cut. The main underlying idea is that the algorit
only needs to consider cuts which have an endpoint on a link
intersection or a node. Before proceeding, we note that the (i, j)
set of all possible cuts is compact and the objective functio . :
takes on a finite number of bounded values. This leads to the

following observation.
; . ; ; ; ig. 6. Example showingi., jo) and (ia, jo)- (fa,jo) is the lowest link
Observation 1:There always exists an optimal solution tq:]tersected by the cut and this intersecton i, e, (i, o) are the

(1) (i.e., a worst-case cut). highest links intersected by the cut and this intersect®oatiz.,, y.,]. Note
Below, we present the algorithm which finds a worst-casew (i, j.) is not unique.
cut. It can be seen that the complexity of Algorithm WCBG

is O(N®). This results from the following facts: (i) links cutn (¥, ya)
are line segments and a pair of line segments can have .\ /.
at most one intersection point, resulting in at motN*) e o

link intersections; (ii) there are two candidate cuts pekli
intersection or node (cuts have two endpoints), and thezefo
the total number of candidate cuts is at mO$tV*); (iii) since
evaluatingl,, <(,, —1,)z,+1; Ly, +h>(r; — 1) +1; (LINE 7) takes

. T y : - - 0o\ fom Fig. 7. Example showing howuty,(z*,y~) is a ‘slid up’ version of
O(l) t!me and it ha_.S to be evaluateg fgr @u])’ fmdmg the cuty (z*, y*). cutp(z*, ya), which has an endpoint on a link intersection,
capacity of a candidate cut tak€§N?=). is guaranteed to intersect every linkit, (z*, y*) does because there exist

no links atz™* from y* to yq.

Algorithm 1 Worst-Case Cut in a Bipartite Graph (WCBG)

1. worstCaseCapacityCut- 0
2: for every node location and link intersectiqny, yi] do

cut

intersect at least one link. This implis,,, j.,) and (ia, jao)

3:  call evaluateCapacityofCut(y, yx) exist for all worst-case cuts.
4:  call evaluateCapacityofCut(y, yr — h) Lemma 1:1f there exists a worst-case cututy(z*,y*),
Procedure evaluateCapacityofCutfx, yx) such that eitheti,, j,,) is not unique (i, jo) is not unique,

5. capacityCut— 0
6: for every (i, ;) do
7 if lykS(T'j*li)warlilyk+’}2(7‘j*li)1‘k+li = 1 then

orz* € {0, 1}, then there exists a worst-case cut which has an
endpoint on a node or link intersection [at', y.,] or [2*, ya].

8: capacityCut— capacityCut+ ¢;;pi; Proof: Assume (iq,ja) is not unique orz* € {0,1}
9: if capacityCut> worstCaseCapacityCuhen ([z*, ya] is @ node or link intersection). Considert, (z*, ya)
100 2" which is a “slid up” version of the worst-case euit, (z*, y*).
Ly = Y cuty, (z*, yo) intersects the same links aaty(z*, y*) since,

12: tCaseC ityCut- ityCut T . :
Worst-aset-apacty capactytu by definition of [z, y.], there exist no links at* from y*

to yo. Thus,cuty (z*,y,) is also a worst-case cut and has an
We now use a number of steps to prove the theorem bel@mdpoint on a node or link intersection. For an example, see
Theorem 1:Algorithm WCBG finds a worst-case cut whichFig. 7. The case wheréi,, j.,) is not unique is analogous

is a solution to the optimization problem in (1). except thatuty, (z*, y, — h), which is a “slid down” version
Before proving the theorem, we introduce some usefof cut,(z*,y*), is considered. ]
terminology and prove two supporting lemmasciit;, (z, y) Lemma 2:If there exists a worst-case cutnty, (z*, y*),

intersects any links, the links which are intersected adbs® such that both(i,, j,) and (i, jo) are unique, then there
the endpoinfz, y] are denoted by:,, j,) and the point where exists a worst-case cut which has an endpoint on a link
they intersect the cut is denoted hy,, y.] (see Fig. 6 for an intersection or node.

example). Let those links which interseatt, (z,y) furthest Proof:

from the endpoint[z,y] be given by (i,,j.) and let the Let yo,(x) = (rjw — liw)z + l;, be the equation ofi., j.)
point where they intersect the cut be given[by,, y.]. Note onz € [0,1]. Let yo(z) = (rjo — lia)z + lin be the equation
that (i, j.) OF (ia,j) Need not be unique. This is becausef (i, j,) onz € [0,1]. Let y;;(z) = (r; — l;)x + I; be the
[Tw,Yu] OF [za,ya) can be a link intersection. It should beequation of(i, j) on z € [0, 1].

noted that since the model assumes that there exists a liniConsider the slopes of,(z) and y,(x). There are two
with p;;c;; > 0 for some: and j, all worst-case cuts mustcases:

1) The slope ofy,(z) is smaller or equal to the slope of

SComputational geometry results can probably be used tcceethe com- (x)
plexity of Algorithm WCBG. Particularly, [5] (based on [3Bnables counting Yo ’
and locating all the intersections of? line segments IO (N2 log N + I) Tjw — liw < Tja — lia
time, wherel is the number of line segment intersections. A modified versi
of the algorithm of [5] can be used within Algorithm WCBG. 2) The slope ofy,(x) is greater or equal to the slope of



cuty, (x/,ya (JJ/)) Seattle
:\ 1 I /: 45- Nedonna

Bandon

40-

* *
cutp (LU Y ) San Francisco

Tokyo
Pusan 35|

San Luis Obisp

Fig. 8. cuty(z*,y*) is a worst-case cut and has a unigie, j.,) and Shanghai
(tas jo)- From this we are able to finduty (', yo(z’)), a worst-case cut s
which has an endpoint on a link intersection.

Latitude

ya(x)- 20r
Tjw - liw Z rja - lia

We consider now the first case. Let: 130E 150E 1708 70w T50W 30w
Approximate Longitude

minz such thatz* <z <1 and

i(r) = x) for any y;; noty, or
T yw( ) ya( ) YYis Yo Fig. 9. Results obtained by the WCBG algorithm for the Pacféean fiber
Yij(r) = yo(x) for anyy;; noty, network found in [1]. The thick segments are locations whares of length
1 if the = above does not exist h =1 (1 degree of latitude) can disconnect at least 3 cables.

Essentially;z’ is the firstz-location afterz* wherey,, (z) or

Yo (z) intersect another link. Ifi,, () or y. () do notintersect the vulnerabilities of a specific fiber network that has a
another link afterr*, thenz’ = 1. bipartite structure. Clearly, the WCBG algorithm can beduse
We now show that’ is anz-location where it is possible to to analyze other networks that have mostly bipartite stmect
cut all the links which interseatut, (z*, y*). Since links are The results were obtained using MATLAB.
line segments, we know(z’) = y(2*)+(2'~2")(r;—1) Vi,j.  We modeled the Pacific Ocean submarine cables as a
Since we knowy,, (z*) < ya(z*) +h (cuty(z*,y*) hits both pipartite graph. We used the Alcatel submarine network map
Yo(z) andya(z)) and (rj, —liw) (2’ —2*) < (1ja —lia) (@'~ found in [1] to identify the nodes and links in the graph. The
a*) (case 1 above and’ — z* > 0), we havey.(z*) + nodes on the left side of the graph are large Asian citieswhic
(rjo = liw)(@" = 27) < ya(2") + (rja — lia)(@" — ") + h.  are connected to these cables. The nodes on the right side of
Thusy,,(z') < ya(z') + h. See Fig. 8. the graph are U.S. west coast cities. We assume two cities are
This meanscuty,(z’, ya(2)) will cut both (iw,jw) and connected by a fiber of unit capacity if there is a submarine
(ia; jo). Since both these links do not intersect another linkher connecting them. We also assume that the fibers follow
onz* <z < ', links which are cut byut,,(z*,y*) are also  strajght lines. We model a cut as a vertical line segment of
cut by cutn (', ya(2")) (they are “trapped” betweefiu,j.) height equal to one degree of latitude60 miles). Such a cut
and(ia, jo) In 2* <z <a'). could represent an underwater earthquake or an intentional
Now we knowcuty (2', ya(z')) is a worst-case cutand = ¢yt by a dragging anchor. We used the WCBG algorithm to
1, [+, ya(2")] is a link intersection, ofz’, ., (z')] is a link iqentify high capacity cuts for this model.
intersection. Therefore, by Lemma 1, we know there exists aFig. 9 presents the results obtained by the algorithm. The
worst-case cut which has an endpoint on a link intersection @k segments in the figure show cuts of lendth= 1 (1
node. _ _ degree of latitude) which cut at least three cables. Thesdtse
The second case follows in an analogous fashion. B 46 inyitive; some cuts simply disconnect nodes (majéesjit
Basically, according to Lemma 2, {fi., j) and (ia;ja) \which have many fibers attached to them (e.g. Tokyo, San
are both unique for a worst-case cut, we can find anothglis opispo, and Bandon). There are also locations in the
worst-case cut such that it has at least one endpoint on a lily_pacific where cuts will disconnect 3 or more links. These
intersection or node (see Fig. 8). represent locations where fibers have been laid over eaeh oth
Using the above lemmas, we now prove Theorem 1. 54 thys make for a more vulnerable area for attack. In the

Proof of Theorem 1Since (i, j.,) @nd (i, jo) €XISLOr £t re we plan to extend the algorithm such that it will deal
all worst-case cuts, Lemmas 1 and 2 imply that we need onjy, general graphs and to obtain numerical results for the
check cuts which have endpoints at nodes or link intersestio.qtinental U_S.
to find a worst-case cut. Algorithm 1 checks all possible sode
and intersections as endpoints, and therefore will nedgssa VI. CONCLUSIONS

find also a worst-case cut. _ o )
Motivated by applications in the area of network robustness

V. NUMERICAL RESULTS and survivability, in this paper, we focused on the problem
In this section we present a numerical result that demoof geographical cuts in a graph, whose nodes and links are
strates the use of the WCBG algorithm. The result highlighlscated in Euclidean space. We provided a preliminary study



of the properties and impact of geographical line segmetst cu
in bipartite graphs. These graphs can represent the fides lin
between the east and west coasts in the U.S. or the fiber links
across an ocean. For that model, we developed a polynomial-
time algorithm for finding a worst-case cut and used it in orde
to obtain numerical results.

Our approach provides a fundamentally new way to look
at network survivability to disasters or attacks that takes
account the geographical correlation between links. Some
future research directions include the design of algorittfion
the case in which nodes can beadrbitrary locations on the
plane and the disaster model includes line segment cutsyin an
direction. In addition, we plan to consider non-linear detg.,
cuts that have various shapes such as circles or rectangles)
more sophisticated metrics for measuring the impact of a cut
as well as the impact of geographical failures on survivable
network designs.
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