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Abstract—Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to human
attacks, such as an electromagnetic pulse (EMP) attack. Such
real-world events have geographical locations, and therefore, the
geographical structure of the network graph affects the impact of
these events. In this paper we focus on assessing the vulnerability
of (geographical) networks to such disasters. In particular, we aim
to identify the location of a disaster that would have the maximum
effect on network capacity. We consider a geometric graph model
in which nodes and links are geographically located on a plane.
Specifically, we model the physical network as a bipartite graph
(in the topological and geographical sense) and consider the set
of all vertical line segment cuts. For that model, we developa
polynomial time algorithm for finding a worst possible cut. Our
approach has the potential to be extended to general graphs and
provides a promising new direction for network design to avert
geographical disasters or attacks.

Index Terms—Network survivability, geographic networks,
Internet, cut capacity, network design, Electromagnetic Pulse
(EMP)

I. I NTRODUCTION

The U.S. military and civilian communications infrastruc-
ture is primarily based on fiber-optic networks. This infrastruc-
ture exists physically and has physical vulnerabilities. Fiber
links and backbone nodes can be destroyed by anything from
electromagnetic pulse (EMP) attacks [8], [12] to dragging
anchors [4], [13]. Such real-world disasters have geographical
locations, and therefore, the geography of the infrastructure
affects the impact of these events. For example, since an EMP
attack can affect electronic components in a large geographic
area, such an attack over a city which is a telecommunications
hub would have a disastrous impact on the U.S. telecommuni-
cations capabilities. Our approach is to gain insight into robust
network design by developing the necessary theory to find the
most geographically vulnerable areas of a network. This can
provide important input to the construction of network design
tools and can support the efforts to mitigate the effects of
regional disasters.

There are several works on the topology of the Internet as
a random graph [2] and on the effect of link failures in these
graphs [7], [10]. However, most of these works are motivated
by failures of routers due to logical attacks (e.g., virusesand

worms), and thereby, focus on the logical Internet topology.
Some works such as [9], [14] model the Internet using geo-
graphical notions. Yet, these works do not consider the effect
of failures that are geographically correlated. Finally, variants
of the network inhibition problem in which a set of links has
to be removed from a graph such that the effect on the graph
will be maximized have been studied in [11] and reviewed
in [6]. Yet, to the best of our knowledge, this problem was
not studied under the assumption of geographically correlated
failures. Since disasters affect a specific geographical area,
they will result in failures of neighboring network components.
Therefore, one has to consider the effect of disasters on the
physical layer rather than on the network layer (i.e., the effect
on the fibers rather than on the logical links). It should be noted
that fibers are subject to regional attacks, such as earthquakes,
floods, and even an EMP attack; as these may affect the
electronic amplifiers that are needed to operate the fiber plant.

Our long-term goal is to understand the effect of a regional
failure on the bandwidth and connectivity of the Internet and
to expose the design tradeoffs related to network survivability
under an attack/disaster with regional implications. In this pa-
per, we are interested in the location of geographical disasters
that maximize the capacity of disconnected links. That is, we
want to identify the worst-case location for a disaster or an
attack.

We focus on a graph model which can serve as an ab-
straction of the U.S. fiber plant, the transpacific fiber links,
or the transatlantic fiber links. In this model, nodes, links,
and cuts are geographically located on a plane. We consider
a bipartite graph (in the topological and geographical sense)
which is analogous to the east and west coasts of the U.S.,
where nodes on the left and right sides of the graph represent
west and east coast cities (respectively).1 Since the continental
U.S. has a width that is greater than its height, vertical disasters
seemingly cut mostly east-west links. Therefore, and since
vertical line segment cuts are somewhat simpler to analyze,
we focus in this paper on such cuts.

Under this model, we study the effect of a north-south

1Similarly, nodes can represent major cities on both sides ofan ocean.
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Fig. 1. A bipartite network and an example of a cut

regional disaster on the east-west capacity of the network.
We assume that a vertical regional disaster (e.g., a tornado)
affects the electronic components of the network within a
certain region. Hence, the fibers that pass through that region
are effectively cut due to such a disaster. The more commu-
nication links a vertical cut intersects, the greater the effect
on the communication capacity between the east and west
coasts. We start by considering a simple case of the bipartite
model and providing motivating examples. We then present a
polynomial time algorithm for finding the location of a cut
which maximizes the expected capacity of the removed links.

The rest of the paper is organized as follows. In Section II,
we introduce the network model and formulate the problem.
In Section III, we consider a simple case of the bipartite model
and provide numerical examples. In Section IV, we develop a
polynomial-time algorithm for finding the worst-case cut. In
Section V we present numerical results for worst-case cuts in
the Pacific Ocean and in Section VI we review our results and
discuss future research directions.

II. M ODEL AND PROBLEM FORMULATION

In this section we present a geographical bipartite network
model (in the topological and geographic sense) and assume
that the cuts are vertical line segments.

We define thegeometricbipartite graph as follows. It has a
width of 1 and height (south-to-north) ofhG. The height of a
left (west) nodei is denoted byli. Similarly, the height of a
right (east) nodej is denoted byrj . Nodes cannot overlap; that
is ri 6= rj ∀ i, j and li 6= lj ∀ i, j. Also, the number of nodes
on the left side is denoted byL, the number of nodes on the
right side isR, and the total number of nodes isN . We denote
a link from li to rj as (i, j). We definepij as the probability
that link (i, j) exists, andcij as the capacity of link(i, j)
wherecij ∈ [0,∞). In order to avoid considering the trivial
case in which there are no links with positive capacity, we
assume that there exist somei and j for which cijpij > 0.
We assume that a disaster results in a vertical line segment cut
of heighth whose lowest point is at point[x, y]. We define this
cut ascuth(x, y). Such a cut removes all links which intersect
it. To be clear, in this paper we refer to the start and the end of
a link as nodes and the start and the end of a cut as endpoints.
Fig. 1 demonstrates a particular construction of the model and
an example of a cut.

There are many ways to define a loss of communication
capacity in a network. For simplicity, we define a worst-case
cut as follows.

Definition 1 (Worst-Case Cut):A worst-case cut, denoted
by cuth(x∗, y∗), is a cut which maximizes the total expected
capacity of the intersected links.

It should be noted that because this is a bipartite graph set-
ting, a worst-case cut is also one which minimizes maximum
flow between the two sides.

In order to formulate an optimization problem which finds
a worst-case cut, we define the following(0, 1) variables:

zij(x, y) =

{

1 if (i, j) is removed bycuth(x, y)

0 otherwise

Given a cut height, link probabilities, and capacities, the
solution to the optimization problem below is an endpoint of
the worst-case cut.

max
∑

(i,j) pijcijzij(x, y)

such that

0 ≤ x ≤ 1

−h ≤ y ≤ hG

zij(x, y) = 1y≤(rj−li)x+li1y+h≥(rj−li)x+li (1)

The above optimization problem can be formulated as a
Mixed Integer Linear Program (MILP) as follows. Define the
following (0,1) variables:

uij =

{

1 if (i, j) crosses the cut location (x) abovey

0 otherwise

dij =

{

1 if (i, j) crosses the cut location (x) below y + h

0 otherwise

For hG ≤ 1, the solution to the MILP below is a worst-case
cut.

max
∑

(i,j)

pijcijzij

such that

(rj − li)x − (y − li) ≥ uij − 1 ∀i, j rj ≥ li

(y + h − li) − (rj − li)x ≥ dij − 1 ∀i, j rj ≥ li

(li − rj)(1 − x) − (y − rj) ≥ uij − 1 ∀i, j li > rj

(y + h − rj) − (li − rj)(1 − x) ≥ dij − 1 ∀i, j li > rj

uij + dij ≥ 2zij ∀i, j

x ≥ 0

y ≥ 0

uij , dij , zij ∈ {0, 1}

In general, solving integer programs can be computationally
intensive. However, the geographical (geometric) nature of the
problem lends itself to relatively low complexity algorithms.
Hence, in Section IV we show that the worst-case cut can
be found by searching over a polynomial number of potential
cuts.
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Fig. 2. An example of the fully connected bipartite graph with L = R = 4.
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Fig. 3. Number of links intersected by a worst-case cut (cuth(x∗, y∗)) as
a function of the cut height (h) in a bipartite graph with 15 nodes on each
side.

III. A M OTIVATING EXAMPLE

In this section we consider a simple case of a fully con-
nected bipartite graph. We letL = R (number of nodes is the
same on both sides),pij = 1, and cij = 1 ∀ i, j. We also
place nodes evenly on each side such that they are separated
by distancea = hG/L = hG/R. An example is shown in
Fig. 2. We first develop a lower bound on the worst-case cut by
considering cuts down the center. Then, we provide numerical
results for the bipartite graph optimization problem (1).

A. A Lower Bound

In this simple model we can bound the worst-case by
looking at worst-case cuts down the center wherex = 0.5.
In the very center of the graph there is an intersection ofN/2
links. a/2 units vertically up and down from this point, an
additional(N/2)−1 links intersect. Anothera/2 units up and
down from these points, another(N/2)−2 links intersect. This
pattern continues until all of the links are included. Therefore,
the loss of capacity from a the worst-case cut of heighth
(assuming0 < h ≤ hG) is lower bounded by:

N

2
+

b 2h
a
c

∑

i=1

(
N

2
− 1 − b

i − 1

2
c). (2)

B. Intuition from Numerical Results

We employ genetic algorithms to solve specific cases of
the optimization problem (1). Since the objective functionhas
many points of discontinuity, we rely on Matlab’s genetic
algorithm to find probable2 optimal solutions (worst-case cuts).

2Note that genetic algorithms do not provide definitive results. Due to their
probabilistic nature, they only find lower bounds for optimization problems.
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Fig. 4. The maximum number of removed links as a function of the x-
location of the cut forh = 1.6. Note that there are no ‘stand-out’ local
maxima.
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Fig. 5. The maximum number of removed links as a function of the x-
location of the cut forh = 0.1. Note that there are ‘stand-out’ local maxima.

We used the genetic algorithm in order to obtain solutions
for a graph with 15 nodes on each side (L = R = 15) and
with a = 1 (hG = 15). Fig. 3 illustrates the results obtained
regarding the number of removed links for each cut height (h).
The result is nearly identical to the lower bound for the center
cuts in (2). This implies that a worst-case cut is indeed likely
at the center of the graph.

Next, we study the effect of the horizontal cut location on
the number of removed links. For a given cut height (h), the
maximum number of removed links at each horizontal position
(x) is not decreasing monotonically as we move away from
the center. Figures 4 and 5 illustrate the maximum number
of removed links versus the horizontal (x) position of the cut
on the graph withL = R = 15. With h = 1.6 the results
were relatively monotonic, with the largest cut appearing at
the center while the number of removed links more or less
descends from there (Fig. 4). When the cut height is reduced
to 0.1, significant local maxima begin to appear (Fig. 5). It
seems the smaller the cut height, the more pronounced these
local maxima are. This possibly results from large intersections
of links crossing at different horizontal locations in the graph.
Small cuts can cut these off-center intersections and remove a
large number of links but these small cuts are not as effective
elsewhere in the graph (where links do not intersect).

The results above motivate us to analytically study the effect
of the cut location on the removed capacity. In the following
section, we focus on developing a polynomial-time algorithm
for identifying a worst-case cut.
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IV. A W ORST-CASE CUT

In this section we present anO(N6) algorithm for finding a
worst-case cut. The main underlying idea is that the algorithm
only needs to consider cuts which have an endpoint on a link
intersection or a node. Before proceeding, we note that the
set of all possible cuts is compact and the objective function
takes on a finite number of bounded values. This leads to the
following observation.

Observation 1:There always exists an optimal solution to
(1) (i.e., a worst-case cut).

Below, we present the algorithm which finds a worst-case
cut. It can be seen that the complexity of Algorithm WCBG
is O(N6). This results from the following facts: (i) links
are line segments and a pair of line segments can have
at most one intersection point, resulting in at mostO(N4)
link intersections; (ii) there are two candidate cuts per link
intersection or node (cuts have two endpoints), and therefore,
the total number of candidate cuts is at mostO(N4); (iii) since
evaluating1yk≤(rj−li)xk+li1yk+h≥(rj−li)xk+li (Line 7) takes
O(1) time and it has to be evaluated for all(i, j), finding the
capacity of a candidate cut takesO(N2).3

Algorithm 1 Worst-Case Cut in a Bipartite Graph (WCBG)
1: worstCaseCapacityCut← 0
2: for every node location and link intersection[xk, yk] do
3: call evaluateCapacityofCut(xk, yk)
4: call evaluateCapacityofCut(xk, yk − h)

Procedure evaluateCapacityofCut(xk, yk)
5: capacityCut← 0
6: for every (i, j) do
7: if 1yk≤(rj−li)xk+li

1yk+h≥(rj−li)xk+li
= 1 then

8: capacityCut← capacityCut+ cijpij

9: if capacityCut≥ worstCaseCapacityCutthen
10: x∗

← xk

11: y∗
← yk

12: worstCaseCapacityCut← capacityCut

We now use a number of steps to prove the theorem below.
Theorem 1:Algorithm WCBG finds a worst-case cut which

is a solution to the optimization problem in (1).
Before proving the theorem, we introduce some useful

terminology and prove two supporting lemmas. Ifcuth(x, y)
intersects any links, the links which are intersected closest to
the endpoint[x, y] are denoted by(iα, jα) and the point where
they intersect the cut is denoted by[xα, yα] (see Fig. 6 for an
example). Let those links which intersectcuth(x, y) furthest
from the endpoint[x, y] be given by (iω, jω) and let the
point where they intersect the cut be given by[xω, yω]. Note
that (iω, jω) or (iα, jα) need not be unique. This is because
[xω , yω] or [xα, yα] can be a link intersection. It should be
noted that since the model assumes that there exists a link
with pijcij > 0 for somei and j, all worst-case cuts must

3Computational geometry results can probably be used to reduce the com-
plexity of Algorithm WCBG. Particularly, [5] (based on [3]), enables counting
and locating all the intersections ofN2 line segments inO(N2 log N + I)
time, whereI is the number of line segment intersections. A modified version
of the algorithm of [5] can be used within Algorithm WCBG.

(iω, jω)(iω, jω)

(iα, jα)

[xω, yω]

[xα, yα]

cut

Fig. 6. Example showing(iω , jω) and(iα, jα). (iα, jα) is the lowest link
intersected by the cut and this intersection is at[xα, yα]. (iω , jω) are the
highest links intersected by the cut and this intersection is at [xω, yω]. Note
how (iω , jω) is not unique.

cuth(x∗, y∗)

cuth(x∗, yα)

Fig. 7. Example showing howcuth(x∗, yα) is a ‘slid up’ version of
cuth(x∗, y∗). cuth(x∗, yα), which has an endpoint on a link intersection,
is guaranteed to intersect every linkcuth(x∗, y∗) does because there exist
no links atx∗ from y∗ to yα.

intersect at least one link. This implies(iω, jω) and (iα, jα)
exist for all worst-case cuts.

Lemma 1: If there exists a worst-case cut,cuth(x∗, y∗),
such that either(iω, jω) is not unique,(iα, jα) is not unique,
or x∗ ∈ {0, 1}, then there exists a worst-case cut which has an
endpoint on a node or link intersection at[x∗, yω] or [x∗, yα].

Proof: Assume(iα, jα) is not unique orx∗ ∈ {0, 1}
([x∗, yα] is a node or link intersection). Considercuth(x∗, yα)
which is a “slid up” version of the worst-case cutcuth(x∗, y∗).
cuth(x∗, yα) intersects the same links ascuth(x∗, y∗) since,
by definition of [xα, yα], there exist no links atx∗ from y∗

to yα. Thus,cuth(x∗, yα) is also a worst-case cut and has an
endpoint on a node or link intersection. For an example, see
Fig. 7. The case where(iω, jω) is not unique is analogous
except thatcuth(x∗, yω − h), which is a “slid down” version
of cuth(x∗, y∗), is considered.

Lemma 2: If there exists a worst-case cut,cuth(x∗, y∗),
such that both(iω, jω) and (iα, jα) are unique, then there
exists a worst-case cut which has an endpoint on a link
intersection or node.

Proof:
Let yω(x) = (rjω − liω)x + liω be the equation of(iω, jω)

on x ∈ [0, 1]. Let yα(x) = (rjα − liα)x + liα be the equation
of (iα, jα) on x ∈ [0, 1]. Let yij(x) = (rj − li)x + li be the
equation of(i, j) on x ∈ [0, 1].

Consider the slopes ofyω(x) and yα(x). There are two
cases:

1) The slope ofyω(x) is smaller or equal to the slope of
yα(x).

rjω − liω ≤ rjα − liα

2) The slope ofyω(x) is greater or equal to the slope of

4



replacements

cuth(x∗, y∗)

cuth(x′, yα(x′))

Fig. 8. cuth(x∗, y∗) is a worst-case cut and has a unique(iω , jω) and
(iα, jα). From this we are able to findcuth(x′, yα(x′)), a worst-case cut
which has an endpoint on a link intersection.

yα(x).
rjω − liω ≥ rjα − liα

We consider now the first case. Let:

x′ =



















min x such thatx∗ ≤ x ≤ 1 and

yij(x) = yα(x) for any yij not yα or

yij(x) = yω(x) for any yij not yω

1 if the x above does not exist

Essentially,x′ is the firstx-location afterx∗ whereyω(x) or
yα(x) intersect another link. Ifyω(x) or yα(x) do not intersect
another link afterx∗, thenx′ = 1.

We now show thatx′ is anx-location where it is possible to
cut all the links which intersectcuth(x∗, y∗). Since links are
line segments, we knowy(x′) = y(x∗)+(x′−x∗)(rj−li) ∀i, j.
Since we knowyω(x∗) ≤ yα(x∗) + h

(

cuth(x∗, y∗) hits both
yω(x) andyα(x)

)

and(rjω − liω)(x′−x∗) ≤ (rjα − liα)(x′−
x∗)

(

case 1 above andx′ − x∗ ≥ 0
)

, we haveyω(x∗) +
(rjω − liω)(x′ − x∗) ≤ yα(x∗) + (rjα − liα)(x′ − x∗) + h.
Thusyω(x′) ≤ yα(x′) + h. See Fig. 8.

This meanscuth(x′, yα(x′)) will cut both (iω, jω) and
(iα, jα). Since both these links do not intersect another link
on x∗ ≤ x < x′, links which are cut bycuth(x∗, y∗) are also
cut by cuth(x′, yα(x′)) (they are “trapped” between(iω, jω)
and (iα, jα) in x∗ ≤ x < x′).

Now we knowcuth(x′, yα(x′)) is a worst-case cut andx′ =
1, [x′, yα(x′)] is a link intersection, or[x′, yω(x′)] is a link
intersection. Therefore, by Lemma 1, we know there exists a
worst-case cut which has an endpoint on a link intersection or
node.

The second case follows in an analogous fashion.
Basically, according to Lemma 2, if(iω, jω) and (iα, jα)

are both unique for a worst-case cut, we can find another
worst-case cut such that it has at least one endpoint on a link
intersection or node (see Fig. 8).

Using the above lemmas, we now prove Theorem 1.
Proof of Theorem 1:Since(iω, jω) and(iα, jα) exist for

all worst-case cuts, Lemmas 1 and 2 imply that we need only
check cuts which have endpoints at nodes or link intersections
to find a worst-case cut. Algorithm 1 checks all possible nodes
and intersections as endpoints, and therefore will necessarily
find also a worst-case cut.

V. NUMERICAL RESULTS

In this section we present a numerical result that demon-
strates the use of the WCBG algorithm. The result highlights
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Fig. 9. Results obtained by the WCBG algorithm for the PacificOcean fiber
network found in [1]. The thick segments are locations wherecuts of length
h = 1 (1 degree of latitude) can disconnect at least 3 cables.

the vulnerabilities of a specific fiber network that has a
bipartite structure. Clearly, the WCBG algorithm can be used
to analyze other networks that have mostly bipartite structure.
The results were obtained using MATLAB.

We modeled the Pacific Ocean submarine cables as a
bipartite graph. We used the Alcatel submarine network map
found in [1] to identify the nodes and links in the graph. The
nodes on the left side of the graph are large Asian cities which
are connected to these cables. The nodes on the right side of
the graph are U.S. west coast cities. We assume two cities are
connected by a fiber of unit capacity if there is a submarine
fiber connecting them. We also assume that the fibers follow
straight lines. We model a cut as a vertical line segment of
height equal to one degree of latitude (∼60 miles). Such a cut
could represent an underwater earthquake or an intentional
cut by a dragging anchor. We used the WCBG algorithm to
identify high capacity cuts for this model.

Fig. 9 presents the results obtained by the algorithm. The
thick segments in the figure show cuts of lengthh = 1 (1
degree of latitude) which cut at least three cables. These results
are intuitive; some cuts simply disconnect nodes (major cities)
which have many fibers attached to them (e.g. Tokyo, San
Luis Obispo, and Bandon). There are also locations in the
mid-Pacific where cuts will disconnect 3 or more links. These
represent locations where fibers have been laid over each other
and thus make for a more vulnerable area for attack. In the
future we plan to extend the algorithm such that it will deal
with general graphs and to obtain numerical results for the
continental U.S.

VI. CONCLUSIONS

Motivated by applications in the area of network robustness
and survivability, in this paper, we focused on the problem
of geographical cuts in a graph, whose nodes and links are
located in Euclidean space. We provided a preliminary study
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of the properties and impact of geographical line segment cuts
in bipartite graphs. These graphs can represent the fiber links
between the east and west coasts in the U.S. or the fiber links
across an ocean. For that model, we developed a polynomial-
time algorithm for finding a worst-case cut and used it in order
to obtain numerical results.

Our approach provides a fundamentally new way to look
at network survivability to disasters or attacks that takesinto
account the geographical correlation between links. Some
future research directions include the design of algorithms for
the case in which nodes can be inarbitrary locations on the
plane and the disaster model includes line segment cuts in any
direction. In addition, we plan to consider non-linear cuts(e.g.,
cuts that have various shapes such as circles or rectangles),
more sophisticated metrics for measuring the impact of a cut,
as well as the impact of geographical failures on survivable
network designs.
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