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Abstract. - We introduce a model for dynamic networks, where the links or the strengths of the
links change over time. We solve the model by mapping dynamic networks to the problem of
directed percolation, where the direction corresponds to the time evolution of the network. We
show that the dynamic network undergoes a percolation phase transition at a critical concentra-
tion pc, that decreases with the rate r at which the network links are changed. The behavior
near criticality is universal and independent of r. We find that for dynamic random networks
fundamental laws are changed. (i) The size of the giant component at criticality scales with the
network size N for all values of r, rather than as N2/3 in static networks. (ii) In the presence of a
broad distribution of disorder, the optimal path length between two nodes in a dynamic network
scales as N1/2, compared to N1/3 in a static network.

Network theory has answered many questions concern-
ing static networks [1–14], but many real networks are dy-
namic in the sense that their links, or the strengths of their
links, change with time. For example, in social networks
friendships are formed and dissolved, while in communi-
cation networks, such as the Internet, the load (weight)
on the links changes continually. Models for dynamic net-
works have been studied in the context of epidemic models
in biology [15], as well as for routing and gossiping algo-
rithms in computer science [16, 17]. In social networks,
dynamic models such as the reciprocity model and the
actor oriented model [18–21], include rate and objective
functions that allow to control and optimize the changes
in the network.

In this manuscript we focus on the general physical as-
pects of dynamic networks. Fundamental questions that
have been extensively studied in static networks are still
open for dynamic networks. Here we ask: (i) Does the
dynamic network undergo a percolation phase transition,
above which order N of the network nodes are still con-
nected and below which the network breaks into small
clusters? (ii) If so, what is the critical concentration of
links for which the transition occurs, and how does it de-
pend on the dynamics? (iii) What are the properties near
criticality?

We start with a definition for a percolation process. In
a percolation process on a network each link can be tra-

versed with some probability p. Under this restriction, all
the nodes that can be reached by a walker located on an
initial node, are regarded as one cluster. At the critical
percolation threshold p = pc a second order percolation
transition occurs. For p > pc, a spanning cluster exists,
and thus, a walker traversing the network is able to reach
an order N of the network nodes. For p < pc the network
collapses into small clusters and the walker is trapped in-
side a small cluster [5,6,22–24]. Directed percolation (DP)
is a special kind of percolation in which the walker is lim-
ited to advance only in a specific direction that is defined
to be the longitudinal axis [26, 27].

Consider an N -node network with M links where each
link has a weight w chosen from a given distribution. A
unit time step is defined as the time required for a walker
to traverse a single link. At the end of each time step the
links are rewired with probability r (Fig. 1(a)). Without
loss of generality [25], we assume that a walker traversing
the network must advance to a new node at the beginning
of each time step. If at some stage he is not able to do so
he is removed from the network. Now, even if there is no
path between nodes A and B at a specific time, a walker
traversing the network may be able to pass from point
A to point B because new links continuously appearing.
Likewise, even if a path between A and B exists at a given
time it may be disconnected before a walker is able to
traverse it (Fig. 1(a)). Moreover, even if a path between
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Fig. 1: (a) (a) A five-node dynamic network at different time
steps. The solid (red) links compose the shortest path between
A and E (see (b)). (b) The y axis corresponds to the time
dimension and each successive layer of two rows corresponds
to a network configuration at a different time step (as shown in
(a)) The solid (red) line is the optimal path (sum of its weights
is minimal) between node A and node E, even though a shorter
path exists, shown as a (black) dashed line. Note, that not all
links from (a) are presented, only the links leading from A to
E.

two nodes always exists, the optimal path between the
two nodes (the path along which the sum of the weights is
minimal) may change. Fig. 1(b) demonstrates a scenario
where the path between node A and E after four steps is
the optimal path, rather than the shorter path between
the nodes after two steps.

In a percolation process on a dynamic network, after
the links are rewired on each step, each link is set to be
traversable with probability p. We now argue that per-
colation on a dynamic network is equivalent to the prob-
lem of directed percolation (DP) in infinite dimensions
[26, 27]. To show this, the time evolution of the network
is represented by adding another axis, which corresponds
to a time axis. In this extended representation, every two
successive rows along the time axis represent a layer that
corresponds to a network configuration at a different time
step [Fig. 1(b)]. As a result, each node in the original
network is represented as a set of nodes (one for each
time step) in the extended representation. In a perco-
lation process on such a network representation a walker
is restricted to advance only in one direction - along the
time axis [Figs. 1(a) and 1(b)] and therefore the perco-
lation process is actually a directed percolation where the
time t is equivalent to step t in directed percolation. This
correspondence between dynamic networks and DP not
only gives a meaning to DP in networks but more impor-
tantly allows us to apply the results known from DP at
criticality to dynamic networks.
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Fig. 2: (Color online) (a) Simulation results for the survivabil-
ity P (t) and its cutoff, at criticality, for dynamic networks of
different network sizes. From left to right: N = 100, 400, 1600,
6400, 25600. (b) The data collapse shown demonstrates that
P (t) in dynamic networks is universal when t is scaled by N1/2.

Networks can be regarded as infinite dimensional struc-
tures since no spatial constraints exist. Therefore since our
mapping is exact, we expect that at pc the critical prop-
erties of dynamic networks be the same as DP in infinite
dimensions. The relevant critical properties for DP are
[26,27]: S(t), the giant component size, scales as S(t) ∼ t2

and P (t), the survivability (the probability of reaching
layer t when growing a cluster), scales as P (t) ∼ t−1. Fig-
ures 2(a)-(b) and 3(a) present simulation results showing
that for dynamic networks we observe these scaling rela-
tions.
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Fig. 3: (a) The cluster size, S(t), at criticality scales as t2. (b)
Simulation results (dots) supporting the relation S(N) ∼ N
(Eq. 3) (upper dashed line), the cluster size in dynamic net-
works, compared to the known S(N) ∼ N2/3 (bottom dashed
line), the cluster size in static networks.

To learn about the size-dependent properties of dynamic
networks we determine the DP properties as a function of
the network size N , rather than as a function of t. In DP
at criticality, the infinite dimensional relationship between
w, the width in the transverse axes, and t, the length in
the longitudinal axes, is w ∼ t1/2. The upper critical
dimension dc is the lowest dimension for which the system
has the DP properties of an infinite dimensional system.
For DP this value is dc = 4 + 1 (1 corresponds to the
longitudinal axis), so the relation between the system size
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at the upper critical dimension and the size of a dynamic
network is given by N ∼ w4 (the power 4 comes from the 4
transverse dimensions of dc). Since w ∼ t1/2 we conclude
that:

t ∼ N1/2. (1)

Therefore for a dynamic network of size N at criticality,
the survivability P (t) decays exponentially after a time t×
with t× ∼ N1/2 [28], as shown in Figure 2(b).
Figure 2(a) shows that for different values of N and

t < t× ∼ N1/2, P (t) ∼ t−1, as expected from DP in
infinite dimensions. The exponential decay for t > t× can
also be seen, in agreement with Eq. (1). Fig. 2(b) shows
the collapse of survivability data after scaling by N1/2,
supporting again Eq. (1).
The size of the giant component S(N), at criticality, is

derived by substituting Eq. (1) in the DP relation S(t) ∼
t2.

S(N) ∼ N. (2)

Figure 3(b) presents simulation results for dynamic net-
works supporting this scaling relationship, compared to
the known relationship for static networks, where S(N)
scale as S(N) ∼ N2/3 [22, 23]. The two systems clearly
have different behavior and properties at criticality, and
thus belong to two different universality classes. Fig. 4(b)
and Fig. 4(d) present simulation results for S(N) at dif-
ferent values of p indicating that the dynamic network
undergoes a phase transition at some critical value of p.
We find that the behavior of dynamic networks at crit-

icality is universal and independent of the rate r in which
the links are rewired (Fig. 4(c)). However, the critical con-
centration, pc, for which the percolation phase transition
occurs depends on r [Fig. 4(a)].
The dependence of pc on r can be explained as follows:

For simplicity assume that instead of rewiring a rate r
of the links on each step, all the links are rewired on a
percentage r of the steps and no links are rewired on 1− r
of the steps. Consider a node i reached by following a link.
If there has been a rewiring after traversing this link then
the node now has k links to neighbors, chosen randomly
from the degree distribution. Each of these links can be
traversed with probability p, and therefore the average
branching factor [29] is 〈kp〉 = p〈k〉.
Now suppose there has been no rewiring after travers-

ing a link. In ER networks, each node has on average
p〈k〉 outgoing neighbors as before in addition to the link
through which it arrived that points to its parent (see
note [30]). Links to the parent node, however, exist for
all nodes reached from the same parent (siblings). The
number of neighbors, x, of the parent, excluding node i, is
Poisson distributed with mean 〈k〉. Assuming node i has
already reached its parent the other k siblings each have
a probability p to be reached and then a probability p to
return. Thus, the number of neighbors, x, that can return
to the parent is binomially distributed as

P (x) =

(

k

x

)

p2x(1− p2)x .

When calculating the branching factor at each step we
should count the parent node only once. The contribution
of the link back to the parent to the branching factor of
each of the parents sibling is therefore inverse to the to-
tal number of siblings. The average contribution of each
sibling with degree k is

〈

1

x+ 1

〉

k

=

k
∑

x=0

(

k

x

)

p2x(1− p2)x

x+ 1
=

1− (1− p2)k+1

(k + 1)p2
.

Using the fact that x is Poisson distributed, the average
contribution is

〈

1

x+ 1

〉

=

∞
∑

k=0

〈

1

x+ 1

〉

k

e−〈k〉〈k〉k

k!

=
1− e−p2〈k〉

p2〈k〉
≡ f(p) .

After n steps, we have on average nr steps with rewiring
and n(1 − r) steps without rewiring. Thus, the total
branching factor is

(p〈k〉)nr(p〈k + f(p)〉)n(1−r).

For the process to be at criticality, this factor should be
1, leading to

pc〈k〉g(pc) = 1 , (3)

where
g(pc) = [1 + f(pc)/〈k〉]

1−r . (4)

Fig. 4(a) compares simulation results with the numerical
solution of Eq.( 3).

The correspondence of dynamic networks to DP can also
predict the general scaling of the optimal path in a dy-
namic network with a broad distribution of disorder. In
the limit of a broad distribution of disorder, Ref. [31] has
shown that, at criticality, the optimal path exists mainly
along the giant cluster. Therefore for static networks
the optimal path length scales with the average distance
between nodes on the percolation cluster: ℓopt ∼ N1/3

[31]. In our dynamic network model the average dis-
tance between nodes on the percolation cluster scales as
〈ℓ〉 ∼ N1/2 (the average path length is dominated by the
typical length [Eq. (1)]), suggesting that in dynamic ER
networks the optimal path scales as

ℓopt ∼ N1/2. (5)

Figure 5 shows simulation results for the scaling of the op-
timal path length with N in a dynamic network compared
to a static network. The results for dynamic networks are
in full agreement with Eq. (5).

What makes the results in a dynamic network so differ-
ent from the static case? The difference lies in the larger
number of available configurations. While in static net-
works the percolation cluster is composed from paths built
from N network nodes, in dynamic networks the network
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Fig. 4: (a) Simulation fit to the formula of pc for a network
with 〈k〉 = 3, as a function of the rate r at which the links are
rewired. The value of pc was calculated by finding the value of
p for which S(N) gives a straight line. (b) Simulation results
for S(N) in a network with 〈k〉 = 3 and r = 2/3 are presented
for different values of p showing that the network undergoes a
phase transition at pc. (c) The value of S(N) at pc for several
different values of r that all collapse to one line. In all cases the
slope equals 1 as predicted by the critical exponent for dynamic
networks. (d) The slope between every two consecutive points
in (b). The slope decreases below pc, increases above pc and is
a constant equal to 1 at pc.

is represented by N ′ = N3/2 nodes [32]. The evolution
of the network over time generates many more possible
configurations, enabling the percolation cluster to become
much larger. Substituting N with N ′ in the known perco-
lation cluster formula for static networks, S(N) ∼ N2/3,
yields S(N ′) ∼ S(N3/2) ∼ N , which further confirms our
results for S(N) in dynamic networks.

The same explanation is true also for the optimal path,
where a longer and more optimal path is available due
to the increased number of available configurations. For
example, an optimal path reaching some node A may find
it optimal not to advance to the near neighbor B at the
next step but rather to first visit C and only then come
back to B since at the later time node B is more optimally
connected to the destination node.

Representing a dynamic network as a directed network
[Fig. 2(a)] composed of N ′ = N3/2 nodes allows the
“same” node to be counted more then once in the per-
colation cluster, therefore raising the question if the dis-
tinct number of nodes on the percolation cluster also scales
with N . To determine the number of different nodes of the
original network in a component of size M on the directed
network, consider the following argument: The links be-
tween consecutive layers of the directed network are chosen
randomly. Therefore, each link leads to a random node in

the original network independently and with uniform dis-
tribution. After λ links have been followed, assume that
Dλ nodes have already been visited. The probability to
reach a new node by following the next link, is therefore
1 − Dλ/N . Thus, Dλ+1 = Dλ with probability Dλ/N ,
and Dλ+1 = Dλ + 1 with probability 1 − Dλ/N . The
expected number of distinct nodes E(D) reached after λ
links have been followed from the starting node is there-
fore E(Dλ+1) = E(Dλ−1)+E(1−Dλ−1/N). This reduces
to E(Dλ+1) = 1 + (1 − 1/N)E(Dλ) which indicates that
for large λ

E(DM )

N
= 1−

(

1−
1

N

)M

≈ 1− eM/N . (6)

Thus, when the size of a component in the directed net-
work is of order N a finite fraction of the visited nodes are
new and the size of the induced component on the original
network is also of order N .
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Fig. 5: The optimal path for strong disorder scales as ℓopt(N) ∼
N1/2 in dynamic networks compared to ℓopt(N) ∼ N1/3 in
static networks.

In summary, we introduced a model for dynamic net-
works which was solved by mapping the model to directed
percolation in 4+1 dimensions. The DP longitudinal axis
is mapped to the time axis along which the dynamic net-
work evolves. We showed that dynamic networks exhibit
different properties and critical exponents near critical-
ity. Therefore they belong to a different universality class
than static networks. While in static networks, S(N),
the size of the giant component at criticality, scales as
S(N) ∼ N2/3, in dynamic networks S(N) ∼ N . Even
though the properties of dynamic networks are univer-
sal and independent of the rate r at which the links are
changed, the critical concentration, pc, for which the phase
transition occurs depends on r. We also showed that the
optimal path in dynamic networks scales as ℓopt ∼ N1/2,
compared to ℓopt ∼ N1/3 in static networks.
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