
1

Transport Layer End-to-End Error Correcting
Tal Anker, Reuven Cohen and Danny Dolev

Abstract— In this paper we study the advantages and
disadvantages of incorporating error correction schemes
inside the TCP transport layer protocol. We show that
under some circumstances, this scheme achieves better
performance than that of retransmission schemes, and, in
particular, the TCP-SACK scheme. We analyze the per-
formance of both schemes and discuss the circumstances
under which the error correction scheme is favorable.

I. I NTRODUCTION

Several suggestions have been raised for the inclusion
of error correcting codes in the transport layer [1]. These
suggestions have focused on the utility of this approach
mainly in multicasting and broadcasting. Here, we wish
to establish the idea that the changes in communication
and computer hardware make it very beneficial to include
an error correcting scheme in the transport layer.

Most computers today are capable of executing about
109 instructions per second, and adding extra processing
power is cheap relative to the total cost of a web server.
This processing power enables execution of several in-
structions per communicated byte, without a noticeable
effect on the CPU load. A simple error correcting
scheme, such as adding a XOR of a block of packets as
an extra packet to the block, can easily be applied to the
setup of most modern computers’ CPU, without affecting
memory limitations. Furthermore, for static data, such
as static web pages, the error correcting data can be
prepared and stored in advance, thus requiring no extra
processing while sending the information.

The use of error correction in the transport layer has
several advantages over other approaches. It allows the
inclusion of error correction without rewriting applica-
tions. It requires only the end stations to handle the
error correction code, adding no additional processing to
routers or switches. Also, it allows gradual incorporation
into the network, by adding a possible negotiation option

Tal Anker is with Radlan inc. and the School of Engineering
and Computer Science, Hebrew University, Jerusalem, Israel. Email:
tala@radlan.com

Reuven Cohen is with the Dept. of Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot, Israel. Email:
cohenr@shoshi.ph.biu.ac.il

Danny Dolev is with the School of Engineering and Com-
puter Science, Hebrew University, Jerusalem, Israel. Email:
dolev@cs.huji.ac.il

to the TCP connection and requiring no changes in net-
work elements along the communication path between
the two endpoints. The transparency of this change to
other communication layers allows efficient and easy
coding, and enables the implementation in either soft-
ware or hardware with a simple design.

Several advantages exist for the use of error cor-
rection over the approach of re-sending lost packets
(most notably implemented by the TCP-SACK protocol).
The re-sending approach requires a lower quantity of
data to be sent, since it induces only the necessary
redundancy. However, a single packet loss blocks the
window until it is recovered and acknowledged. This
limits the size of the window in case errors are present,
whereas if error correcting is utilized most errors can be
corrected without requiring re-sending. Furthermore, for
high delay connections, e.g., an intercontinental cable
or a satellite connection, the round trip time becomes
very high, leading to long time-outs while waiting for
acknowledgments1. This, in turn, is pronounced in both
long delays in the sending of files and in nonuniform
performance and delay, most notably inappropriate for
multimedia communication.

In this paper we study the implications of implement-
ing forward error correcting protocols in the transport
layer. We use both simulations and analysis to present
the benefits of using such an approach.

II. OVERVIEW

Many different types of error correcting codes have
been studied in the literature (see e.g. [2]). In the
transport layer it is usually safe to assume that packets
arriving at the destination are free of errors, and that
correcting errors inside each packet should be restricted
to link-level protocols, since reliability is highly depen-
dent on the link type. The errors we aim to deal with
are lost packets. This makes the task of error correcting
somewhat easier since the problem of bit flipping is
absent, and detecting a lost packet is relatively easy.
Thus, one needs to deal only with the reconstruction of
lost packets.

1This is relevant even in environments where a link-layer FEC is
used on the intercontinental link, as the loss can be on another link
along the path.



2

Error correcting schemes for missing packets can be
classified as(N,M) schemes, whereN is the number
of data packets in a block, andM is the number of error
correcting packets added to each block. The simplest
scheme is the(N, 1) scheme, where eachN packet data
block is supplemented with one packet containing the
XOR of the N data packets. A single missing data
packet is easily reconstructed byXORing the otherN
packets in the block. The operation requires approxi-
mately one CPU cycle per transmitted word, and thus
induces a low overhead, and is also easy to implement
in hardware.

In general, an(N,M) scheme requires any group of
N packets out of the total ofN + M submitted in each
block to reach the destination for the entire block to be
reconstructed. The rate of an(N,M) scheme,i.e., the
fraction of data packets to total submitted packets, is

N
N+M . The rate achieves its maximum when a number
of error correcting packets is added to a large of data
packets.

A. Related Work

This paper deals with a combination of two broad
research topics: Forward error correction and the TCP
protocol. Obviously, these topics are too broad to be fully
covered in this section. Thus, we refer the reader to some
major relevant papers and standardization efforts in these
areas.

Forward error correction deployed in the networking
area has gained much attention in the past decade or
so. There are many good references on this area, for
instance [3], [4], [5], [1], [6], [7], [8]. General infor-
mation on error correcting can be found in [2]. FEC in
the link layer has already proved itself to be valuable
and is standardized and used in the industry. The work
in this paper mainly focuses on the usage of end-to-end
FEC in the transport layer, and therefore we do not cover
link layer FEC in this section. For discussion of modern
Tornado codes we refer the reader to [9], [10].

This paper deals with recovering from packet losses
done at the transport layer. There are several papers
on modelling the Internet behavior, and specifically the
packet loss model in the Internet. To understand the
Internet behavior in terms of packet loss we refer the
reader to [11].

TCP is the most widely used and deployed transport
layer in the Internet. Numerous papers and books were
written on this subject. The interactions between the
TCP congestion avoidance mechanism, flow control,
recovering from packet losses and various TCP flavors,
are covered in the following papers and standards [12],
[13], [14], [15], [16], [17], [18].

Our analysis relies on [19], for the analytical study of
TCP throughput and performance.

The work in [1], [20], [21] points out the benefits
of using FEC in multicast transport layer. The are also
suggestions for incorporating FEC into the application
layer [22]. Today, there are several standards developed
by the IETF that incorporated FEC in the reliable mul-
ticast transport layer [23], [24].

III. I MPLEMENTATION

A. Placement of the Error Correcting Scheme

The most natural place to incorporate packet level
error correcting is in the transport layer. The physical
and the datalink layers may incorporate some bit level
error correcting codes to overcome a single hop relia-
bility. End-to-end error correction should be addressed
at the transport layer, since it is responsible for packet
reliability. Adding it to a layer that is not targeted to deal
with reliability produces a less efficient implementation.
For example, TCP deals with end-to-end reliability, and
incorporates retransmitting mechanism with congestion
avoidance. If FEC were implemented at the application
layer, any single packet loss could result in throughput
reduction and/or retransmission, although the application
layer would be able to recover from such loss. The only
way to avoid this is to mix the application and TCP
layer, which is both messy and complicated. In addition,
updating only the TCP layer will allow a new standard,
incorporated directly into the operating system such that
existing applications can use this feature in a transparent
manner.

In most FEC implementations in the transport layer,
FEC is used in conjunction with UDP or a propri-
etary protocol. Using FEC in conjunction with UDP
is desirable since no retransmission mechanism exists
in UDP, unlike TCP. Furthermore, in applications like
multicast, where each client may miss different packets,
retransmission is highly inefficient and FEC is necessary.
However, in many cases reliable transmission is required.
Only the TCP retransmission mechanism allows reliable
transmission even in the face of congestion and multiple
losses uncorrectable by FEC. As we show below using
FEC with TCP is advantageous in some cases in terms
of performance. We therefore propose the usage of the
combination of mechanisms: FEC and ARQ.

B. Placement of the FEC Sublayer

There are two possibilities of incorporating error cor-
recting schemes into the transport layer; either TCP that
wraps FEC, or FEC that wraps the TCP.



3

In the first case, the error correcting scheme below the
regular TCP algorithm is done by sending the regular
TCP output to the new FEC sublayer instead of the IP
layer. The sender’s FEC sublayer then expands the output
by addingM checksum packets to eachN data packets
and submits the data again to the TCP for the second
and final processing. This time the TCP layer passes the
packets to the IP layer for transmission. The receiver’s
FEC sublayer then receives the packets and tries to
extract the original data from the received packets. If
the data can be extracted, it is delivered to the TCP
layer, which is oblivious to any missing packets that had
been corrected. If the original data cannot be restored,
the receiver behaves as in a regular packet loss event.
At this point, the regular TCP mechanism will try to
recover the encoded lost packet. Once enough packets
are recovered, the original message can be constructed.

An alternative approach is wrapping the TCP with the
FEC sublayer. In this case the data sent by the application
is expanded by the FEC sublayer to also incorporate
error correcting packets. The data is then numbered
and submitted to the TCP layer. On the receiving side,
the FEC sublayer identifies whether enough packets
have arrived. If enough packets have arrived, they are
forwarded to the TCP, with an indication to ignore any
potentially missing packets. The upper part of the FEC
sublayer reconstructs the original message and forwards
it to the application. If not enough packets arrive the
packets are forwarded to the TCP layer to handle the
packets’ loss.

In both cases no perfect separation of the FEC sub-
layer from the TCP layer is possible, and the TCP layer
itself must be changed. This is due to the need to change
packet sequence numbers, timeouts and considerations of
window size.

Each of the approaches has its own advantages. The
first approach does not require any change in the in-
terface to the upper layer, though it significantly com-
plicates the implementation. The second approach, on
the other hand, is much simpler to implement, since the
transmitting part remains the same, though the Receiving
part requires some changes. The usual TCP’s sequence
numbering can be used without the TCP layer ever
knowing that the actual transmitted data is not the
original data handed of the application. Furthermore,
since in the first approach, the TCP layer is responsible
for splitting the data into packets, the FEC layer should
wait for N packets to arrive to add the error correcting
code. A timeout should therefore be added, in case only
a small amount of data is sent.

C. Header Changes

Since the receiver should be able to decode the data
and reconstruct the original message, both of the ap-
proaches above require adding information regarding the
location of each packet in the block and the total block
size. This allows the sender to change the block size
at will, adapting to network conditions, and also on the
status, e.g. sending fewer error correcting packets at the
window end.

D. Window Size Handling

Since up toM errors in a single block can be corrected
using the FEC, it is most appropriate to ignore those
correctable errors and to continue the window size up-
date as if no errors occurred. This is the most reasonable
decision, since no retransmission is needed in such cases,
and therefore the normal data flow is not affected by
those errors. An advantage gained by this approach is
that a single error does not decrease the window size
dramatically, as in regular TCP. Thus, this approach also
results in a more well behaved and less fluctuating data
rate, and possibly leads to a more predictable, and more
efficient network performance.

E. TCP Friendliness

The suggested approach is TCP friendly. It adds a
feature to TCP that can be turned on/off at will, de-
pending on the error rate and other channel properties.
A single negotiation stage is needed at the connection
establishment, and from that point on this feature can
be activated at the sender’s will. Several levels of error
correction can be implemented and switching between
them can be done at the sender’s will, without a need
for any further negotiation. The addition to the header
is sufficient for the receiver to determine the error
correcting level and the decoding required.

The main issue in considering TCP freindliness is
the behavior in face of congestion. It is expected that
adding a mechanism which decreases the window size
less frequently will result in less effective congection
handling. However, since in case of congestion a signifi-
cant part of a transmitted window is expected to be lost,
the decrease in the window size is expected to appear in
this case. The window size will not decrease in the face
of sporadic losses, where it is not desired. This should
actually result in improved throuput and predictablity of
the traffic through each node. In case several flows are
present the TCP-FEC flow will not starve other flows,
since its response to (real) congestion will be similar
to that of regular TCP. Furthermore, as can be seen, its
overhead over regular TCP in terms of total traffic is



4

0
0.02

0.04
0.06

0.08
p

loss

0

500

1000

1500

2000

time

FE
C

T
C

P

4000 data packets

Fig. 1. Long-Lived Session (4000 data packets). Error bars represent
standard deviation (here and throughout).

marginal, while its utilization of existing bandwidth is
more efficient.

The retransmission mechanism used is independent
of the FEC implementation and either TAHOE, RENO,
SACK or any other similar mechanism can be used. The
only mechanism affected by the FEC is RED, since the
window size is not decreased as a result of a single
error2. Therefore, the TCP-FEC combination can be
considered TCP friendly.

IV. SIMULATION RESULTS

To validate the performance of the TCP combined with
FEC capabilities, we have performed various simula-
tions, using the NS-2 [25] network simulator. We present
a comparison of TCP-FEC protocol compared to TCP
(TCP-TAHOE) and TCP-SACK.

We have conducted several types of simulations using
1500 bytes packets: One is for “large” file transfer, in
which the files are big enough to accommodate 4000
packets. The second is for medium size objects, which
are translated into 400 packets per TCP session. The

2One can think of a mechanism to incorporate both.

0
0.02

0.04
0.06

0.08
0.1

p
loss

0 50

100

150

200

time

FE
C

 (8,1)
T

C
P

Sack

400 packets

Fig. 2. Medium Size Files (400 data packets).

third was for short objects, of 80 packets each (≈
120KB). We also conducted simulations for the special
case of 8 packets session, which correspond to about
12KB per session (for small objects such as images
contained in an HTML page).

Figure 1 presents the results of simulations of 4000
packets session, with FEC parameters ofN = 8, and
M = 1. In the next section we present the analysis
for this specific case. The figure presents the total
transmission time as a function of the loss probability.
We have compared the performance of TCP-FEC with
TCP-TAHOE and TCP-SACK. As the graph shows,
TCP-FEC is usually more than twice better than regular
TCP and TCP-SACK. If the probability of a single
packet loss is high(p > 0.06), then the performance is
tripled. However, when the error rate further increases,
the probability of two packet loss within a stream of
M + N increases, and thus the benefit of TCP-FEC
decreases. Naturally, in such cases, it would be better
to useM = 2 (as can be seen in Figure 3).

Figure 2 presents similar results for 400 packets
session, with FEC parameters ofN = 16, andM = 2.

In Figure 3 we compare the TCP-FEC using several
block parameters with different overhead values. As one



5

0
0.02

0.04
0.06

0.08
0.1

p
loss

0 20 40 60 80

100

120

time

FE
C

 (16,2)
FE

C
 (5,1)

FE
C

 (8,1)

400 packets

Fig. 3. Different Block Parameters.

can see, theN = 16,M = 2 parameter set yields the
best results. The possibility to sustain 2 packets loss per
block is enough for quite high loss probabilities, thus
yielding very good results. As for the cases ofN =
8,M = 1 andN = 5,M = 1, for low loss probability,
the low overhead of theN = 8,M = 1 case yields better
results than those of theN = 5,M = 1 case. However,
as the loss probability increases, the larger overhead of
N = 5,M = 1 yields results in a better performance.

Figure 4 presents the result of a simulation of 80
packets session, with FEC parameters ofN = 8, and
M = 1. Here we compared the performance of TCP-
FEC with TCP-SACK. As the graph shows, TCP-FEC
is usually more than twice better than TCP-SACK also
for this range of file size.

To simulate very short files we studied the case of files
of size 12KB (we used 8 packets per file) and assumed
5% packet loss. We found that FEC with(N,M) =
(8, 1) required on average about 90% of the running time
of TCP. The standard deviation of the running times of
FEC was also lower than that of TCP.

To study the overhead of using FEC we conducted a
simulation in which we compared the total number of
packets, including ACKs of 400 data packets session,

0
0.02

0.04
0.06

0.08
0.1

p
loss

0 5 10 15 20 25 30 35 40 45 50
time

FE
C

(8,1)
Sack

80 packets

Fig. 4. Short Session (80 data packets).

with FEC parameters ofN = 8, and M = 1. Figure 5
presents the ratio of the total number of submitted
packets in FEC over the number in TCP-TAHOE. The
results show that the overhead is only about 5–12%.

V. A NALYSIS

To analyze the performance of TCP-FEC we first
analyze the performance of TCP. We follow closely the
analysis in [19].

Recall the definition of loss event: a packet is lost, and
the receiver replies with a triple-ACK, which is the loss
event indication. The effective bandwidth of TCP, given
that the probability of a packet loss event isp, is given
by,

B(p) =
E[Y ]
E[A]

. (1)

where Yi is the number of packets sent in the period
between thei’th and i + 1’st loss event indications,
and Ai is the duration between these indications. Now
suppose thatαi is the first lost packet since the last loss
indication, and thatWi is the window size at that point.
Until notification of the loss event arrives (using a triple-
ACK), another full window can be sent. Therefore, the



6

0
0.02

0.04
0.06

0.08
0.1

p
loss

1

1.05

1.1

1.15

ratio

400 data packets
packet ratio FE

C
(8,1)/T

C
P

Fig. 5. TCP-FEC vs. TCP-Tahoe Overhead.

number of packets that will arrive at the destination will
be αi + Wi − 1, and the expected value is,

E[Y ] = E[α] + E[W ]− 1 . (2)

The first loss event is distributed according to the geo-
metric distribution. Thus,

P [α = k] = (1− p)k−1p, k = 1, 2, · · · , (3)

and the expected value is

E[α] =
∞∑

k=1

(1− p)k−1pk =
1
p

. (4)

This leads to

E[Y ] =
1− p

p
+ E[W ] . (5)

Denote the round trip time for thej’th window after
the i’th loss indication asrij . The rij values can be
considered identically distributed and independent. If
the lossαi appeared during theXi window after the
previous loss indication, the expected total time between
loss indications is

E[A] = (E[X] + 1)E[r] . (6)

Let us denoteE[r] = RTT .

Recall that TCP reacts to losses by reducing the
window size to half, i.e., if the window size at the
detection of thei’th loss wasWi, it is reduced toWi

2 .
TCP acknowledges eachb arriving packets with a single
ACK and whenever this ACK reaches the sender the
window size is increased by1Wi

. Hence, afterb windows
that are fully acknowledged, the window size is increased
by 1. This implies

Wi =
Wi−1

2
+

Xi

b
. (7)

Similarly, the expected total number of submitted packets
is

Yi =
Xi/b−1∑

k=0

(
Wi−1

2
+ k

)
b + βi

=
Xi

2

(
Wi−1

2
+ wi − 1

)
+ βi , (8)

whereβi is the number of packets submitted in the last
round before the loss indication arrived. For simplicity,
it is assumed thatβi is uniformly distributed between1
andWi+1. As an approximation, it is also assumed that
Xi is independent of bothWi andWi−1. It then follows
from (5), (7), and (8) that

E[W ] =

√
8

3bp
+ o

(
1
√

p

)
. (9)

Substituting this into (1) leads to

BTCP (p) =
1

RTT

√
3

2bp
+ o

(
1
√

p

)
. (10)

For the full result and derivation of the above please refer
to [19].

To analyze the behavior of FEC, we can use similar
arguments, butp should be recalculated to reflect the
probability that the next packet will be lost and can not
be reconstructed. Denote byB the block size,B =
M + N . Assume thatk packets have already been
transmitted in the current block. For the next packet to
be lost without the possibility to be reconstructed, there
should have been at leastM loss events up to thek’th
packet within the current block. Thus, the probability
that the next packet is lost and is not reconstructible,
given it is thek + 1st in the block is

p′ = p

(
1−

M−1∑
i=0

(
k
i

)
qk−ipi

)
, (11)

where, by definition,q = 1 − p. For simplicity we will
focus on the caseM = 1, and will also assume that
the packet’s location in the block is a random variable



7

independent of the other variables. Therefore the average
probability of a non-reconstructible lost packet is,

E[p′] =
1
B

B−1∑
k=0

p(1− qk) = p− 1− qB

B
. (12)

Eq. (10) can now be used withE[p′] replacingp, but
the overhead of1B should also be taken into account.
Therefore, the bandwidth becomes,

BFEC(p) ≈ B − 1
B

√
3B

2b(Bp− 1 + qB)
. (13)

Both Eq. (10) and Eq. (13) do not take into account
the maximal window size,Wm imposed by TCP. In order
to take this into account, it is noted in [19] that in the
regime whereWm · p � 1 the maximal window will
almost never be reached and can be ignored, while when
Wm · p � 1, the sender will almost always work with
the maximal window size. Therefore, taking into account
the maximal window size,

BFEC(p) ≈ min

(
Wm

RTT
,

√
3(B − 1)2

2Bb(Bp− 1 + qB)

)
.

(14)
A comparison of the analytical approximation and the
simulation results can be seen in Fig. 1.

If timeouts are taken into account, one can use the
analysis in [19]:

B(p) ≈ 1

RTT
√

2bp
2 + T0 min

(
1, 3
√

3bp
8

)
p(1 + 32p2)

,

(15)
where T0 is the timeout duration (usually taken as
4RTT ). To approximate the performance of FEC we
need to replacep by p′. This approximation is obtained
assuming that all information in a window after a packet
loss is lost. This is done only for simplifying the analysis
in the timeout case, since it reduces the efficiency of FEC
(since long burst errors can not be corrected).

VI. D ISCUSSION

In the previous section we analyzed the performance
of FEC compared to TCP, and shown that the perfor-
mance of FEC is in general substantially better. However,
one may claim that the improvement in performance is
due to the different policy for window management. That
is, since FEC can fix up toM packet losses in a block,
it does not treat these events as loss events and therefore
does not decrease the window size, in case of such
sporadic losses. Including a similar window management
policy in an advanced version of TCP, such as TCP-
SACK, will also give similar behavior of the window

size, without the overhead of the extra error correction
packets.

While this is true as far as the analysis above is con-
cerned, there are other advantages to the error correction
scheme over the TCP-SACK scheme (or any other TCP
flavor). One advantage is the blocking of the window in
TCP-SACK when a loss event occurs. If a packet is lost
whose sequence number iss, during the next window
transmission, no packet with sequence number higher
thans + Wm − 1 may be transmitted. This is necessary
in order to ensure that the bookkeeping is performed
correctly. If the window size is currently the maximum,
and the lost packet’s location in the window isl, the
next transmitted window cannot exceed sizel, even if
the window size is not decreased from hereon.

To take advantage of this property, FEC should be
used in its most efficient form. The highest throughput
is achieved when the transmission works at maximal
window size and is kept this way throughout the process.
To best utilize the error correction mechanism the block
should be as large as possible. Therefore, the best per-
formance is achieved whenN + M = W (W being the
window size) andM is chosen such that the probability
of a non-reconstructible lost packet in the window is
negligible. If p is the probability of a packet loss, taking
M = 4pW will lead to a probability of approximately
e−4

e−1 ≈ 0.01 that a window will not be completely
reconstructible. That is, 99% of the windows will reach
the destination with no need for retransmission, and the
overhead will amount to only 4p

1−4p of the data. The
effective bandwidths then will be

Bopt(p) ≈ W (1− 4p)
RTT

. (16)

For instance, ifWm = 50 and p = 0.02 (which are
reasonable numbers for the Internet today) the overhead
will only be M = 4 packets per window (approx. 8%),
and the effective bandwidth will be approx.B = 46

RTT ,
which is very close to the theoretical limitBmax = 49

RTT
(with one lost packet event on average).

Using TCP-SACK, on the other hand, will lead to a
much lower bandwidth. The first lost packet in a window
is distributed according to the geometric distribution,
P (k) = (1 − p)k−1p. therefore, even if we assume that
the window size is never decreased, the performance
will suffer from the window blocking. For the above
parameters the effective bandwidth will be approxi-
mately 36

RTT (see appendix for the detailed calculation).
Thus, the required transmission time will be almost 30%
higher than FEC. In order to verify this, we conducted
simulation of long-lived session (4000 data packets) in
which the window size was never reduced. The results
can be seen in Figure 6, verifying the analysis above.



8

0
0.02

0.04
0.06

0.08
p

loss

0

100

200

300

400

500

600

700

time

FE
C

SA
C

K

4000 packets
constant w

indow

Fig. 6. Comparing Optimized Algorithms.

Another advantage of FEC over TCP is its resilience
to the loss of ACK packets. There can be cases where
despite the loss of ACK packets the sender can still
deduce that the receiver was able to fully reconstruct the
sent data. In such cases, the loss of the ACK packets will
not trigger a timeout, which is a highly time consuming
event (usually timeouts are only triggered after4RTT )
and retransmission and window closing will also be
avoided in such a case.

VII. C ONCLUSIONS

Forward error correction is a known method for
boosting network performance in the presence of packet
losses. The usage of FEC within the transport layer
(end-to-end manner) was already discussed and found
beneficial in multicast. However, FEC for end-to-end
unicast was never considered as a viable option, though
its use for hop-by-hop within the link layer, is deployed,
e.g., in wireless networks.

Our research results suggest that FEC can improve
the overall performance and throughput for end-to-end
unicast, and can be integrated within TCP. We have
compared TCP integrated with FEC, denoted by TCP-
FEC, with various flavors of TCP. As expected, the

usage of FEC had substantially increased the perfor-
mance, compared with the classical TCP (Tahoe) per-
formance. When compared with TCP-SACK, TCP-FEC
also yielded better results. Since FEC masks single lost
packet (or few, depends on its parameters), we also
compared it with a possible modified version of TCP-
SACK which overcomes loss without closing the TCP
window. This brought the performance results of both
protocols to be much closer. However, the results still
suggest that the packet loss under TCP-SACK prevents
the window from being advanced, while the TCP-FEC
totally “masks” sporadic losses and thus behaves better
under such conditions.

Our studies show that the choice of right parameters
affect the performance of FEC, mainly its ability to
overcome sporadic packet losses obviously affects the
overall throughput. An interesting research would be to
try and dynamically adapt the TCP-FEC parameters as
a result of changes in the network conditions. Another
interesting topic is to allow the TCP implementation
to decide when to “kick-in” the FEC capability in an
ongoing session.

Regardless of the TCP-FEC block parameters, when
the network is severely congested, or when the packet
loss probability becomes high, then the TCP-FEC be-
haves as any other TCP flavor. It reduces the transmission
rate and keeps the “friendliness” with respect to other
flows in the network.

Our overall conclusion is that FEC should be consid-
ered a viable option for enhancing the performance of
TCP while maintaining the important properties such as
friendliness, which are crucial for the overall “health” of
the Internet.

REFERENCES

[1] Christian Huitema, ““the case for packet level FEC”,” inFifth
Workshop on Protocols for High-Speed Networks, W. Dabbous
and C. Diot, Eds. 1997, Chapman and Hall.

[2] R.E. Blahut, Theory and Practice of Error Control Codes,
Addison Wesley, MA, 1984.

[3] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman,
““efficient erasure correcting codes”,”IEEE Transactions on
Information Theory, Special Issue: Codes on Graphs and Iter-
ative Algorithms, vol. 47, no. 2, pp. 569–584, Feb. 2001.

[4] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrol-
lahi, Daniel A. Spielman, and Volker Stemann, “Practical loss-
resilient codes,” inProc. 29 th Symp. on Theory of Computing,
1997, pp. 150–159.

[5] Luigi Rizzo, “Effective erasure codes for reliable computer
communication protocols,” ACM Computer Communication
Review, vol. 27, no. 2, pp. 24–36, Apr. 1997.

[6] G. Carle and E. Biersack, “Survey of error recovery techniques
for ip-based audio-visual multicast applications,” 1997.

[7] Jean-Crysostome Bolot and André Vega-Garcia, “The case for
FEC-based error control for packet audio in the Internet,”to
appear in ACM Multimedia Systems, 1998.



9

[8] N. Shacham and P. McKenney, “Packet recovery in high-
speed networks using coding and buffer management,” inIEEE
INFOCOM, 1990, pp. 124–131.

[9] Michael Luby, “LT Codes,” inProceedings of 43rd Sympo-
sium on Foundations of Computer Science (FOCS), Vancouver,
November 2002.

[10] Petar Maymounkov and David Mazieres, “Rateless codes and
big downloads,” inProceedings of 2nd International Workshop
on Peer-to-Peer Systems, February 2003.

[11] J. Bolot, “End-to-end packet delay and loss behavior in the
internet,” in ACM SIGCOMM, 1993, pp. 289–298.

[12] J. Postel, “Transmission Control Protocol,” RFC 0793, Septem-
ber 1981, Internet Engineering Task Force, Network Working
Group.

[13] W.R. Stevens, TCP/IP Illustrated, Vol. 1: The Protocols,
Addison Wesley, Reading, MA, 1994.

[14] G.R. Wright and W.R. Stevens,TCP/IP Illustrated, Vol. 2: The
Implementation, Addison Wesley, Reading, MA, 1995.

[15] T. J. Socolofsky and C. J. Kale, “TCP/IP tutorial,” RFC 1180,
SRI Network Information Center, January 1991.

[16] E. Blanton, M. Allman, K. Fall, and L. Wang, “A Conservative
Selective Acknowledgment (SACK)-based Loss Recovery Al-
gorithm for TCP,” RFC 3517, April 2003, Internet Engineering
Task Force, Network Working Group.

[17] K. Fall and S. Floyd, ““simulation-based comparisons of tahoe,
reno, and sack tcp”,”Computer Communication Review, vol.
26, no. 3, pp. 5–21, July 1996.

[18] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion
Control,” RFC 2581, April 1999, Internet Engineering Task
Force, Network Working Group.

[19] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and James F.
Kurose, ““modeling tcp reno performance: A simple model
and its empirical validation”,” IEEE/ACM Transactions on
Networking, vol. 8, no. 2, pp. 133–145, Apr. 2000.

[20] J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-
based loss recovery for reliable multicast transmission,” in
Proceedings of ACM SIGCOMM, September 1997.

[21] D. Rubenstein, S. Kasera, D. Towsley, and J. Kurose, “Improv-
ing reliable multicast using active parity encoding services,” in
Proc. of IEEE INFOCOM, March 1999.

[22] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” inProc.
of ACM SIGCOMM, August 1998.

[23] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley,
and J. Crowcroft, “Forward Error Correction (FEC) Building
Block,” RFC 3452, December 2002, Internet Engineering Task
Force, Network Working Group.

[24] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and
J. Crowcroft, “The Use of Forward Error Correction (FEC)
in Reliable Multicast,” RFC 3453, December 2002, Internet
Engineering Task Force, Network Working Group.

[25] “UCB/LBNL/VINT Network Simulator - ns (version 2), 1997,”
URL: http://www.isi.edu/nsnam/ns.

APPENDIX

In this appendix we will estimate the performance of
TCP-SACK, assuming the window size is constant (i.e.,
the window is always kept of sizeWm). If after the
transmission of a window, the firstn packets arrive at
the destination, and then + 1st packet is dropped, the
next window, regardless of the number of further dropped
packets in the window, can not contain more thann new
data packets (until the lost packet is recovered). Denote

by P (n) the (stationary) probability that a window
containsn new data packets. For alln < Wm P (n)
satisfies,

P (n) =
Wm∑

i=n+1

qipP (i) . (17)

Define F (n) =
∑Wm

i=n P (i) (normalization implies
F (0) = 1), then Eq. (17) is simplified into

F (n) = (1 + pqn)F (n + 1) n < Wm , (18)

with solution

F (n) =
n∏

i=0

1
1 + pqi

n < Wm . (19)

Sincep � 1 we can approximateF (n) by,

F (n) ≈ exp

(
−p

n∑
i=0

qi

)
= eqn−1 n < Wm . (20)

For pn < 1 the above equation can be further approxi-
mated byF (n) ≈ e−np.

Thus, the average effective bandwidth is:

B(p) =
1

RTT

Wm∑
n=0

nP (n) =
1

RTT

Wm∑
n=1

F (n) . (21)

Using the above approximations, and sinceF (Wm) < 1
(thus, its contribution is small), the effective bandwidth
is approximately,

B(p) ≈ 1− e−pWm

p
. (22)

A more accurate estimation may be obtained by numer-
ically evaluating the sum in Eq. (21) using Eq. (19).


