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Abstract—Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to physical
attacks, such as an Electromagnetic Pulse (EMP) attack. Such real-
world events happen in specific geographical locations and disrupt
specific parts of the network. Therefore, the geographical layout of
the network determines the impact of such events on the network’s
connectivity. In this paper, we focus on assessing the vulnerability
of (geographical) networks to such disasters. In particular, we aim
to identify the most vulnerable parts of the network. That is, the
locations of disasters that would have the maximum disruptive
effect on the network in terms of capacity and connectivity.We
consider graph models in which nodes and links are geographically
located on a plane, and model the disaster event as a line segment
or a circular cut. We develop algorithms that find a worst-
case line segment cut and a worst-case circular cut. Then, we
obtain numerical results for a specific backbone network, thereby
demonstrating the applicability of our algorithms to real-world
networks. Our novel approach provides a promising new direction
for network design to avert geographical disasters or attacks.

Index Terms—Network survivability, geographic networks,
fiber-optic, Internet, Electromagnetic Pulse (EMP).

I. I NTRODUCTION

The global communications infrastructure is primarily based
on fiber-optic networks, and as such has physical vulnerabil-
ities. Fiber links and backbone nodes can be destroyed by
anything from Electromagnetic Pulse (EMP) attacks [14], [24]
to dragging anchors [6], [27]. Such real-world disasters happen
in specific geographic locations, and therefore, the geographical
layout of the network affects their impact. For example, an
EMP is an intense energy field that can instantly overload
or disrupt numerous electrical circuits at a large distance,
thereby affecting electronic components in a large geographic
area [28]. Hence, such an attack over a U.S. city which is a
telecommunications hub would have a disastrous impact on the
U.S. telecommunications capabilities. Our approach is to gain
insight into robust network design by developing the necessary
theory to find the most geographically vulnerable areas of a
network. This can provide important input to the development
of network design tools and can support the efforts to mitigate
the effects of regional disasters.

There are several works on the topology of the Internet as
a random graph [3] and on the effect of link failures in these
graphs [8], [17] (for more details see Section II). However,
most of these works are motivated by failures of routers due

Fig. 1. The fiber backbone operated by a major U.S. network provider [16].

to logical attacks (e.g., viruses and worms), and thereby, focus
on the logical Internet topology. There have also been some
attempts to model the Internet using geographical notions [15],
[29]. Yet, these works do not consider the effect of failures
that are geographically correlated. Finally, [22] studiedthe
network inhibition problem in which a set of links has to be
removed from a graph such that the effect on the graph will
be maximized. Yet, to the best of our knowledge, the network
inhibition problem was not studied under the assumption of
geographically correlated failures.

Since disasters affect a specific geographical area, they
will result in failures of neighboring network components.
Therefore, one has to consider the effect of disasters on the
physical layer rather than on the network layer (i.e., the effect
on the fibers rather than on the logical links). It should be noted
that fibers are subject to regional failures resulting from events
such as earthquakes, floods, and even an EMP attack; as these
may lead to failure of the electrical circuits (e.g., amplifiers)
that are needed to operate the fiber plant [28].

Our long-term goal is to understand the effect of a regional
failure on the bandwidth, connectivity, and reliability ofthe
Internet, and to expose the design tradeoffs related to network
survivability under a disaster with regional implications. Such
tradeoffs may imply that in certain cases there may be a need
to redesign parts of the network while in other cases there
is a need to protect electronic components in critical areas
(e.g., protecting against EMP attacks by shielding [14], [24]).
In this paper, we are interested in the location of geographical
disasters that have the maximum effect on the network, in terms
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of capacity and connectivity. That is, we want to identify the
worst-case location for a disaster or an attack as well as its
effect on the network.

The global fiber plant has a complicated structure. For
example, Fig. 1 presents the fiber backbone operated by a
major network provider in the U.S. (point-to-point fibers are
represented by straight lines). We consider two graph models
which serve as an abstraction of the continental/undersea fiber
plant. In these models, nodes, links, and cuts are geographically
located on a plane. In [21] we study a bipartite graph model
(in the topological and geographical sense). That model is
analogous to the east and west coasts of the U.S., where nodes
on the left and right sides of the graph represent west and east
coast cities (respectively) and the cities within the continent are
ignored. Similarly, it can represent transatlantic or transpacific
cables. Since vertical line segment cuts are simpler to analyze,
we focus in [21] on such cuts.

However, the bipartite model does not consider the impact
on nodes located within the continent; nor does it consider the
impact of a disaster that is not simply a vertical cut. In this
paper, we relax thebipartite graph andvertical cut assumptions
by considering a general model where nodes can be arbitrarily
located on the plane. Under this model, we consider two
problems. In the first one, disasters are modeled as line segment
cuts (not necessarily vertical) in the network graph. In the
second one, disasters are modeled as circular areas in which
the links and nodes are affected. These general problems can
be used to study the impact of disasters such as EMP attacks
(circles) and tornadoes (line segments) more realistically.

We assume that a regional disaster affects the electronic
components of the network within a certain region. Hence, the
fibers that pass through that region are effectively cut due to
such a disaster. There are various performance measures for
the effect of a cut. We consider the following: (i) the expected
capacity of the removed links, (ii) the average two-terminal
reliability [25], (iii) the maximum possible flow between a
given source-destination pair, and (iv) the average maximum
flow between pairs of nodes. We show that although there are
infinite number of cut locations, only a polynomial number
of candidate cuts have to be considered in order to identify a
worst-case cut for these performance measures in any of the
problems above. Thus, we are able to show that the location of
a worst-case cut can be found by polynomial time algorithms.

Finally, we present numerical results and demonstrate the use
of these algorithms. We identify the locations of the worst-case
line segment and circular cuts in the network presented in Fig.
1.1 In particular, we illustrate the locations of cuts that optimize
the different performance measures described above.

The main contributions of this paper are the formulation of
a new problem (termed as thegeographical network inhibition
problem), the design of algorithms for its solution, and the
demonstration of the obtained numerical solutions on a U.S.
infrastructure. To the best of our knowledge, this paper and
[21] are the first attempts to study this problem.

1We present results only for one major operator. The same methodologies
can be used in order to obtain results for all other major operators.

This paper is organized as follows. We briefly discuss related
work in Section II. In Section III, we introduce the network
models and formulate the geographical network inhibition
problems. In Section IV, we briefly discuss the solution for the
bipartite case. In Sections V and VI we study the general model
with line segment and circular cuts. In Section VII we present
numerical results. We conclude and discuss future research
directions in Section VIII.

II. RELATED WORK

The issue of network survivability and resilience has been
extensively studied in the past (e.g., [4], [12], [18], [31]and
references therein). However, most of the previous work in this
area and in particular in the area of physical topology and
fiber networks (e.g., [19], [20]) focused on asmall number of
fiber failures. On the contrary, in this paper we focus on events
that cause a large number of failures in a specific geographical
region (e.g., [6], [14], [24], [27]). To the best of our knowledge,
[13] is one of the only papers that considered geographically
correlated failures. Yet, it focused on a specific routing solution.

The theoretical problem most closely related to the problem
we consider is known as thenetwork inhibition problem[22].
Under that problem, each edge in the network has a destruction
cost, and a fixed budget is given to attack the network. A
feasible attack removes a subset of the edges, whose total
destruction cost is no greater than the budget. The objective is
to find an attack that minimizes the value of a maximum flow in
the graph after the attack. Several variants of this problems were
studied in the past (see for example [23] and the review in [7]).
However, as mentioned above, the removal of (geographically)
neighboring links has not been considered (perhaps the closest
to this concept is the problem formulated in [5]).

When the logical (i.e., IP) topology is considered, wide-
spread failures have been extensively studied [8], [9], [11],
[17]. Most of these works consider the topology of the Internet
as a random graph [3] and use percolation theory to study
the effects of random link and node failures on these graphs.
The focus on the logical topology rather than on the physical
topology is motivated by failures of routers due to attacks
by viruses and worms. Based on various measurements (e.g.,
[10]), it has been recently shown that the topology of the
Internet is influenced by geographical concepts [2], [15], [29].
These observations motivated the modeling of the Internet as a
scale free geographical graph [26], [30]. Although these models
may prove useful in generatinglogical network topologies, we
decided to present numerical results based onreal physical
topologies (i.e., the topology presented in Fig. 1).

III. M ODEL AND PROBLEM FORMULATION

In this section we present three geographical network inhi-
bition problems. The first problem assumes that the network is
bipartite in the topological and geographic sense and that the
cuts are vertical line segments. We then present two problems
where network links can be in almost arbitrary locations on
the plane. In one of the problems, the disasters correspond to
line segment cuts in any direction. In the other, the cuts are
modeled by arbitrarily placed circles on the plane.



A. Bipartite Model with Vertical Line Segment Cuts

We define thegeometricbipartite graph model as follows. It
has a width of 1 and height (south-to-north) ofhG. The height
of a left (west) nodei is denoted byli. Similarly, the height of
a right (east) nodej is denoted byrj . Nodes cannot overlap;
that isri 6= rj ∀ i, j andli 6= lj ∀ i, j. Denote the total number
of nodes on the left and right side byN . We also denote a
link from li to rj as(i, j). We definepij as the probability that
link (i, j) exists, andcij as the capacity of link(i, j) where
cij ∈ [0,∞). In order to avoid considering the trivial case in
which there are no links with positive capacity, we assume that
there exist somei andj for which cijpij > 0. We assume that
the disaster results in a vertical line segment cut of heighth

whose lowest point is at point[x, y]. We denote this cut by
cuth(x, y). Such a cut removes all links which intersect it. For
clarity, in this paper we refer to the start and the end of a link
as nodes and the start and the end of a cut as endpoints.

There are many ways to define the effect of a cut on the
loss of communication capability in a network. We define the
performance measures and the worst-case cut as follows.

Definition 1 (Performance Measures):The performance
measures of a cut are (the last 3 are defined as the values after
the removal of the intersected links):

• TEC - The total expected capacity of the intersected links.
• ATTR - The average two terminal reliability of the net-

work.2

• MFST - The maximum flow between a given pair of nodes
s and t.

• AMF - The average value of maximum flow between all
pairs of nodes.

Definition 2 (Worst-Case Cut):Under a specific perfor-
mance measure, aworst-case cut, denoted bycuth(x∗, y∗), is
a cut which maximizes/minimizes the value of the performance
measure.3

We now demonstrate the formulation of the following opti-
mization problem using theTEC performance measure.

Bipartite Geographical Network Inhibition (BGNI) Prob-
lem: Given a bipartite graph, cut height, link probabilities, and
capacities, find a worst-casevertical line segment cut under
performance measureTEC.

We define the following(0, 1) variables:

zij(x, y) =

{

1 if (i, j) is removed bycuth(x, y)

0 otherwise

The solution to the BGNI optimization problem below is an
endpoint of the worst-case cut.

max
∑

(i,j) pijcijzij(x, y)

such that

0 ≤ x ≤ 1

−h ≤ y ≤ hG

2The two terminal reliability between two nodes is defined here as 1, if there
is a path between them and 0, otherwise [25].

3For performance measureTEC, the worst-case cut obtains a maximum
value, while for the rest, it obtains a minimum value.

The above problem can be formulated as a Mixed Integer
Linear Program (MILP) [21]. Solving integer programs can
be computationally intensive. Yet, the geographical (geometric)
nature of the BGNI Problem lends itself to relatively low com-
plexity algorithms (see Section IV). Although in [21] we focus
only on TEC measure, variants of the BGNI Problem can be
formulated for performance measuresATTR, MFST, andAMF
(by definition, when computing these measures we assume that
pij ∈ {0, 1} ∀i, j). In the bipartite model, the worst-case cut
under some of these measures is trivial. However, in the general
model, a worst-case cut is non-trivial.

B. General Model

The general geometric graph model containsN non-
overlapping nodes on a plane. Let the location of nodei

be given by the cartesian pair[xi, yi]. Assume the points
representing the nodes are in general form, that is no three
points are collinear. Denote a link from nodei to nodej by
(i, j). We definepij as the probability of(i, j) existing andcij

as the capacity of(i, j) wherecij ∈ [0,∞). We again assume
that cijpij > 0 for somei andj. We now define two types of
cuts and the corresponding problems.

When dealing withArbitrary Line Segment Cutswe assume
that a disaster results in a line segment cut of lengthh which
starts at[x, y] and contains the point[v, w] (with [x, y] 6=
[v, w]). We define this cut ascuth([x, y], [v, w]) (note there can
be infinitely many ways to express a single cut). A cut removes
all links which intersect it. For brevity, we sometimes denote the
worst-case cutcuth([x∗, y∗], [v∗, w∗]) ascut∗h. We now define
the following problem and demonstrate its formulation.

Geographical Network Inhibition by Line Segments (GNIL)
Problem: Given a graph, cut length, link probabilities, and
capacities, find a worst-case cut under performance measure
TEC.

We define the following (0,1) variable:

zij([x, y], [v, w]) =











1 if (i, j) is removed

by cuth([x, y], [v, w])

0 otherwise

The solution to the GNIL optimization problem below is a
worst-case cut.

max
∑

(i,j) pijcijzij([x, y], [v, w])

such that

[x, y] 6= [v, w]
√

(x − v)2 + (y − w)2 ≤ h

xi ≤ x ≤ xj for some i and j

yi ≤ y ≤ yj for some i and j (1)

When dealing withCircular Cutswe assume that a disaster
results in a cut of radiusr which is centered at[x, y]. We
define this cut ascutr(x, y). Such a cut removes all links which
intersect it (including the interior of the circle). We callthe set
of points for which the Euclidean distance isr away from[x, y]
the boundary ofcutr(x, y). For brevity, we sometimes denote



the worst-case cutcutr(x
∗, y∗) as cut∗r . We now define the

following problem and demonstrate its formulation.

Geographical Network Inhibition by Circles (GNIC) Prob-
lem: Given a graph, cut radius, link probabilities, and capaci-
ties, find a worst-case circular cut under performance measure
TEC.

We define the following (0,1) variable:

zij(x, y) =

{

1 if (i, j) is removed bycutr(x, y)

0 otherwise

The solution to the GNIC optimization problem below is the
center of a worst-case cut.

max
∑

(i,j) pijcijzij([x, y])

such that

xi ≤ x ≤ xj for some i and j

yi ≤ y ≤ yj for some i and j (2)

Similar GNIL and GNIC problems can be formulated for
performance measuresATTR, MFST, and AMF (for these
measures we assume thatpij ∈ {0, 1} ∀i, j). For example,
under MFST, flow conversation constraints should be added
to the set of constraints, the flow through links for which
zij([x, y], [v, w]) = 1 is 0, and the flow betweens and t has
to be maximized. In sections V and VI we use the geometric
nature of the GNIL and GNIC problems to show that under all
these measures, we only need to check a polynomial number
of locations in order to find a worst-case cut.

IV. WORST-CASE CUT – BIPARTITE MODEL

In order to facilitate the discussion regarding the general
model, we now briefly discuss theO(N6) algorithm (to be
introduced in [21]) for solving the BGNI Problem. In this
section, a worst-case cut refers to a worst-casevertical line
segmentcut.

In [21], we show that there exists a worst-case cut which
has an endpoint at a link intersection or a node. An algorithm
that solves the BGNI Problem simply evaluates the capacity of
every cut that has an endpoint on a link intersection or a node.
The complexity of this algorithm isO(N6). This results from
the following facts: (i) links are line segments and a pair ofline
segments can have at most one intersection point, resultingin at
mostO(N4) link intersections; (ii) there are two candidate cuts
per link intersection or a node (cuts have two endpoints), and
therefore, the total number of candidate cuts is at mostO(N4);
(iii) since evaluating if a link intersects a cut takesO(1) time,
finding the capacity of a candidate cut takesO(N2).

We now explain the methodology we use in [21] to develop
the algorithm. Given a worst-case cut, we showed that there
exists a translation of this cut such that it is also worst-
case and has an endpoint on a link intersection or a node.
For example, considercuth(x∗, y∗) and the link intersec-
tion [x∗, yα] in Fig. 2. There does not exist a link that
intersectscuth(x∗, y∗) between[x∗, y∗] and [x∗, yα]. There-
fore, we know thatcuth(x∗, yα), which is a vertical transla-
tion of cuth(x∗, y∗), intersects every link whichcuth(x∗, y∗)

cuth(x∗, y∗)

cuth(x∗, yα)

Fig. 2. A geographical bipartite graph with two cuts.cuth(x∗, yα) is a
vertically translated version ofcuth(x∗, y∗). cuth(x∗, yα), which has an
endpoint on a link intersection, is guaranteed to intersectevery link that
cuth(x∗, y∗) intersects, since there exist no links atx∗ from y∗ to yα.

intersects. Thus, ifcuth(x∗, y∗) is a worst-case cut, then
cuth(x∗, yα) is a worst-case cut also. Using similar arguments,
we presented lemmas which show that any worst-case cut can
be translated such that the resulting cut is also worst-caseand
has an endpoint at a link intersection or a node. The algorithm
follows as a direct result.

Although this algorithm finds a worst-case cut, there may
be other worst-case cuts that intersect the same total expected
capacity of links. The endpoints of these cuts do not necessarily
have to be on a link intersection or a node. Yet, there cannot be
a cut with a higher value than the one obtained by the algorithm.

V. WORST-CASE L INE SEGMENT CUT – GENERAL MODEL

In this section, we present a polynomial time algorithm for
finding the solution of the GNIL Problem; i.e., for finding a
worst-case line segment cut in the general model. We show
that we only need to consider a polynomial-sized subset of all
possible cuts. We first focus on theTEC performance measure
and then discuss how to obtain a worst-case cut for other
measures. Our methods are similar to the approach for solving
the BGNI Problem, described in Section IV. In this section, a
worst-case cut refers to a worst-caseline segmentcut.

A. TEC Performance Measure

Before proceeding, note that the set of all possible cuts is
compact and the objective function in (1) takes on a finite num-
ber of bounded values. This leads to the following observation.

Observation 1:There always exists an optimal solution to
(1) (i.e., a worst-case cut).

Below we present an algorithm that finds a worst-case line
segment cut under theTEC measure in the general model. This
algorithm considers all cuts that (i) have an endpoint on a link
intersection and contain a node not at the intersection, (ii) have
an endpoint on a link intersection and another endpoint on a
link, (iii) contain two distinct nodes and have an endpoint on a
link, and (iv) contain a node and have both endpoints on links.

We now use a number of steps to prove the theorem below.
Theorem 1:Algorithm WLGM has a running time ofO(N8)

and finds a worst-case line segment cut that is a solution to the
GNIL Problem.

Before proving the theorem we present some lemmas to
reduce the set of candidate worst-case cuts.

Lemma 1:There exists a worst-case cut that contains a node
or has an endpoint at a link intersection.



Algorithm 1 Worst-Case Line Segment Cut in the General
Model (WLGM)

1: input: h, height of cut
2: worstCaseCapacityCut← 0
3: L← {}
4: for every link intersection[xk, yk] do
5: for every nodei such that[xi, yi] 6= [xk, yk] do
6: L = L∪ {cut that has an endpoint on[xk, yk] and contains

[xi, yi]}
7: for every (i, j) do
8: L = L∪{cuts that have an endpoint on[xk, yk] and another

endpoint on(i, j)}
9: for every (i, j) and nodek do

10: for every nodel such thatk 6= l do
11: L = L ∪ {cuts that have an endpoint on(i, j) and contain

[xk, yk] and [xl, yl]}
12: for every (m, n) do
13: L = L ∪ {cuts that have an endpoint on(i, j), another

endpoint on(m,n), and contain[xk, yk]}
14: for everycuth([xk, yk], [vk, wk]) ∈ L do
15: call evaluateCapacityofCut(xk, yk, vk, wk)
16: return cut∗h
Procedure evaluateCapacityofCut(xk, yk, vk, wk)
17: capacityCut← 0
18: for every (i, j) do
19: if zij([xk, yk], [vk, wk]) = 1 then
20: capacityCut← capacityCut+ cijpij

21: if capacityCut≥ worstCaseCapacityCutthen
22: cut∗h ← cuth([xk, yk], [vk, wk])
23: worstCaseCapacityCut← capacityCut

cut∗h
cut′h

Fig. 3. cut′
h

contains a node as well as intersects all links whichcut∗
h

does.

Proof: Let cut∗h be a worst-case cut with endpoints given
by [x∗, y∗] and [v∗, w∗]. We now define some useful termi-
nology. Let the links that intersectcut∗h closest to the endpoint
[x∗, y∗] be given by(iα, jα) and let the closest point to[x∗, y∗]
where(iα, jα) intersectscut∗h be given by[xα, yα]. Let those
links which intersectcut∗h furthest from the endpoint[x∗, y∗]
be given by(iω, jω) and let the closest point to[v∗, w∗] where
(iω, jω) intersectscut∗h be given by[xω , yω]. We consider two
cases, one where either(iα, jα) or (iω, jω) are not unique and
the other where(iα, jα) and (iω, jω) are unique.

In the first case, either(iα, jα) or (iω, jω) are not unique
for cut∗h. Without loss of generality, we assume(iα, jα) is not
unique. We considercut′h which is a translated version ofcut∗h
such that it has an endpoints on[xα, yα] and on[v∗ + xα −
x∗, w∗ + yα − y∗]. Since there exist no links between[x∗, y∗]
and[xα, yα], we knowcut′h intersects at least as many links as
cut∗h and thus is a worst-case cut. Fig. 2 shows the analogous
case for the bipartite model.

In the second case,(iα, jα) and (iω, jω) are both unique
for cut∗h. If cut∗h contains a node, the lemma is satisfied. In
the following, assumecut∗h does not contain a node. Now we

considercut′h([x∗ +a, y∗+b], [v∗ +a, w∗ +b]) andcut′′h([x∗−
c, y∗ − d], [v∗ − c, w∗ − d]) to be translated versions ofcut∗h
such that (i)sign(a) = sign(c) and sign(b) = sign(d), (ii)
there does not exist any nodes in the parallelogram defined by
cut∗h and cut′h (which we denote “parallelogramB”) except
those contained incut′h and in the parallelogram defined by
cut∗h and cut′′h (which we denote “parallelogramC”) except
those contained incut′′h, and (iii) no link intersects(iα, jα) or
(iω, jω) in either parallelogram except oncut′h or cut′′h. Since
a node does not exist within the interior of either parallelogram
all links intersected bycut∗h must also cut one of the other three
edges of each parallelogram.

Now choose the maximuma and c such that the edge
([x∗, y∗], [x∗ + a, y∗ + b]) of parallelogramB and the edge
([x∗, y∗], [x∗−c, y∗−d]) of parallelogramC are both parallel to
the link (iα, jα) and the parallelograms satisfy the constraints in
the paragraph above. This implies bothcut′h andcut′′h contain
a node or contain a point where(iα, jα) or (iω, jω) intersects
a link. Since(iα, jα) is parallel to both edges([x∗, y∗], [x∗ +
a, y∗ + b]) and ([x∗, y∗], [x∗ − c, y∗ − d])) and since(iω, jω)
can cut at most one of the edges([v∗, w∗], [v∗+a, w∗+b]) and
([v∗, w∗], [v∗ − c, w∗ − d]) or be parallel to them (as they both
lay on the same straight line), we know at least one ofcut′h
or cut′′h intersects the same links that are intersected bycut∗h.
Therefore, we can choosea, b, c, andd such that eithercut′h
or cut′′h is a worst-case cut and (i) contains a node (Fig. 3)
or (ii) contains a point where(iα, jα) or (iω, jω) intersects a
link. In the latter case, we can translate this worst-case cut in
a similar fashion to the first case to construct a worst-case cut
which satisfies the lemma.

We now consider two cases of worst-case cuts. The first case
is a worst-case cut which has anendpointat a link intersection.
The second case is a worst-case cut whichcontainsa node. In
both cases, let the node or link intersection that is in the cut
be denoted byA. Lemma 2 considers the first case whereA is
a link intersection.

Lemma 2: If there exists a worst-case cut that has an end-
point on A, then (i) there exists a worst-case cut that has an
endpoint onA and has its other endpoint on a link or (ii) there
exists a worst-case cut that has an endpoint onA and contains
a node that is notA.

Proof: Assume there exists a worst-case cut with endpoint
A, denoted bycut∗h. Therefore, the other endpoint ofcut∗h must
be on the boundary of a circle of radiush. Denote byθ the
angle of cut∗h in some coordinate system. Denote byθi the
angles fromA to all nodes inside the circle and all intersections
of links with the circle (including links tangent to the circle).
Chooseθ′ = θj such thatj = arg mini |θ−θi|. Choosecut′h to
be the cut with endpoint atA and having lengthh and angleθ′.
By definition ofθ′ and theθi’s, all links intersectingcut∗h must
also intersectcut′h (because betweenθ andθ′ no link intersects
with the circle and there exists no node within the interior of
that sector). Thus,cut′h is a worst-case cut.

The following two lemmas consider the second case where
A is a node.

Lemma 3: If there exists a worst-case cut that containsA



cut∗h

cut′h

A

Fig. 4. Translatecut∗
h

along its own direction until one of its endpoints
intersects a link; we call this new cutcut′

h
. Because every link remains

intersected during translation,cut′
h

intersects all linkscut∗
h

does.

then there exists a worst-case cut that containsA and has an
endpoint on some link.

Proof: Let cut∗h be a worst-case cut that intersectsA

with endpoints given by[x∗, y∗] and [v∗, w∗]. Let the links
that intersectcut∗h closest to the endpoint[x∗, y∗] be given
by (iα, jα) and let the closest point to[x∗, y∗] where(iα, jα)
intersectscut∗h be given by[xα, yα]. We considercut′h which
is a translated version ofcut∗h such that it has endpoints at
[xα, yα] and at[v∗ + xα − x∗, w∗ + yα − y∗]. Since there exist
no links between[x∗, y∗] and [xα, yα], and because the same
line contains bothcut∗h and cut′h, we know that every link
which intersectscut∗h also intersectscut′h in the same location.
Thus, cut′h is a worst-case cut which containsA and has an
endpoint on a link (this endpoint is[xα, yα]).

Lemma 4: If there exists a worst-case cut that containsA

and has an endpoint on a link, then there exists a worst-case
cut which containsA, has an endpoint on a link, and at least
one of the following holds: (i) the cut contains a node that is
not A, (ii) one of the cut endpoints is also a link intersection
that is notA , or (iii) the cut has both endpoints on links.

Proof: Let cut∗h be a worst-case cut such that it contains
A and has an endpoint on a link. Ifcut∗h has an endpoint on
A, then Lemma 2 implies Lemma 4. Assumecut∗h contains
A and has an endpoint on a link and doesnot have an
endpoint onA. Denote the link which contains this endpoint
by L, and its endpoints by[x1, y1] and [x2, y2]. Denote the
point at whichcut∗h intersectsL by [x0, y0]. Now ‘slide’ the
endpoint ofcut∗h along L so that this new cut still contains
A. That is, consider the cut, of lengthh, with endpoint at
[ax1 + (1− a)x0, ay1 + (1− a)y0] and passing throughA, for
0 ≤ a ≤ 1. For a = 0 this is justcut∗h. We slide alongL by
increasinga until a new cut, calledcut′h, either has an endpoint
that ish away fromA (we cannot slide further) orcut′h can no
longer satisfy

∑

(i,j) pi,jci,jcut′h =
∑

(i,j) pi,jci,jcut∗h. In the
first case, the cut has both endpoints on links. In the second
case,cut′h may no longer be able to slide alongL and be a
worst-case cut, ifcut′h has an endpoint onL which is a link
intersection (considered in Lemma 2),cut′h intersects a node
which is notA, or cut′h has an endpoint onL and the other
endpoint on a link (a link ‘goes out of reach’ fromL). The first
two possibilities are demonstrated in Fig. 5. They implycut′h
can have endpoint on a link intersection or can contain another
node that is notA. Fig. 6 showscut′h which containsA and
has both endpoints on links. This can occur when an endpoint

cut∗h
cut′h

cut′h

L

A

Fig. 5. Slide an endpoint ofcut∗
h

right along L until it intersects a link
intersection. This new cut is thecut′

h
on the right. We can also slide and

endpoint ofcut∗
h

left along L until it intersects a node. This new cut is the
cut′

h
on the left.

cut∗hcut′h

A

Fig. 6. Slide an endpoint ofcut∗
h

along the top link until it can no longer
intersect the bottom link. This new cut iscut′

h
.

of cut∗h slides alongL and the other endpoint intersects a link.

Using the lemmas above we now prove Theorem 1.
Proof of Theorem 1:The lemmas presented in this section

imply we only need to consider a polynomially sized set of
cuts. By Lemma 1 there are two possible cases of worst-case
cuts. The first case is a worst-case cut which has a endpoint at
a link intersection. The second case is a worst-case cut which
contains a node. In the first case, Lemma 2 implies that for
every link intersection,O(N4), there exists a possible worst-
case cut for every link and node,O(N2). In the second case,
Lemmas 3 and 4 imply that for every node-link pair (A and
some linkL), O(N3), there exist several possible worst-case
cuts for every node and link,O(N2). Since naively checking
each cut for the total cut capacity takesO(N2), the algorithm
has a total running time ofO(N8) (the first case provides the
greatest running time).

It should be noted that similarly to the bipartite case, al-
though the algorithm finds a worst-case cut, there may be other
worst-case cuts with the same value. However, there cannot be
a cut with a better value than the one obtained by the algorithm.

B. ATTR, MFST, and AMF Performance Measures

As mentioned in Section III-B, the formulation of the GNIL
Problem, presented in (1) should be slightly modified in order
to accommodate theATTR, MFST, and AMF performance
measures. We now briefly discuss how the algorithm has to
be modified in order to obtain results for these problems. In
Section VII, we present numerical results obtained using these
modified algorithms. Using the lemmas and theorem above, it is
easy to show that only a polynomial number of candidate cuts
need to be checked in order to find the worst-case cut under any
of the performance measures. This is due to the fact that the
performance measures are monotonic. Therefore, any additional



link removed/added only increases/decreases the measure and
all the arguments supporting our lemmas still hold.

For each potential cut some links and/or nodes are removed.
Hence, one has to update the network adjacency matrix. Then,
different operations have to be performed for each measure:

• ATTR - If the network is fully connected, the value of
ATTRis 1. Otherwise, one has to sum over all components
the value ofk(k − 1), wherek is the number of nodes in
each of the components. Then the sum has to be divided by
N(N − 1). In order to verify connectivity or to count the
number of nodes in each component, Breadth First Search
(BFS) algorithm or the adjacency matrix eigenvalues and
eigenvectors can be used.

• MFST - Run a max-flow algorithm (e.g.,O(N3) [1]).
• AMF - Run a max-flow algorithm for any node pair.

VI. WORST-CASE CIRCULAR CUT – GENERAL MODEL

In this section we present a polynomial time algorithm for
finding a solution of the GNIC Problem; i.e., for finding a
worst-case circular cut in the general model. We show that we
only need to consider a polynomial-sized subset of all possible
cuts. We focus on theTEC performance measure and then
briefly discuss how to obtain a worst-case cut for the other
performance measures. In this section, a worst-case cut refers
to a worst-casecircular cut.

Before proceeding, note that the set of all possible cuts is
compact and the objective function in (2) takes on a finite num-
ber of bounded values. This leads to the following observation.

Observation 2:There always exists an optimal solution to
(2) (i.e., a worst-case cut).

Below, we present an algorithm which finds a worst-case
circular cut under theTEC measure in the general model.

Theorem 2:Algorithm WCGM has a running time of
O(N6) and finds a worst-case circular cut which is a solution
to the GNIC Problem.

Before proving the theorem, we present a useful lemma about
circles and line segments and then present some lemmas to
reduce the set of candidate cuts.

Lemma 5: If a line segment intersects only the boundary of
a circle, then the line segment and circle intersect at exactly
one point.

Proof: Proof by contradiction. Assume a line segment
intersects only the boundary of a circle and this intersection
contains more than one point. Since a line segment and a circle
are both convex, their intersection must be convex as well.
However, we assumed at least two points on the boundary of
the circle are in the intersection. The fact that the intersection
must be convex implies the chord connecting these two points
must be in the intersection as well. However, we also assumed
only the boundaries intersect and since part of the chord is in
the interior of the circle this leads to a contradiction.

Lemma 6: If there exists a worst-case cut, denoted bycut∗r ,
which intersects exactly one link, then there exists a worst-case
cut, denoted bycut′r, which intersects that link at exactly one
point such that[x′, y′] lies on the line which contains the link.

Algorithm 2 Worst-Case Circular Cut in the General Model
(WCGM)

1: input: r, radius of cut
2: worstCaseCapacityCut← 0
3: L← {}
4: for every (i, j) do
5: L = L ∪ {center[xk, yk] of every circle that intersects(i, j)

at exactly one point and is centered on the line which contains
(i, j)}

6: for (k, l) such that(i, j) 6= (k, l) do
7: if (i, j) is parallel to(k, l) then
8: L = L ∪ {center[xk, yk] of every circle having nodei

or j on its boundary that intersects(k, l) at exactly one
point}

9: else
10: L = L ∪ {center[xk, yk] of every circle that intersects

(i, j) and(l, k) at exactly one point each such that these
points are distinct}

11: for every (xk, yk) ∈ L do
12: call evaluateCapacityofCut(xk, yk)
13: return cut∗r
Procedure evaluateCapacityofCut(xk, yk)
14: capacityCut← 0
15: for every (i, j) do
16: if minimum distance from(i, j) to [xk, yk] is ≤ r then
17: capacityCut← capacityCut+ cijpij

18: if capacityCut≥ worstCaseCapacityCutthen
19: cut∗r ← cutr(xk, yk)
20: worstCaseCapacityCut← capacityCut

cut∗r

cut′r

Fig. 7. An example illustrating the observation in Lemma 6.cut′r is a
translated version ofcut∗r such that[x′, y′] lies on the line which contains
the intersected link andcut′r intersects the link at exactly one point.

Proof: Sincecut∗r is a worst-case cut and only intersects
a single link, any cut which intersects the same link is also a
worst-case cut. See Fig. 7.

Lemma 7: If there exists a worst-case cut that intersects at
least two links, then there exists a worst-case cut, denotedby
cut′r, that intersects at least two links at exactly one point each
and at least one of the following holds: (i) at least two of the
points are distinct and are not diametrically opposite, (ii) at
least two of the points are distinct and one of them is a node,
or (iii) [x′, y′] lies on a line which contains one of the two
links.

The proof of the lemma above is similar to the proofs of
the lemmas in Section V. Essentially, it is shown that we can
translate a worst-case cut such that it remains a worst-casecut
and satisfies the properties in the lemma.

Proof: Let a link which intersectscut∗r have endpoints
given by [xi, yi] and [xj , yj]. Consider cutr[x

∗ + h(xj −
xi), y

∗ + h(yj − yi)] whereh is the minimum value such that
only the boundaries of this cut and some link intersect. Denote



this translation ofcut∗r by cut′′r and note by Lemma 5 this
cut must intersect at least one link at exactly one point (see
Fig. 9). Every link which is intersected bycut∗r must intersect
cut′′r because as a line segment and a circle are continuously
translated away from each other, the last non-empty intersection
is an intersection of their boundaries. Thus,cut′′r is also a worst-
case cut. In the proceeding we consider two cases. In the first
case we assumecut′′r intersects at least two links at exactly one
point each and in the second case we assumecut′′r intersects
exactly one link at exactly one point.

We first consider the case wherecut′′r intersects at least two
links at exactly one point each (in addition to possibly other
links that intersect the interior ofcut′′r ). Denote one of the
points byA and another byB. If A and B are distinct and
not diametrically opposite, the conditions in the lemma are
satisfied. Now we will consider two sub-cases. In the first sub-
case, we assumeA andB reside in two diametrically opposing
points on the circle and in the second sub-case we assumeA

andB are not distinct. In the first sub-case, if eitherA or B is
a node, the lemma holds true. If neitherA or B are nodes, then
A andB are diametrically opposing points where parallel links
are tangent tocut′′r . Denote one of these parallel links by(i, j).
Now considercutr[x

′′ + h(xj − xi), y
′′ + h(yj − yi)] where

h is the minimum value such that two links intersect only the
boundary of this cut at distinct and non-diametrically opposing
points or two links intersect only the boundary of this cut and
one of these intersection points is a node. Denote this translated
cut by cut′r. Now, one of the following must hold: eithercut′r
intersects the parallel links at exactly one point each where one
of these points is a node, or a link which intersected the interior
of cut′′r now intersectscut′r at exactly one point such thatcut′r
intersects two links at exactly one point each such that theyare
not diametrically opposite.

In second sub-case, two links intersect the circle at a single
point,C. This impliesC is an endpoint of at least one of these
links. Now choose a link with an endpoint atC and denote the
link by (k, l). Let p(t) be a continuous parameterized closed
curve which is always a distancer from (k, l) such thatp(0) =
[x′′, y′′] andp(tC) wheretC > 0 is the point onp(t) closest
to C which intersects the line that contains(k, l) (see Fig. 8).
Let px(t) and py(t) denote thex and y components ofp(t)
respectively. Sincecut′′r intersectsC, we know [x′′, y′′] is on
a semi-circular shaped part ofp(t) (these are the only parts of
p(t) that arer units away from an endpoint of(k, l)). Now
considercutr[px(t), py(t)] wheret is the minimum value such
that two links intersect only the boundary of this cut and these
intersection points are distinct ort = tC . Denote this translated
cut by cut′r. If t = tC we know cut′r is centered on the line
which contains(k, l). As before, we know every link which is
intersected bycut′′r must intersectcut′r. This is because as a
line segment and a circle are continuously translated away from
each other, the last non-empty intersection is an intersection of
their boundaries. Also, the links that intersectcut′′r at C remain
intersected throughout the translation becausecutr[px(t), py(t)]
intersectsC on 0 ≤ t ≤ tC . Thus,cut′r is a worst-case cut and
by Lemma 5 we know two links intersect this cut at exactly

cut′′r

cut∗r

cut′r

p(t)

C(k, l)

(i, j)

p(0)

p(tC)

Fig. 8. This figure illustrates a case in the proof of Lemma 7.cut∗r is first
translated in the direction of(i, j) to becomecut′′r which intersects only(k, l)
at exactly one point and intersects another link (in this case (i, j)) at exactly
the same point. Thencut′′r is translated alongp(t) towardsp(ta) to cut′r
such that[x′, y′] lies on the line which contains(k, l).

cut′′r

cut∗r

cut′r

p(t)

(k, l)
(i, j)

p(0)

Fig. 9. This figure illustrates a case in the proof of Lemma 7.cut∗r is first
translated in the direction of(i, j) to becomecut′′r which intersects(k, l) at
exactly one point. Thencut′′r is translated alongp(t) to cut′r where(i, j) and
(k, l) intersect only the boundary of the cut at two distinct points.

one point each and one of the following: i) these points are
distinct and one of them is a node or ii)[x′, y′] lies on a line
which contains one of the two links ([x′, y′] = p(tC)).

Now we consider the case wherecut′′r intersects exactly one
link at exactly one point (in addition to possibly other links that
intersect the interior ofcut′′r ). Similarly as above, denote this
link by (k, l). Let p(t) be a continuous parameterized closed
curve defined as before (see Fig. 9). Considercutr[px(t), py(t)]
wheret is the minimum value such that two links intersect only
the boundary of this cut. By Lemma 5 we know these two links
intersect this cut in at most one point each. So this case reduces
to the first case for which we know the lemma holds.

Lemma 8:There are at most20 circles of radiusr which
intersect two non-parallel line segments of positive length at
exactly one point each such that these points are distinct.

Proof: If a line segment intersects a circle at exactly one
point, then either the endpoint of the line segment intersects
the boundary of the circle or the line segment is tangent to
the boundary of the circle. This implies every circle which
satisfies the lemma falls into at least one of three cases: i) the
boundary of the circle intersects two endpoints, ii) the boundary
of the circle intersects an endpoint of one segment and the other
segment is tangent to the boundary of the circle, or iii) both
segments are tangent to the boundary of the circle.

In case one, if two endpoints do not correspond to the same
point, by geometry we know there are at most two circles
of radius r whose boundary contains these points. If these



endpoints correspond to the same point, no circle can intersect
this point and satisfy the lemma because this single point
belongs to two distinct line segments. In case two, given a
point and a line segment we know by geometry there are at
most two circles of radiusr for which the line segment is
tangent to and whose boundary contains the point. In case three,
given two non-parallel line segments the lines containing these
segments divide the plane into four quadrants. There existsat
most one circle tangent to both lines at each of these quadrants.
Thus, there are at most four circles tangent to both the line
segments. Since for a pair of non-parallel line segments there
are four pairs of endpoints, four endpoint-segments pairs,and
one segment-segment pair, we know there exists at most20
circles which may satisfy the lemma.

Note that the bound above is a simple upper bound on the
number of possible circles and can possibly be further reduced.

Using the above lemmas, we now prove Theorem 2.
Proof of Theorem 2:The lemmas presented in this section

imply there exists a worst-case cut which intersects a link
at exactly one point such that the center of this cut lies on
the line which contains this link or there exists a worst-case
cut which intersects two links at exactly one point and at
least one of the following: (i) at least two of the points are
distinct and are not diametrically opposite or (ii) at leasttwo
of the points are distinct and one of them is a node. Algorithm
WCGM enumerates all these possible cuts. It considers each
link, O(N2), and finds both cuts which intersect the link at
exactly one point and whose center lies on the line which
contains this link. Then it considers every combination of two
links, O(N4), and if the links are not parallel it finds every cut
(if any exist) which intersect each of the two links at exactly
one point such that these points are distinct. By Lemma 8 we
know there are at most20 of these cuts for every pair of
links. If the links are parallel, we need only consider circles
that intersect one of the links at exactly one point and whose
boundary intersects the other links endpoint. In total, Algorithm
WCGM considersO(N4) cuts and since naively checking each
cut for the total expected capacity removed takesO(N2), the
algorithm has a total running time ofO(N6).

As mentioned in Section III-B, the formulation of the GNIC
Problem, presented in (2), can be slightly modified in order
to accommodate theATTR, MFST, and AMF performance
measures. This modification is done in exactly the same way
as it was done for the GNIL Problem (see Section V-B).

VII. N UMERICAL RESULTS

In this section we present numerical results that demonstrate
the use of the algorithms presented in sections V and VI.
These results shed light on the vulnerabilities of a specificfiber
network. Clearly, the algorithms can be used in order to obtain
results for additional networks or for a combined fiber plantof
several operators. The results were obtained using MATLAB.

We used Algorithm WLGM, presented in Section V, to
compute worst-case cuts under theTEC, ATTR, MFST ,
andAMF performance measures for a fiber plant of a major
network provider [16]. In all cases, we found that the results

Fig. 10. Line segments cuts optimizingTEC for h = 2 - the red cuts
maximizeTEC and the black lines are nearly worst-case cuts.

Fig. 11. Line segments cuts optimizing theATTR for h = 2 - the red cuts
minimize ATTR and the black lines are nearly worst-case cuts.

are intuitive. We also used Algorithm WCGM, presented in
Section VI, to compute worst-case circular cuts under theMFST
performance measure for the same fiber plant. We found these
circular cuts are in similar locations to their line segment
counterparts. All distance units mentioned in this sectionare in
longitude and latitude coordinates (one unit is approximately
60 miles) and for simplicity we assume latitude and longitude
coordinates are projected directly to[x, y] pairs on the plane.
We also assume that all the link capacities are equal to 1.

Fig. 10 presents line segment cuts ofh = 2 which maximize
the TEC performance measure. As expected, we find that
TEC is large in areas of high link density, such as areas in
Florida, New York, and around Dallas. Fig. 11 presents line
segment cuts ofh = 2 which minimize theATTR performance
measure.ATTR is smallest where parts of the network are
disconnected, such as at the southern tip of Texas, Florida
and most of New England. This is intuitive since in order to
decrease theATTR, the graph must be split and under a small
cut, only small parts of the graph can be removed.

Fig. 12 illustrates line segment cuts ofh = 4 which minimize
the MFST performance measure between Los Angeles (s)
and New York City (NYC) (t). Removal of thes and t nodes
themselves is not considered as this is a trivial worst-case
cut. We found thatMFST is smallest directly around Los
Angeles and NYC as well as in Colorado, Utah, Arizona, New
Mexico, and Texas. There are also cuts in the East Coast which
completely disconnect NYC from Los Angeles without actually
going through NYC. The cuts in the southwest are intuitive
since the network in that area is very sparse. In some sense,
the fact that in this case we obtain expected results validates



Fig. 12. Line segments cuts optimizingMFST between Los Angeles and
NYC for h = 4 - the red cuts minimizeMFST and the black lines are nearly
worst-case cuts. Cuts which intersect the nodes representing Los Angeles or
NYC are not shown.

Fig. 13. Line segments cuts optimizing theAMF for h = 2 - the red cuts
minimize AMF and the black lines are nearly worst-case cuts.

the assumptions and approximations.
We note that different networks (e.g., networks in Europe or

Asia) have a different structure than the sparse structure of the
southwest U.S. network. In such cases, the solution will not
be straightforward. In order to demonstrate it, we will discuss
below theMSFT measure between NYC and Forth-Worth.
Before that, we present in Fig. 13 line segment cuts ofh =
2 which minimize theAMF performance measure.AMF is
smallest in the southwest as well as in Florida and New York.

Finally, we tested how line segment cuts compare to circular
cuts. Using Algorithm WCGM we found circular cuts ofr = 2
which minimize theMFST performance measure between Los
Angeles and NYC (see Fig. 14). Our results were similar to the
line segment case; worst-case circular cuts were found close
to both to Los Angeles and NYC. The southwest area also
appeared to be vulnerable, just as in the line segment case.

As mentioned above, we tested theMFST measure for
circular cuts between Fort Worth and NYC (see Fig. 15). Due to
the complexity of the network along the east coast, the results
were less straightforward than in the Los Angles-NYC case.

VIII. C ONCLUSIONS

Motivated by applications in the area of network robustness
and survivability, in this paper, we focused on the problem
of geographical network inhibition. Namely, we studied the
properties and impact of geographical disasters that can be
represented by either a line segment cut or a circular cut in
the physical network graph. We considered a general graph
model in which nodes are located on the Euclidian plane and

Fig. 14. The impact of circular cuts of radius 2 on theMFST between Los
Angeles and NYC. Red circles represent cuts that result inMFST = 0 and
black circles result inMFST = 1. Cuts which intersect the nodes representing
Los Angeles or NYC are not shown.

Fig. 15. The impact of circular cuts of radius 2 on theMFST between Fort
Worth and NYC. Red circles represent cuts that result inMFST = 0, black
circles result inMFST = 1, and yellow circles result inMFST = 2. Cuts
which intersect the nodes representing Fort Worth or NYC arenot shown.

studied two related problems in which cuts are modeled as
line segments or as circles. For both cases, we developed
polynomial-time algorithms for finding worst-case cuts. We
used the algorithms to obtain numerical results for various
performance measures.

Our approach provides a fundamentally new way to look
at network survivability under disasters or attacks that takes
into account the geographical correlation between links. Some
future research directions include the analytical consideration of
arbitrarily shaped cuts and the use of computational geometric
tools for the design of efficient algorithms. Moreover, we plan
to study the impact of geographical failures on the design of
survivable components, networks, and systems.
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