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Abstract—Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to phyalic
attacks, such as an Electromagnetic Pulse (EMP) attack. Shaeal-
world events happen in specific geographical locations andistupt
specific parts of the network. Therefore, the geographicaldyout of
the network determines the impact of such events on the netwk's
connectivity. In this paper, we focus on assessing the vulrability
of (geographical) networks to such disasters. In particulg we aim
to identify the most vulnerable parts of the network. That is, the
locations of disasters that would have the maximum disruptie
effect on the network in terms of capacity and connectivity.We
consider graph models in which nodes and links are geograpbally Fig. 1.
located on a plane, and model the disaster event as a line segnt
or a circular cut. We develop algorithms that find a worst-
case line segment cut and a worst-case circular cut. Then, we

obtain numerical results for a specific backbone network, tiereby g |ogical attacks (e.g., viruses and worms), and therednyd

demonstrating the applicability of our algorithms to real-world 1 1he |ogical Internet topology. There have also been some
networks. Our novel approach provides a promising new diretion

The fiber backbone operated by a major U.S. networkigeo [16].

for network design to avert geographical disasters or attaks. attempts to model the Internet using_geographical notid)ﬁ_}s [
Index Terms—Network survivability, geographic networks, [29] Yet, these works do not consider the effect of failures
fiber-optic, Internet, Electromagnetic Pulse (EMP). that are geographically correlated. Finally, [22] studithe
network inhibition problem in which a set of links has to be
I. INTRODUCTION removed from a graph such that the effect on the graph will

The global communications infrastructure is primarily éds P& maximized. Yet, to the best of our knowledge, the network

on fiber-optic networks, and as such has physical vulneradhibition _problem was not .studled under the assumption of
ities. Fiber links and backbone nodes can be destroyed $§o9raphically correlated failures.
anything from Electromagnetic Pulse (EMP) attacks [144][2 Since disasters affect a specific geographical area, they
to dragging anchors [6], [27]. Such real-world disasterspea  Will result in failures of neighboring network components.
in specific geographic locations, and therefore, the geitcal Therefore, one has to consider the effect of disasters on the
layout of the network affects their impact. For example, aphysical layer rather than on the network layer (i.e., tfeatf
EMP is an intense energy field that can instantly overlo&h the fibers rather than on the logical links). It should beedo
or disrupt numerous electrical circuits at a large distancéat fibers are subject to regional failures resulting fromngs
thereby affecting electronic components in a large gedg'capSUCh as earthquakes, floods, and even an EMP attack; as these
area [28]. Hence, such an attack over a U.S. city which isnaay lead to failure of the electrical circuits (e.g., ampli§)
telecommunications hub would have a disastrous impacten that are needed to operate the fiber plant [28].
U.S. telecommunications capabilities. Our approach isaim g Our long-term goal is to understand the effect of a regional
insight into robust network design by developing the nemsss failure on the bandwidth, connectivity, and reliability dfe
theory to find the most geographically vulnerable areas oflaternet, and to expose the design tradeoffs related toanktw
network. This can provide important input to the developtnesurvivability under a disaster with regional implicatior&ich
of network design tools and can support the efforts to migigatradeoffs may imply that in certain cases there may be a need
the effects of regional disasters. to redesign parts of the network while in other cases there
There are several works on the topology of the Internet & a need to protect electronic components in critical areas
a random graph [3] and on the effect of link failures in thes@.g., protecting against EMP attacks by shielding [144])2
graphs [8], [17] (for more details see Section Il). Howeveln this paper, we are interested in the location of geogiaghi
most of these works are motivated by failures of routers duaksasters that have the maximum effect on the network, mger



of capacity and connectivity. That is, we want to identifigth  This paper is organized as follows. We briefly discuss rdlate
worst-case location for a disaster or an attack as well as v®rk in Section II. In Section lll, we introduce the network
effect on the network. models and formulate the geographical network inhibition
The global fiber plant has a complicated structure. Faroblems. In Section IV, we briefly discuss the solution fue t
example, Fig. 1 presents the fiber backbone operated bybipartite case. In Sections V and VI we study the general inode
major network provider in the U.S. (point-to-point fiberse arwith line segment and circular cuts. In Section VIl we preésen
represented by straight lines). We consider two graph nsodelmerical results. We conclude and discuss future research
which serve as an abstraction of the continental/underbea fidirections in Section VIII.
plant. In these models, nodes, links, and cuts are geogahi
located on a plane. In [21] we study a bipartite graph model , o -
(in the topological and geographical sense). That model isThe issue of petvyork survivability and resilience has been
analogous to the east and west coasts of the U.S., where nddggnsively studied in the past (e.g., [4], [12], [18], [3]d
on the left and right sides of the graph represent west arid gZderences therein). However, most of the previous workis t
coast cities (respectively) and the cities within the cuenit are 2'€@ and in particular in the area of physical topology and
ignored. Similarly, it can represent transatlantic or sgacific 1°€r networks (e.g., [19], [20]) focused onsaall number of
cables. Since vertical line segment cuts are simpler toyaeal fiPer failures On the contrary, in this paper we focus on events
we focus in [21] on such cuts. tha‘F cause a large number of failures in a specific geographic
However, the bipartite model does not consider the impd&gion (-9., [6], [14], [24], [27]). To the best of our knadge,
on nodes located within the continent; nor does it consider t[13] iS one of the only papers that considered geograplicall
impact of a disaster that is not simply a vertical cut. In thigerrelated failures. Yet, it focused on a specific routinigson.
paper, we relax thbipartite graph andvertical cut assumptions 1 ne theoretical problem most closely related to the problem
by considering a general model where nodes can be arbjtral{€ consider is known as theetwork inhibition problenj22].
located on the plane. Under this model, we consider twdnder that problem, each edge in the network has a destnuctio
problems. In the first one, disasters are modeled as lineeegnf©St and a fixed budget is given to attack the network. A
cuts (not necessarily vertical) in the network graph. In tH&2asible attack removes a subset of the edges, whose total
second one, disasters are modeled as circular areas in wilgftruction cost is no greater than the budget. The obgesiv

the links and nodes are affected. These general problems [find an attack that minimizes the value of a maximum flow in
be used to study the impact of disasters such as EMP attalfi@ graph after the attack. Several variants of this problesre

(circles) and tornadoes (line segments) more realisyicall studied in the past (see for example [23] and the review i [7]
We assume that a regional disaster affects the electrohigWever, as mentioned above, the removal of (geograp)call
components of the network within a certain region. Hence, tfi€ighboring links has not been considered (perhaps thestlos
fibers that pass through that region are effectively cut due 0 this concept is the problem formulated in [5]). _
such a disaster. There are various performance measures fo/nen the logical (i.e., IP) topology is considered, wide-
the effect of a cut. We consider the following: (i) the expett SPread failures have been extensively studied [8], [9]],[11
capacity of the removed links, (i) the average two-terrhinal 71- Most of these works consider the topo_logy of the Ingrn
reliability [25], (iii) the maximum possible flow between a@S @ random graph [3] and use percolation theory to study
given source-destination pair, and (iv) the average marimdhe effects of random link and node failures on these graphs.
flow between pairs of nodes. We show that although there arg® focus on the logical topology rather than on the physical
infinite number of cut locations, only a polynomial numbefPP0l0gy is motivated by failures of routers due to attacks
of candidate cuts have to be considered in order to identifyP¥ Viruses and worms. Based on various measurements (€.g.,
worst-case cut for these performance measures in any of (gl it has been recently shown that the topology of the

problems above. Thus, we are able to show that the location!Bfemet is influenced by geographical concepts [2], [18]]
a worst-case cut can be found by polynomial time algorithm-g.hese observatlons.motlvated the modeling of the Internet a
Finally, we present numerical results and demonstrateghe $c@l€ free geographical graph [26], [30]. Although theseleim
of these algorithms. We identify the locations of the warase M2y Prove useful in generatiriggical network topologies, we
line segment and circular cuts in the network presentedgn FA€cided to present numerical results basedreal physical
11 In particular, we illustrate the locations of cuts that opge  tPologies (i.e., the topology presented in Fig. 1).
the different performance measures described above. I11. M ODEL AND PROBLEM FORMULATION
The main contributions of this paper are the for.mulla_tllon of |n this section we present three geographical network inhi-
a new problem (termed as tlgepgraphmal_ networlf inhibition bition problems. The first problem assumes that the netwsrk i
problem), the design of algorithms for its solution, and thgi,aite in the topological and geographic sense and thet t
_demonstratlon of the obtained numerical solutlo_ns on a U'(,suts are vertical line segments. We then present two prablem
infrastructure. To the best of our knowledge, this paper afghere network links can be in almost arbitrary locations on
[21] are the first attempts to study this problem. the plane. In one of the problems, the disasters correspond t
lwe present results only for one major operator. The sameadetbgies IN€ S€gment cuts in any direction. In the other, the cuts are
can be used in order to obtain results for all other major atpes. modeled by arbitrarily placed circles on the plane.

Il. RELATED WORK



A. Bipartite Model with Vertical Line Segment Cuts The above problem can be formulated as a Mixed Integer

We define thegeometricbipartite graph model as follows. It Linear Program (MILP) [21]. Solving integer programs can
has a width of 1 and height (south-to-north)/ef. The height b€ computationally intensive. Yet, the geographical (getir)
of a left (west) node is denoted by;. Similarly, the height of nature of the BGNI Problem lends itself to relatively low com
a right (east) nodg is denoted by-;. Nodes cannot overlap; Plexity algorithms (see Section IV). Although in [21] we fae
thatisr; # r; Vi,j andl; #1; ¥ z’,j'. Denote the total number ©Nly on TEC measure, variants of the BGNI Problem can be
of nodes on the left and right side by. We also denote a formulated for performance measu®$TR MFST, and AMF
link from I; to ; as(i, j). We definep;; as the probability that (by def|n|t|on,'w_hen computing _these measures we assume that
link (i,j) exists, ande;; as the capacity of linki, j) where Pij € {0,1}Vi,5). In the bipartite model, the worst-case cut
cij € [0,00). In order to avoid considering the trivial case irHnhder some of these measures is trivial. However, in thergéne
which there are no links with positive capacity, we assuna¢ thmodel, a worst-case cut is non-trivial.
there_exist some and_j for Wh_ich CijPij > 0. We assume that g general Model
the disaster results in a vertical line segment cut of height

whose lowest point is at poirtr, y]. We denote this cut by . . .

i o . overlapping nodes on a plane. Let the location of nade
cuty (z,y). Such a cut removes all links which intersect it. Fo : . .

A .be given by the cartesian pajr;,y;]. Assume the points
clarity, in this paper we refer to the start and the end of & lin . ) .
. representing the nodes are in general form, that is no three
as nodes and the start and the end of a cut as endpoints. X . : , .
oints are collinear. Denote a link from nodd¢o node; by

There are many ways to define the effect of a cut on the . . . N
loss of communication capability in a network. We define th §>J)- We definep;; as the probability ofi, j) existing andc;;

performance measures and the worst-case cut as follows. ,?hs :hé cepa%ti/ ofi. j) whersgijv\el 0 OO)aV\]{.e agt]amtassum?
Definition 1 (Performance MeasuresFhe  performance - o CisPij =~ U Tor Somer and,. We Now define two types o

measures of a cut are (the last 3 are defined as the values r?nd;hel_correiﬁ:antmg pqublegs. { Cuts

the removal of the intersected links): €n dealing withrbitrary Lin€ Segment LUWSE assume
« TEC- The total expected capacity of the intersected Iinkéhat a disaster results in a line segment cut of lerigtihich

Starts at[z,y] and contains the poinf,w] (with [z,y] #

« ATTR- The average two terminal reliability of the net-[v’w])_ We define this cut asuty [z, ], [v. w]) (note there can

The general geometric graph model contains non-

work 2 A .
o« MFST- The maximum flow between a given pair of nodege {nf|n|tel){ many ways_to eXpress a single CUt).' A cutremoves
s andt. all links which intersect it. For brevity, we sometimes denthe

orst-case cututy, ([x*,y*], [v*, w*]) ascut;. We now define

« AMF - The average value of maximum flow between a he following problem and demonstrate its formulation.

pairs of nodes.
Definition 2 (Worst-Case Cut)Under a specific perfor- Geographical Network Inhibition by Line Segments (GNIL)
mance measure, &orst-case cytdenoted bycuty, (z*, y*), is Problem: Given a graph, cut length, link probabilities, and
a cut which maximizes/minimizes the value of the perfornean€apacities, find a worst-case cut under performance measure
measuré. TEC.
We now demonstrate the formulation of the following opti-
mization problem using th& EC performance measure.

Bipartite Geographical Network Inhibition (BGNI) Prob-

We define the following (0,1) variable:

1 if (4,7) is removed

lem: Given a bipartite graph, cut height, link probabilities, én zij([a,y], [v,w]) - = by CUth_([xa yl, [v,w])
capacities, find a worst-caseertical line segment cut under 0 otherwise
performance measufeEC, The solution to the GNIL optimization problem below is a
We define the following0, 1) variables: worst-case cut.
1 if (4,5) is removed bycuty, (z, y) max ;o Pijcij Zij ([, yl, [v, w])
zij(z,y) = , ‘
0 otherwise such that
The solution to the BGNI optimization problem below is an [z, y] # [v,w]
endpoint of the worst-case cut. VE—v)2+y—w?2<h
max Z(Z_J_) PijCijzii (T, y) z; < x < x; for some z andj"
such that yi <y <y, for some i and j 1)
0<z<1 When dealing withCircular Cutswe assume that a disaster
—h<y<hg results in a cut of radiug which is centered afx,y]. We

define this cut asut, (z,y). Such a cut removes all links which
2The two terminal reliability between two nodes is definedehas 1, if there intersect it (including the interior of the circle) We cile set
is a path between them and 0, otherwise [25]. . . . . o
SFor performance measurBEC, the worst-case cut obtains a maximumOf points for which the Euclidean d'Stance’"'aW‘ay from[x,y]
value, while for the rest, it obtains a minimum value. the boundary otut,.(x,y). For brevity, we sometimes denote



the worst-case cutut,(z*,y*) as cut’. We now define the
following problem and demonstrate its formulation.

Geographical Network Inhibition by Circles (GNIC) Prob-
lem: Given a graph, cut radius, link probabilities, and capaci-
ties, find a worst-case circular cut under performance measu
TEC.

Fig. 2. A geographical bipartite graph with two cutsity, (z*,y~) is @

: ; ; . vertically translated version ofuty (z*,y*). cuty(z*,y~), which has an
We define the foIIowmg (0’1) variable: endpoint on a link intersection, is guaranteed to intersaery link that
1 if (2 ]) is removed bycut (x y) cuty (z*, y*) intersects, since there exist no linkszdt from y* to yq.
) T b)
(%) 0 otherwise

The solution to the GNIC optimization problem below is théntersects. Thus, ifcut,(z*,y*) is a worst-case cut, then
center of a worst-case cut. cuty(z*, yo) is @ worst-case cut also. Using similar arguments,
we presented lemmas which show that any worst-case cut can

max » - ; - PijCij Zij ([, Y]) be translated such that the resulting cut is also worst-aade

such that has an endpoint at a link intersection or a node. The algurith
x; < x < x; for some i and j follows as a direct result.
y; <y <y for some i and j (2) Although this algorithm finds a worst-case cut, there may

- be other worst-case cuts that intersect the same total #gec

Similar GNIL and GNIC problems can be formulated for . : : .
ty of links. Th d ts of th tsd t neciés

performance measureATTR MFST, and AMF (for these apacity oTAnks. ' ne endpoints ot these CUts do Not Neeassa

o have to be on a link intersection or a node. Yet, there can@ot b
measures we assume that < {0,1}Vi,j). For example,

under MFST, flow conversation constraints should be addeéc‘icuwmh a higher value than the one obtained by the algorith

to the set of constraints, the flow through links for which, \vorstCASE LINE SEGMENT CUT — GENERAL MODEL
zij ([, y], [v,w]) = 1 is 0, and the flow betwees andt has

to be maximized. In sections V and VI we use the geometric In this section, we present a polynomial time algorithm for
nature of the GNIL and GNIC problems to show that under diinding the solution of the GNIL Problem; i.e., for finding a
these measures, we only need to check a polynomial numia@rst-case line segment cut in the general model. We show
of locations in order to find a worst-case cut. that we only need to consider a polynomial-sized subsetlof al
possible cuts. We first focus on tA&C performance measure
- _ ) _ and then discuss how to obtain a worst-case cut for other

In order to facilitate the discussion regarding the generglaasyres. Our methods are similar to the approach for gplvin
model, we now briefly discuss th€(N°) algorithm (to be he BGNI Problem, described in Section IV. In this section, a
introduced in [21]) for solving the BGNI Problem. In thisgrst-case cut refers to a worst-cdise segmentut.
section, a worst-case cut refers to a worst-caseical line
segmentut. A. TEC Performance Measure

In [21], we show that there exists a worst-case cut which . ) ]
has an endpoint at a link intersection or a node. An algorithm Before proceeding, note that the set of all possible cuts is
that solves the BGNI Problem simply evaluates the capadity g°MmpPact and the objective function in (1) takes on a finite num
every cut that has an endpoint on a link intersection or a nod¢" of bounded values. This leads to the following obsewati
The complexity of this algorithm i€©)(N6). This results from Ol_)servatmn 1:There always exists an optimal solution to
the following facts: (i) links are line segments and a paitieé (1) (i-€., @ worst-case cut).
segments can have at most one intersection point, residtiaig Below we present an algorithm that finds a worst-case line
mostO(N*) link intersections; (i) there are two candidate cut§égment cut under thEEC measure in the general model. This
per link intersection or a node (cuts have two endpointsj, aglgorithm considers all cuts that (i) have an endpoint omk li
therefore, the total number of candidate cuts is at mxgy);  intersection and contain a node not at the intersectiorhéive
(iii) since evaluating if a link intersects a cut tak€g1) time, an endpoint on a link intersection and another endpoint on a
finding the capacity of a candidate cut tak@6N?2). link, (iii) contain two distinct nodes and have an endpointzo

We now explain the methodology we use in [21] to develolﬂj“k, and (iv) contain a node and have both endpoints on links
the algorithm. Given a worst-case cut, we showed that there'We now use a number of steps to prove the theorem below.
exists a translation of this cut such that it is also worst- Theorem 1:Algorithm WLGM has a running time af(V®)
case and has an endpoint on a link intersection or a no@&d finds a worst-case line segment cut that is a solutioneto th
For example, considetut,(z*,y*) and the link intersec- GNIL Problem.
tion [z*,y,] In Fig. 2. There does not exist a link that Before proving the theorem we present some lemmas to
intersectscuty, (z*, y*) between[z*,y*] and [z*,y,]. There- reduce the set of candidate worst-case cuts.
fore, we know thatcut, (z*,y,), which is a vertical transla- Lemma 1: There exists a worst-case cut that contains a node
tion of cuty, (z*,y*), intersects every link whickut,(z*,y*) or has an endpoint at a link intersection.

IV. WORSTCASE CUT — BIPARTITE MODEL



Algorithm 1 Worst-Case Line Segment Cut in the Gener&onsidercut), ([z* + a, y* +b], [v* +a, w* +b]) andcut// ([z* —

Model (WLGM) c,y* — d],[v* — ¢,w* — d]) to be translated versions ofit}
1: input: h, height of cut such that (i)sign(a) = sign(c) and sign(b) = sign(d), (ii)
g vgorstﬁaseCapacnyCut- 0 there does not exist any nodes in the parallelogram defined by
2 for<_every link intersectiorjzx, y] do cut; and cut.;L (Which we de_note “parallelogran®”) e>.<cept
5. for every nodei such thatlz;, y;] # [z, yx] do those contained irut), and in the parallelogram defined by
6: L = Lu{cut that has an endpoint dnx, yx] and contains cutj and cut; (which we denote “parallelograr@™) except
[zi, yi]} those contained imut}, and (iii) no link intersectgi,, j,) or

N

for every (i, ;) do
8: L = Lu{cuts that have an endpoint ¢n, y.] and another
endpoint on(s, j)}

(iw, jw) In either parallelogram except amtj, or cut}. Since
a node does not exist within the interior of either paratieéon

9: for every (i, ) and nodek do all links intersected byut; must also cut one of the other three

10:  for every nodel such thatk # [ do edges of each parallelogram.

11: L = L U {cuts that have an endpoint ¢n j) and contain  Now choose the maximuna and ¢ such that the edge

" for[ive%;](ﬁzn(:z[)mgéﬂ]} ([z*,y*], [z* + a,y* + b]) of parallelogramB and the edge

13: L =1 u7{cuts that have an endpoint ai, 5), another ([x*,-y*], [ —¢,y"—d]) of parallelogramC are both paraIIe_I to
endpoint on(m,n), and containzy, yx]} the link (., j») and the parallelograms satisfy the constraints in

14: for everycuty, ([zk, yx], [vk, wk]) € L do the paragraph above. This implies betft] andcut; contain

15 call evaluateCapacityofCut@y, yx, vk, wx) a node or contain a point wheté,, j,) or (i, j.) intersects

16: return cut;,
Procedure evaluateCapacityofCut{r, yx, vk, wk)
17: capacityCut— 0

alink. Since(ia, jo) is parallel to both edge§z*, y], [»* +
a,y* + b)) and (2", y*], [¢* — ¢,y* — d])) and since(iu, ji,)

18: for every (i, ) do can cut at most one of the edgés*, w*], [v* +a, w* +b]) and
19:if zii([zn, yal, [vk, wi]) =1 then ([v*, w*], [v* — ¢, w* — d]) or be parallel to them (as they both
20: capacityCut— capacityCut+ c;;pi; lay on the same straight line), we know at least onenaf,

21: if capacityCut> worstCaseCapacityCuhen
22:  cuty «— cutp([zk, yx], [vk, wi])
23:  worstCaseCapacityCut- capacityCut

or cut}, intersects the same links that are intersected:y .

Therefore, we can choose b, ¢, andd such that eitherut),

or cuty is a worst-case cut and (i) contains a node (Fig. 3)

, or (ii) contains a point wher¢i,,, j,) or (i, j.) intersects a

cut} link. In the latter case, we can translate this worst-casencu
a similar fashion to the first case to construct a worst-case c
which satisfies the lemma. |
We now consider two cases of worst-case cuts. The first case
is a worst-case cut which has andpointat a link intersection.

g. 3. cut), contains a node as well as intersects all links whiah}; does. The second case is a worst-case cut witichtainsa node. In
both cases, let the node or link intersection that is in thie cu
be denoted byl. Lemma 2 considers the first case whelrés

Proof: Let cut; be a worst-case cut with endpoints givera link intersection.

by [z*,y*] and [v*,w*]. We now define some useful termi- Lemma 2:If there exists a worst-case cut that has an end-

nology. Let the links that intersectit} closest to the endpoint point on A, then (i) there exists a worst-case cut that has an

[z*,y*] be given by(i,, j») and let the closest point fo*, y*]  endpoint onA and has its other endpoint on a link or (i) there

where (i,, jo) intersectscut; be given by|z,,y,]. Let those exists a worst-case cut that has an endpointficand contains

links which intersectut;, furthest from the endpoinit=*, 4*] @ node that is no#l.

be given by(i,, j.,) and let the closest point t@*, w*] where Proof: Assume there exists a worst-case cut with endpoint

(iw, ju) intersectscut; be given by[z., y.,]. We consider two A, denoted byut;. Therefore, the other endpoint eft; must

cases, one where eithér,, j,) or (i, j.,) are not unique and be on the boundary of a circle of radiis Denote by6f the

the other wheréi,, j,) and (i., j.,) are unique. angle ofcut; in some coordinate system. Denote #ythe

In the first case, eithefi,,j.) Or (is,j.) are not uniqgue angles fromA to all nodes inside the circle and all intersections
for cut}. Without loss of generality, we assuni&,, j.) is not of links with the circle (including links tangent to the dig.
unique. We considerut), which is a translated version ofit; Choose)’ = 6; such thatj = argmin, |# —6;|. Choosecut;, to
such that it has an endpoints én,,y.] and on[v* + z, — be the cut with endpoint a1 and having lengtfh and angle)’.
¥, w* +yo — y*]. Since there exist no links betweér, y*] By definition of ¢’ and thef;’s, all links intersecting:ut; must
and[z., ya], we knowcut}, intersects at least as many links asilso intersectut), (because betweehandé’ no link intersects

cuty and thus is a worst-case cut. Fig. 2 shows the analogomih the circle and there exists no node within the interiér o

case for the bipartite model. that sector). Thussut}, is a worst-case cut. [ ]

In the second cas€j,j.) and (i,,j,) are both unique The following two lemmas consider the second case where
for cut}. If cut} contains a node, the lemma is satisfied. Idl is a node.

the following, assumeut; does not contain a node. Now we Lemma 3:If there exists a worst-case cut that contaifis

Fi



*
cuty,

cut},

Fig. 4. Translatecut; along its own direction until one of its endpoints _.

intersects a link; we call this new cutut,. Because every link remains Fig. 5. Slide an endpoint ofut} lright along L until it intersects a link
intersected during translationnt/, intersects all linkscut? does. intersection. This new cut is theut; on the right. We can also slide and

endpoint ofcut; left along L until it intersects a node. This new cut is the
cut), on the left.

then there exists a worst-case cut that containand has an

endpoint on some link. Cuticut/h
Proof: Let cut; be a worst-case cut that intersects

with endpoints given byz*, y*] and [v*,w*]. Let the links

that intersectcut} closest to the endpointc*,y*] be given

by (ia,jo) and let the closest point to*, y*| where (iq, jo)

intersectscut;, be given by[za,ya]. We considercut), which  Fig 6. siide an endpoint afut} along the top link until it can no longer

is a translated version afut; such that it has endpoints atintersect the bottom link. This new cut isit}, .

[Za,yo) @and atfvo* + x, — 2, w* 4+ yo, — y*]. Since there exist

no links betweer{z*, y*| and [z, y.], and because the same

line contains bothcut} and cut}, we know that every link of cutj; slides alonglL and the other endpoint intersects a link.

A

which intersectsut; also intersectsut), in the same location. |
Thus, cut}, is a worst-case cut which contaigs and has an  Using the lemmas above we now prove Theorem 1.
endpoint on a link (this endpoint iz, y.])- ] Proof of Theorem 1The lemmas presented in this section

Lemma 4:1f there exists a worst-case cut that contaits imply we only need to consider a polynomially sized set of
and has an endpoint on a link, then there exists a worst-c&sés. By Lemma 1 there are two possible cases of worst-case
cut which containsA, has an endpoint on a link, and at leastuts. The first case is a worst-case cut which has a endpoint at
one of the following holds: (i) the cut contains a node that @ link intersection. The second case is a worst-case cuthwhic
not A, (ii) one of the cut endpoints is also a link intersectiogontains a node. In the first case, Lemma 2 implies that for
that is notA4 , or (iii) the cut has both endpoints on links.  every link intersectionO(N*), there exists a possible worst-

Proof: Let cut} be a worst-case cut such that it contain§ase cut for every link and node(N?). In the second case,
A and has an endpoint on a link. ¢fit; has an endpoint on Lémmas 3 and 4 imply that for every node-link pait @nd
A, then Lemma 2 implies Lemma 4. Assumat; contains SOMe link L), O(N?), there exist several possible worst-case
A and has an endpoint on a link and doest have an cuts for every node and linkp(N?). Since naively checking
endpoint onA. Denote the link which contains this endpoingach cut for the total cut capacity tak€gN?), the algorithm
by L, and its endpoints byz,y1] and [z, y,]. Denote the has a total ru_nnin_g time ab(N®) (the first case provides the
point at whichcut; intersectsL by [z, ). Now ‘slide’ the greatest running time). L]
endpoint ofcut; along L so that this new cut still contains It should be noted that similarly to the bipartite case, al-

A. That is, consider the cut, of length, with endpoint at though the algorithm finds a worst-case cut, there may be othe
[az1 + (1 — a)zo, ayy + (1 — a)yo] and passing througH, for worst-case cuts with the same value. However, there careot b

0 < a < 1. Fora = 0 this is justcut}. We slide alongl by acut with a better value than the one obtained by the algorith
increasingz until a new cut, calledut’ , either has an endpoint
that ish away fromA (we cannot slide further) arut}, can no B. ATTR, MFST, and AMF Performance Measures

longer satisfy); ;) pijcijeut), = > ; pijcijeuty. Inthe  As mentioned in Section I11-B, the formulation of the GNIL
first case, the cut has both endpoints on links. In the secoRtbblem, presented in (1) should be slightly modified in orde
case,cutj, may no longer be able to slide alodgand be a to accommodate thATTR MFST, and AMF performance
worst-case cut, itut) has an endpoint o which is a link measures. We now briefly discuss how the algorithm has to
intersection (considered in Lemma 2)t), intersects a node be modified in order to obtain results for these problems. In
which is not A, or cut} has an endpoint o, and the other Section VII, we present numerical results obtained usimgeh
endpoint on a link (a link ‘goes out of reach’ frof). The first modified algorithms. Using the lemmas and theorem abowe, it i
two possibilities are demonstrated in Fig. 5. They imply), easy to show that only a polynomial number of candidate cuts
can have endpoint on a link intersection or can contain anotmeed to be checked in order to find the worst-case cut under any
node that is notd. Fig. 6 showscut) which containsA and of the performance measures. This is due to the fact that the
has both endpoints on links. This can occur when an endpop@rformance measures are monotonic. Therefore, any awialiti



link removed/added only increases/decreases the measdre Algorithm 2 Worst-Case Circular Cut in the General Model
all the arguments supporting our lemmas still hold. (WCGM)

For each potential cut some links and/or nodes are removed:. input: r, radius of cut
Hence, one has to update the network adjacency matrix. The§f, worstCaseCapacityCut- 0

. . T L
different operations have to be performed for each measure: ,. fo;_e\;{gry(i j) do

« ATTR- If the network is fully connected, the value of 5 L = LU {center[x,,y;] of every circle that intersect§, j)
ATTRis 1. Otherwise, one has to sum over all components at exactly one point and is centered on the line which costain

: : (4,9)}

the value ofk(k — 1), wherek is the number of nod_e§ N 6. for (k,1) such that(s, j) # (k,1) do

each of the components. Then the sum has to be divided by if (4,7) is parallel to(k,l) then

N(N —1). In order to verify connectivity or to count the s: L = LU {center[zy,y:] of every circle having nodé

number of nodes in each component, Breadth First Search or j on its boundary that intersect#, /) at exactly one

(BFS) algorithm or the adjacency matrix eigenvalues and, els%omt}

eigenvectors can be used. ) 3 10: = L U {center[z,y:] of every circle that intersects
« MFST - Run a max-flow algorithm (e.gQ(N*) [1]). (i,7) and(l, k) at exactly one point each such that these
o AMF - Run a max-flow algorithm for any node pair. points are distingt

11: for every (zx,yx) € L do

VI. WORSTCASE CIRCULAR CUT — GENERAL MODEL 12: call evaluateCapacityofCut(s, yi)

13: return cut;
In this section we present a polynomial time algorithm forocedure evaluateCapacityofCut{y, yx)
finding a solution of the GNIC Problem; i.e., for finding aigf f;pgsgﬁl;t‘;) %Io
worst-case circular cut in the general model. We show that W8. it minimum distance fron{i, j) to [z, yx] is < r then
only need to consider a polynomial-sized subset of all fssi 17 capacityCut— capacityCut+ c;;pi;
cuts. We focus on th@ EC performance measure and theni8: if capacityCut> worstCaseCapacityCiihen
briefly discuss how to obtain a worst-case cut for the othdf:  cut; < cut(zx, yx) _
performance measures. In this section, a worst-case @rsreff:  WorstCaseCapacityCut- capacityCut
to a worst-caseircular cut.
Before proceeding, note that the set of all possible cuts is
compact and the objective function in (2) takes on a finite num G4
ber of bounded values. This leads to the following obseowati
Observation 2:There always exists an optimal solution to ’
(2) (i.e., a worst-case cut).
Below, we present an algorithm which finds a worst-case &~
circular cut under th& EC' measure in the general model.
Theorem 2:Algorithm WCGM has a running time of Fig- 7. An example illustrating the observation in Lemmacét;. is a
. . L . _translated version oéut} such that[z’,y’] lies on the line which contains
O(N°®) and finds a worst-case circular cut which is a solutiofe intersected link andut’. intersects the link at exactly one point.
to the GNIC Problem.
Before proving the theorem, we present a useful lemma about
circles and line segments and then present some lemmas to Proof: Sincecut? is a worst-case cut and only intersects
reduce the set of candidate cuts. a single link, any cut which intersects the same link is also a
Lemma 5:If a line segment intersects only the boundary ofvorst-case cut. See Fig. 7. [ ]
a circle, then the line segment and circle intersect at &xact Lemma 7:If there exists a worst-case cut that intersects at
one point. least two links, then there exists a worst-case cut, denoyed
Proof: Proof by contradiction. Assume a line segmentut’, that intersects at least two links at exactly one point each
intersects only the boundary of a circle and this intersecti and at least one of the following holds: (i) at least two of the
contains more than one point. Since a line segment and & cingbints are distinct and are not diametrically opposite, &ii
are both convex, their intersection must be convex as wdbast two of the points are distinct and one of them is a node,
However, we assumed at least two points on the boundaryaf (iii) [z’,4'] lies on a line which contains one of the two
the circle are in the intersection. The fact that the inteliesa  links.
must be convex implies the chord connecting these two pointsThe proof of the lemma above is similar to the proofs of
must be in the intersection as well. However, we also assunmtbé lemmas in Section V. Essentially, it is shown that we can
only the boundaries intersect and since part of the chord istranslate a worst-case cut such that it remains a worstaase
the interior of the circle this leads to a contradiction. m® and satisfies the properties in the lemma.
Lemma 6:If there exists a worst-case cut, denotedchy;, Proof: Let a link which intersectgut} have endpoints
which intersects exactly one link, then there exists a wease given by [z;,y;] and [z;,y;]. Considercut,[z* + h(z; —
cut, denoted byut,., which intersects that link at exactly onez;), y* + h(y; — v;)] whereh is the minimum value such that
point such thafx’, y'] lies on the line which contains the link.only the boundaries of this cut and some link intersect. Beno

/'



this translation ofcut* by cut! and note by Lemma 5 this
cut must intersect at least one link at exactly one point (see
Fig. 9). Every link which is intersected hyut” must intersect
cut!” because as a line segment and a circle are continuously
translated away from each other, the last non-empty intécse

is an intersection of their boundaries. Thast!” is also a worst-
case cut. In the proceeding we consider two cases. In the first
case we assumeit! intersects at least two links at exactly one

point each and in the second case we assumf intersects Fig. 8. This figure illustrates a case in the proof of Lemmait;: is first

exactly one link at exactly one point. translated in the direction df, j) to becomecut!’ which intersects onlyk, [)
. ) o at exactly one point and intersects another link (in thisddsy)) at exactly
We first consider the case whetet, intersects at least two the same point. Thenut” is translated along(t) towardsp(ta) to cut’,

links at exactly one point each (in addition to possibly othéuch thatfz’,y’] lies on the line which containgk, [).
links that intersect the interior ofut!’). Denote one of the
points by A and another byB. If A and B are distinct and
not diametrically opposite, the conditions in the lemma are
satisfied. Now we will consider two sub-cases. In the first sub
case, we assumé and B reside in two diametrically opposing
points on the circle and in the second sub-case we assume
and B are not distinct. In the first sub-case, if eithéror B is

a node, the lemma holds true. If neithéror B are nodes, then

A and B are diametrically opposing points where parallel links
are tangent teut!’. Denote one of these parallel links biy ;).
Now considercut, [z” + h(z; — z;),y" + h(y; — v;)] where

h is the minimum value such that two links intersect only the
boundary of this cut at distinct and non-diametrically ofipg Fig. 9. This figure illustrates a case in the proof of Lemmait} is first
points or two links intersect only the boundary of this cud antranslated in the direction”d_fi,j) to becomecut!” which jntersects(k_,l) at
one of these intersection points is a node. Denote this|atus ?2""5“?;“%?;2?'2:“; Tﬁguggufdt;?ﬁ?ﬁi aclspg(%éodﬁgﬁggtv Tg,ﬁg” and
cut by cut].. Now, one of the following must hold: eithent,,

intersects the parallel links at exactly one point each wloere

of these points is a node, or a link which intersected theimte gne point each and one of the following: i) these points are
of cut;’ now intersectgut;. at exactly one point such thatit;  distinct and one of them is a node or i, /] lies on a line
intersects two links at exactly one point each such that #tey which contains one of the two linksa(, '] = p(tc)).
not diametrically opposite. Now we consider the case wheret” intersects exactly one

In second sub-case, two links intersect the circle at a sindink at exactly one point (in addition to possibly other Ithat
point, C. This impliesC' is an endpoint of at least one of theséntersect the interior otut”). Similarly as above, denote this
links. Now choose a link with an endpoint @and denote the link by (k,1). Let p(¢) be a continuous parameterized closed
link by (k,1). Let p(t) be a continuous parameterized closedurve defined as before (see Fig. 9). Consider.[p,(t), py(t)]
curve which is always a distanegrom (k, 1) such thap(0) = wheret is the minimum value such that two links intersect only
[z”,y"] andp(tc) wherete > 0 is the point onp(¢) closest the boundary of this cut. By Lemma 5 we know these two links
to C' which intersects the line that contaif¥s,[) (see Fig. 8). intersect this cut in at most one point each. So this casecesdu
Let p,(t) andp,(t) denote thexr andy components ofp(¢) to the first case for which we know the lemma holds. =
respectively. Sinceut! intersectsC, we know [z, y"] is on Lemma 8:There are at mosk0 circles of radiusr which
a semi-circular shaped part p{t) (these are the only parts ofintersect two non-parallel line segments of positive lanat
p(t) that arer units away from an endpoint af:,7)). Now exactly one point each such that these points are distinct.
considercut, [p,(t), py (t)] wheret is the minimum value such Proof: If a line segment intersects a circle at exactly one
that two links intersect only the boundary of this cut andsthe point, then either the endpoint of the line segment intdssec
intersection points are distinct o= t. Denote this translated the boundary of the circle or the line segment is tangent to
cut by cut!.. If t = tc we knowcut!. is centered on the line the boundary of the circle. This implies every circle which
which containgk, 1). As before, we know every link which is satisfies the lemma falls into at least one of three casekei) t
intersected bycut!” must intersectut’.. This is because as aboundary of the circle intersects two endpoints, ii) thermary
line segment and a circle are continuously translated aveam f of the circle intersects an endpoint of one segment and tier ot
each other, the last non-empty intersection is an intémseof segment is tangent to the boundary of the circle, or iii) both
their boundaries. Also, the links that interseat! at C' remain segments are tangent to the boundary of the circle.
intersected throughout the translation because[p.. (t), p, (t)] In case one, if two endpoints do not correspond to the same
intersects” on 0 < ¢ < ¢¢. Thus,cut!. is a worst-case cut and point, by geometry we know there are at most two circles
by Lemma 5 we know two links intersect this cut at exactlpf radius » whose boundary contains these points. If these




endpoints correspond to the same point, no circle can exters
this point and satisfy the lemma because this single po
belongs to two distinct line segments. In case two, given
point and a line segment we know by geometry there are
most two circles of radiug for which the line segment is
tangent to and whose boundary contains the point. In case,thi
given two non-parallel line segments the lines containivesé
segments divide the plane into four quadrants. There eatsts
most one circle tangent to both lines at each of these quesdra
Thus, there .are at most .four circles tange_nt to both the l“#i@. 10. Line segments cuts optimizinGEC for h = 2 - the red cuts
segments. Since for a pair of non-parallel line segment® the,aximize 7 £ and the black lines are nearly worst-case cus.
are four pairs of endpoints, four endpoint-segments paing,
one segment-segment pair, we know there exists at Rfbst
circles which may satisfy the lemma. |

Note that the bound above is a simple upper bound on t
number of possible circles and can possibly be further reduc

Using the above lemmas, we now prove Theorem 2.

Proof of Theorem 2The lemmas presented in this sectiol

imply there exists a worst-case cut which intersects a lir
at exactly one point such that the center of this cut lies ¢
the line which contains this link or there exists a worstecas
cut which intersects two links at exactly one point and ~
least one of the following: (i) at least two of the points argig. 11. Line segments cuts optimizing tR&'T'R for h = 2 - the red cuts
distinct and are not diametrically opposite or (ii) at letsb minimize ATTR and the black lines are nearly worst-case cuts.
of the points are distinct and one of them is a node. Algorithm
WCGM enumerates all these possible cuts. It considers each
link, O(N?), and finds both cuts which intersect the link aére intuitive. We also used Algorithm WCGM, presented in
exactly one point and whose center lies on the line whickection VI, to compute worst-case circular cuts undeMRST
contains this link. Then it considers every combinationved t performance measure for the same fiber plant. We found these
links, O(N*), and if the links are not parallel it finds every cugircular cuts are in similar locations to their line segment
(if any exist) which intersect each of the two links at exgactlcounterparts. All distance units mentioned in this sectiomin
one point such that these points are distinct. By Lemma 8 Wengitude and latitude coordinates (one unit is approxatyat
know there are at mos20 of these cuts for every pair of 60 miles) and for simplicity we assume latitude and longitud
links. If the links are parallel, we need only consider @scl coordinates are projected directly e, ] pairs on the plane.
that intersect one of the links at exactly one point and who¥ée also assume that all the link capacities are equal to 1.
boundary intersects the other links endpoint. In totalofiftam Fig. 10 presents line segment cutshof 2 which maximize
WCGM considers)(N*) cuts and since naively checking eachhe TEC performance measure. As expected, we find that
cut for the total expected capacity removed takisV?), the TEC is large in areas of high link density, such as areas in
algorithm has a total running time &f(N°). B Florida, New York, and around Dallas. Fig. 11 presents line

As mentioned in Section I1I-B, the formulation of the GNICsegment cuts of = 2 which minimize thedTT R performance
Problem, presented in (2), can be slightly modified in ord@fieasure. ATTR is smallest where parts of the network are
to accommodate théATTR MFST, and AMF performance disconnected, such as at the southern tip of Texas, Florida
measures. This modification is done in exactly the same wagd most of New England. This is intuitive since in order to
as it was done for the GNIL Problem (see Section V-B).  decrease thelTTR, the graph must be split and under a small
cut, only small parts of the graph can be removed.

Fig. 12 illustrates line segment cuts/of= 4 which minimize

In this section we present numerical results that demaestréghe M FST performance measure between Los Angel€s (
the use of the algorithms presented in sections V and \dnd New York City (NYC) (). Removal of thes andt nodes
These results shed light on the vulnerabilities of a spefiier themselves is not considered as this is a trivial worst-case
network. Clearly, the algorithms can be used in order toinbtecut. We found thatM FST is smallest directly around Los
results for additional networks or for a combined fiber plaiht Angeles and NYC as well as in Colorado, Utah, Arizona, New
several operators. The results were obtained using MATLABVexico, and Texas. There are also cuts in the East Coast which

We used Algorithm WLGM, presented in Section V, tacompletely disconnect NYC from Los Angeles without actyall
compute worst-case cuts under th&=C, ATTR, MFST, going through NYC. The cuts in the southwest are intuitive
and AM F performance measures for a fiber plant of a majaince the network in that area is very sparse. In some sense,
network provider [16]. In all cases, we found that the resulthe fact that in this case we obtain expected results vakdat

VIl. NUMERICAL RESULTS



Fig. 12. Line segments cuts optimizing/ F'ST between Los Angeles and Fig. 14. The impact of circular cuts of radius 2 on theF’ST between Los
NYC for h = 4 - the red cuts minimizé\/ F'ST and the black lines are nearly Angeles and NYC. Red circles represent cuts that resul/if'ST = 0 and
worst-case cuts. Cuts which intersect the nodes repregehtis Angeles or black circles result inV/ F'ST' = 1. Cuts which intersect the nodes representing
NYC are not shown. Los Angeles or NYC are not shown.

Fig. 13. Line segments cuts optimizing tWe\/ F" for h = 2 - the red cuts Fig. 15. The impact of circular cuts of radius 2 on theF'ST between Fort
minimize AM F and the black lines are nearly worst-case cuts. Worth and NYC. Red circles represent cuts that result4i” ST = 0, black
circles result inM F'ST = 1, and yellow circles result il ST = 2. Cuts
which intersect the nodes representing Fort Worth or NY Craxteshown.
the assumptions and approximations.

We note that different networks (e.g., networks in Europe
Asia) have a different structure than the sparse structitieeo
southwest U.S. network. In such cases, the solution will n
be straightforward. In order to demonstrate it, we will diss
below the M SFT measure between NYC and Forth-Worth
Before that, we present in Fig. 13 line segment cuts of
2 which minimize theAM F' performance measurelM F' is
smallest in the southwest as well as in Florida and New Yor

Finally, we tested how line segment cuts compare to circul

Qudied two related problems in which cuts are modeled as
line segments or as circles. For both cases, we developed
Bblynomial—time algorithms for finding worst-case cuts. We
used the algorithms to obtain numerical results for various
performance measures.

Our approach provides a fundamentally new way to look
at network survivability under disasters or attacks th&esa
f%to account the geographical correlation between linksn&

. ) X ture research directions include the analytical corrsititen of
CUt.S' Us!ng Algorlthm WCGM we found circular cuts of= 2 arbitrarily shaped cuts and the use of computational getenet
which minimize thel ST’ performance measure between I‘O§ools for the design of efficient algorithms. Moreover, warpl

Angeles and NYC (see Fig. 14). Qur results were similar to tf{g study the impact of geographical failures on the design of
line segment case; worst-case circular cuts were founcecl rvivable components, networks, and systems
to both to Los Angeles and NYC. The southwest area also ' ' '
appeared to be vulnerable, just as in the line segment case. ACKNOWLEDGMENTS
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