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Abstract—Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to physical
attacks, such as an Electromagnetic Pulse (EMP) attack. Such
real-world events happen in specific geographical locations and
disrupt specific parts of the network. Therefore, the geographical
layout of the network determines the impact of such events on
the network’s connectivity. In this paper, we focus on assessing
the vulnerability of (geographical) networks to such disasters. In
particular, we aim to identify the most vulnerable parts of the
network. That is, the locations of disasters that would havethe
maximum disruptive effect on the network in terms of capacity
and connectivity. We consider graph models in which nodes and
links are geographically located on a plane. First, we consider
a simplistic bipartite graph model and present a polynomial
time algorithm for finding a worst-case vertical line segment cut.
We then generalize the network model to graphs with nodes at
arbitrary locations. We model the disaster event as a line segment
or a disk and develop polynomial time algorithms that find a
worst-case line segment cut and a worst-case circular cut. Finally,
we obtain numerical results for a specific backbone network,
thereby demonstrating the applicability of our algorithms to real-
world networks. Our novel approach provides a promising new
direction for network design to avert geographical disasters or
attacks.

Index Terms—Network survivability, geographically correlated
failures, fiber-optic, Electromagnetic Pulse (EMP).

I. I NTRODUCTION

The global communications infrastructure is primarily based
on fiber-optic networks, and as such has physical vulnerabili-
ties. Fiber links and backbone nodes can be destroyed by any-
thing from Electromagnetic Pulse (EMP) attacks [14], [15],[31]
to dragging anchors [8], [36]. Such real-world disasters happen
in specific geographic locations, and therefore, the geographical
layout of the network affects their impact. For example, an
EMP is an intense energy field that can instantly overload
or disrupt numerous electrical circuits at a large distance,
thereby affecting electronic components in a large geographic
area [37]. Hence, such an attack over a U.S. city which is a
telecommunications hub would have a disastrous impact on the
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Fig. 1. The fiber backbone operated by a major U.S. network provider [22].

U.S. telecommunications capabilities. Our approach is to gain
insight into robust network design by developing the necessary
theory to find the most geographically vulnerable areas of a
network. This can provide important input to the development
of network design tools and can support the efforts to mitigate
the effects of regional disasters.

There are several works on the topology of the Internet as
a random graph [4] and on the effect of link failures in these
graphs [12], [23] (for more details see Section II). However,
most of these works are motivated by failures of routers due
to logical attacks (e.g., viruses and worms), and thereby, focus
on the logical Internet topology. There have also been some
attempts to model the Internet using geographical notions [21],
[39]. Yet, these works do not consider the effect of failures
that are geographically correlated. Finally, [29] studiedthe
network inhibition problem in which a set of links has to be
removed from a graph such that the effect on the graph will
be maximized. Yet, to the best of our knowledge, the network
inhibition problem was not studied under the assumption of
geographically correlated failures.

Since disasters affect a specific geographical area, they
will result in failures of neighboring network components.
Therefore, one has to consider the effect of disasters on the
physical layer rather than on the network layer (i.e., the effect
on the fibers rather than on the logical links). It should be noted
that fibers are subject to regional failures resulting from events
such as earthquakes, floods, and even an EMP attack; as these
may lead to failure of the electrical circuits (e.g., amplifiers)
that are needed to operate the fiber plant [37].

Our long-term goal is to understand the effect of a regional
failure on the bandwidth, connectivity, and reliability ofthe
Internet, and to expose the design tradeoffs related to network
survivability under a disaster with regional implications. Such
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tradeoffs may imply that in certain cases there may be a need
to redesign parts of the network while in other cases there
is a need to protect electronic components in critical areas
(e.g., protecting against EMP attacks by shielding [15], [31]).
In this paper, we are interested in the location of geographical
disasters that have the maximum effect on the network, in terms
of capacity and connectivity. That is, we want to identify the
worst-case location for a disaster or an attack as well as its
effect on the network.

The global fiber plant has a complicated structure. For
example, Fig. 1 presents the fiber backbone operated by a
major network provider in the U.S. (point-to-point fibers are
represented by straight lines). We consider two graph models
which serve as an abstraction of the continental/undersea fiber
plant. In these models, nodes, links, and cuts are geographically
located on a plane. Nodes are represented as points and links
are represented as line segments between these points. We
first study a bipartite graph model (in the topological and
geographical sense). That model is analogous to the east and
west coasts of the U.S., where nodes on the left and right sides
of the graph represent west and east coast cities (respectively)
and the cities within the continent are ignored. Similarly,it can
represent transatlantic or transpacific cables. Since vertical line
segment cuts are simpler to analyze, we focus initially on such
cuts and provide some motivating examples.

However, the bipartite model does not consider the impact
on nodes located within the continent; nor does it consider the
impact of a disaster that is not simply a vertical cut. Therefore,
we later relax thebipartite graph andvertical cut assumptions
by considering a general model where nodes can be arbitrarily
located on the plane. Under this model, we consider two
problems. In the first one, disasters are modeled as line segment
cuts (not necessarily vertical) in the network graph. In the
second one, disasters are modeled as circular areas in which
the links and nodes are affected. These general problems can
be used to study the impact of disasters such as EMP attacks
(circular disks) and tornadoes (line segments) more realistically.

We assume that a regional disaster affects the electronic
components of the network within a certain region. Hence, the
fibers that pass through that region are effectively cut due to
such a disaster. There are various performance measures for
the effect of a cut. We consider the following: (i) the expected
capacity of the removed links, (ii) the fraction of pairs of nodes
that remain connected, (iii) the maximum possible flow between
a given source-destination pair, and (iv) the average maximum
flow between pairs of nodes. We show that although there are
infinite number of cut locations, only a polynomial number
of candidate cuts have to be considered in order to identify a
worst-case cut for these performance measures in any of the
problems above. Thus, we are able to show that the location of
a worst-case cut can be found by polynomial time algorithms.It
should be noted that any other quantity that can be calculated
in polynomial time may be used as a performance measure.
Hence, measures such as concurrent maximum flow and other
measures that are derived from multicommodity flow problems
may also be used.

Finally, we present numerical results and demonstrate the
use of these algorithms. We identify the locations of the worst-
case line segment and circular cuts in the network presented
in Fig. 1.1 In particular, we illustrate the locations of cuts that
optimize the different performance measures described above.

The main contributions of this paper are the formulation of
a new problem (termed as thegeographical network inhibition
problem), the design of algorithms for its solution, and the
demonstration of the obtained numerical solutions on a U.S.
infrastructure. To the best of our knowledge, we are the firstto
attempt to study this problem.

This paper is organized as follows. We briefly discuss related
work in Section II. In Section III, we introduce the network
models and formulate the geographical network inhibition
problems. In Section IV, we consider a simple case of the
bipartite model and provide numerical examples that provide
insight into the location of a worst-case cut. In Section V,
we develop a polynomial-time algorithm for finding the worst-
case cuts in the bipartite model. In Sections VI and VII we
study the general model with line segment and circular cuts.
In Section VIII we present numerical results. We conclude and
discuss future research directions in Section IX.

II. RELATED WORK

The issue of network survivability and resilience has been
extensively studied in the past (e.g., [6], [18], [24], [41]and
references therein). However, most of the previous work in this
area and in particular in the area of physical topology and fiber
networks (e.g., [25], [26]) focused on asmall number of fiber
failures or on the concept ofShared Risk Link Group(SRLG)
[20]. On the contrary, in this paper we focus on events that
cause a large number of failures in a specific geographical
region (e.g., [8], [15], [31], [36]). To the best of our knowledge,
geographically correlated failureshave been considered only
in a few papers and under very specific assumptions [2], [19],
[38].

The theoretical problem most closely related to the problem
we consider is known as thenetwork inhibition problem[29].
Under that problem, each edge in the network has a destruction
cost, and a fixed budget is given to attack the network. A
feasible attack removes a subset of the edges, whose total
destruction cost is no greater than the budget. The objective is
to find an attack that minimizes the value of a maximum flow in
the graph after the attack. A few variants of this problems were
studied in the past (e.g., [9], [11], [30]). However, as mentioned
above, the removal of (geographically) neighboring links has
been rarely considered [7], [33]. One of the first and perhaps
the closest to this concept is the problem studied in [34].

When the logical (i.e., IP) topology is considered, wide-
spread failures have been extensively studied [12], [13], [17],
[23]. Most of these works consider the topology of the Internet
as a random graph [4] and use percolation theory to study
the effects of random link and node failures on these graphs.

1We present results only for one major operator. The same methodologies
can be used in order to obtain results for all other major operators.
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Fig. 2. A bipartite network and an example of a cut.

The focus on the logical topology rather than on the physical
topology is motivated by failures of routers due to attacks
by viruses and worms. Based on various measurements (e.g.,
[16]), it has been recently shown that the topology of the
Internet is influenced by geographical concepts [3], [21], [39].
These observations motivated the modeling of the Internet as a
scale free geographical graph [35], [40]. Although these models
may prove useful in generatinglogical network topologies, we
decided to present numerical results based onreal physical
topologies (i.e., the topology presented in Fig. 1).

III. M ODEL AND PROBLEM FORMULATION

In this section we present three geographical network inhi-
bition problems. The first problem assumes that the network is
bipartite in the topological and geographic sense and that the
cuts are vertical line segments. We then present two problems
where network links (represented as line segments) can be in
almost arbitrary locations on the plane. In one of the problems,
the disasters correspond to line segment cuts in any direction.
In the other, the cuts are modeled by arbitrarily placed circular
disks on the plane.

A. Bipartite Model with Vertical Line Segment Cuts

We now define thegeometricbipartite graph. It has a width
of 1 and height (south-to-north) ofhG. The height of a left
(west) nodei is denoted byli. Similarly, the height of a right
(east) nodej is denoted byrj . Nodes cannot overlap and must
have non-negative height; that isri 6= rj ≥ 0 ∀ i, j and li 6=
lj ≥ 0 ∀ i, j. Denote the total number of nodes on the left and
right side byN . We denote a link from nodei to nodej as
(i, j) and let(i, j) be represented by a line segment from[0, li]
to [1, rj ]. We definepij as the probability that link(i, j) exists,
and cij as the capacity of link(i, j) where cij ∈ [0,∞). To
avoid considering the trivial case in which there are no links
with positive capacity, we assume that there exist somei and
j for which cijpij > 0. We assume that the disaster results in
a vertical line segment cut of heighth whose lowest point is
at point [x, y]. We denote this cut bycuth(x, y). Such a cut
removes all links that intersect it. For clarity, in this paper we
refer to the start and the end of a link as nodes and the start and
the end of a cut as endpoints. Fig. 2 demonstrates a specific
construction of the model and an example of a cut.

There are many ways to define the effect of a cut on the
loss of communication capability in a network. We define the
performance measures and the worst-case cut as follows.

Definition 1 (Performance Measures):The performance
measures of a cut are (the last 3 are defined as the values after
the removal of the intersected links):

• TEC - The total expected capacity of the intersected links.
• ATTR - The fraction of pairs of nodes that remain con-

nected (this is similar to the average two-terminal reliabil-
ity of the network2).

• MFST - The maximum flow between a given pair of nodes
s and t.

• AMF - The average value of maximum flow between all
pairs of nodes.

Definition 2 (Worst-Case Cut):Under a specific perfor-
mance measure, aworst-case cut, denoted bycuth(x∗, y∗), is
a cut which maximizes/minimizes the value of the performance
measure.3

We now demonstrate the formulation of the following opti-
mization problem using theTEC performance measure.

Bipartite Geographical Network Inhibition (BGNI) Prob-
lem: Given a bipartite graph, cut height, link probabilities, and
capacities, find a worst-case vertical line segment cut under
performance measureTEC.

We define the following(0, 1) variables:

zij(x, y) =

{

1 if (i, j) is removed bycuth(x, y)

0 otherwise

A solution to the BGNI optimization problem below is an
endpoint of a worst-case cut.

max
∑

(i,j) pijcijzij(x, y)

such that

0 ≤ x ≤ 1

−h ≤ y ≤ hG (1)

The above optimization problem can be formulated as a
Mixed Integer Linear Program (MILP) as follows. Define the
following (0,1) variables:

uij =

{

1 if (i, j) crosses the cut location (x) abovey

0 otherwise

dij =

{

1 if (i, j) crosses the cut location (x) below y + h

0 otherwise

For hG ≤ 1, the solution to the MILP below is a worst-case

2The two-terminal reliability between two nodes is the probability they
remain connected after random independent link failures [32].

3For performance measureTEC, the worst-case cut obtains a maximum
value, while for the rest, it obtains a minimum value.
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cut.

max
∑

(i,j)

pijcijzij

such that

(rj − li)x− (y − li) ≥ uij − 1 ∀i, j

(y + h− li)− (rj − li)x ≥ dij − 1 ∀i, j

uij + dij ≥ 2zij ∀i, j

0 ≤ x ≤ 1

−h ≤ y ≤ hG

uij , dij , zij ∈ {0, 1}

Solving integer programs can be computationally intensive.
Yet, the geographical (geometric) nature of the BGNI Problem
lends itself to relatively low complexity algorithms (see Sec-
tion V). Although we initially focus only on theTEC measure,
variants of the BGNI Problem can be formulated for perfor-
mance measuresATTR, MFST, andAMF (by definition, when
computing these measures we assume thatpij ∈ {0, 1} ∀i, j).
In the bipartite model, the worst-case cut under some of these
measures is trivial. However, in the general model, a worst-case
cut is non-trivial.

B. General Model

The general geometric graph model containsN non-
overlapping nodes on a plane. Let the location of nodei
be given by the cartesian pair[xi, yi]. Assume the points
representing the nodes are in general form, that is no three
points are collinear. Denote a link from nodei to nodej as
(i, j) and let(i, j) be represented by a line segment from[xi, yi]
to [xj , yj ]. We definepij as the probability of(i, j) existing
and cij as the capacity of(i, j) wherecij ∈ [0,∞). We again
assume thatcijpij > 0 for somei and j. We now define two
types of cuts and the corresponding problems.

When dealing withArbitrary Line Segment Cutswe assume
that a disaster results in a line segment cut of lengthh which
starts at [x, y] and contains the point[v, w] (with [x, y] 6=
[v, w]). We define this cut ascuth([x, y], [v, w]) (note there can
be infinitely many ways to express a single cut). A cut removes
all links which intersect it. For brevity, we sometimes denote the
worst-case cutcuth([x∗, y∗], [v∗, w∗]) ascut∗h. We now define
the following problem and demonstrate its formulation.

Geographical Network Inhibition by Line Segments (GNIL)
Problem: Given a graph, cut length, link probabilities, and
capacities, find a worst-case cut under performance measure
TEC.

We define the following (0,1) variable:

zij([x, y], [v, w]) =











1 if (i, j) is removed

by cuth([x, y], [v, w])

0 otherwise

A solution to the GNIL optimization problem below is a worst-
case cut.

max
∑

(i,j) pijcijzij([x, y], [v, w])

such that

[x, y] 6= [v, w]
√

(x− v)2 + (y − w)2 ≤ h

xi ≤ x ≤ xj for some i and j

yi ≤ y ≤ yj for some i and j (2)

When dealing withCircular Cutswe assume that a disaster
results in a cut of radiusr which is centered at[x, y]. We
define this cut ascutr(x, y). Such a cut removes all links which
intersect it (including the interior of the circle). We callthe set
of points for which the Euclidean distance isr away from[x, y]
the boundary ofcutr(x, y). For brevity, we sometimes denote
the worst-case cutcutr(x∗, y∗) as cut∗r . We now define the
following problem and demonstrate its formulation.

Geographical Network Inhibition by Circular Cuts (GNIC)
Problem: Given a graph, cut radius, link probabilities, and
capacities, find a worst-case circular cut under performance
measureTEC.

We define the following (0,1) variable:

zij(x, y) =

{

1 if (i, j) is removed bycutr(x, y)

0 otherwise

A solution to the GNIC optimization problem below is the
center of a worst-case cut.

max
∑

(i,j) pijcijzij([x, y])

such that

xi ≤ x ≤ xj for some i and j

yi ≤ y ≤ yj for some i and j (3)

Similar GNIL and GNIC problems can be formulated for
performance measuresATTR, MFST, and AMF (for these
measures we assume thatpij ∈ {0, 1} ∀i, j). For example,
under MFST, flow conversation constraints should be added
to the set of constraints, the flow through links for which
zij([x, y], [v, w]) = 1 is 0, and the flow betweens and t has
to be maximized. In sections VI and VII we use the geometric
nature of the GNIL and GNIC problems to show that under all
these measures, we only need to check a polynomial number
of locations in order to find a worst-case cut.

IV. A M OTIVATING EXAMPLE

In this section, we consider a simple case of the bipartite
model in which the network is fully connected (in the bipartite
sense), each side hasN/2 nodes,pij = 1, andcij = 1. We also
place nodes evenly on each side such that they are separated
by distancea. An example is shown in Fig. 3. We first obtain a
lower bound for the BGNI problem by considering cuts down
the center. Then, we provide numerical results for the BGNI
problem.



5

a

Fig. 3. An example of the fully connected bipartite graph with N = 8.
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Fig. 4. Number of links intersected (TEC) by a worst-case cut (cuth(x∗, y∗))
as a function of the cut height (h) in a bipartite graph with 15 nodes on each
side (N = 30).

A. A Lower Bound

In this simple model, we can bound the value ofTEC for the
worst-case cut by considering cuts with endpoints atx = 0.5.
In the very center of the graph there is an intersection ofN/2
links. a/2 units vertically up and down from this point, an
additional(N/2)− 1 links intersect. Anothera/2 units up and
down from these points, another(N/2)−2 links intersect. This
pattern continues until all of the links are included. Therefore,
the capacity removed by a worst-case cut of heighth is lower
bounded by:

N

2
+

⌊ 2h
a
⌋

∑

i=1

(
N

2
− 1− ⌊

i− 1

2
⌋). (4)

B. Intuition from Numerical Results

We now describe numerical solutions obtained for the BGNI
problem (1).4 We obtained solutions for a network with 15
nodes on each side (N = 30) and with a = 1 (hG = 14).
Fig. 4 describes the values ofTEC under the worst-case cut for
different cut heights,h (notice that forpij = 1 and cij = 1,
TEC is equivalent to the number of removed links). The result
is identical to the lower bound for the center cuts in (4). This
implies that a worst-case cut is located at the center of the
graph.

Next, we study the effect of the horizontal cut location on
TEC (the number of removed links) on the same network. Fig-
ures 5 and 6 illustrate the maximum number of removed links
versus the horizontal (x) position of the cut on the network. For
a given cut height (h), the maximum number of removed links

4These solutions were initially obtained using MATLAB’s genetic algorithms
and later on verified using the algorithm described in Section V.
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Fig. 5. The maximum number of removed links (TEC) as a function of thex-
location of the cut forh = 1.6. Note that the results were relatively monotonic,
with the worst-case cut appearing at the center.
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Fig. 6. The maximum number of removed links (TEC) as a function of the
x-location of the cut forh = 0.1. Note the two ‘spikes’ in the function at
x ≈ .3 andx ≈ .7.

at each horizontal position (x) is not decreasing monotonically
as we move away from the center. Withh = 1.6 the results
were relatively monotonic, with the worst-case cut appearing
at the center while the number of removed links more or less
descends from there (Fig. 5). When the cut height is reduced
to 0.1, significant local maxima begin to appear (Fig. 6). It
seems the smaller the cut height, the more pronounced these
local maxima are. This possibly results from large intersections
of links crossing at different horizontal locations in the graph.
Small cuts can cut these off-center intersections and remove a
large number of links but these small cuts are not as effective
elsewhere in the graph (where links do not intersect).

The results above motivate us to analytically study the effect
of the cut location on the removed capacity. In the following
sections, we focus on developing polynomial-time algorithms
for identifying a worst-case cut.

V. WORST-CASE CUTS - BIPARTITE MODEL

In this section we present anO(N6) algorithm for solving the
BGNI problem. The main underlying idea is that the algorithm
only needs to consider cuts which have an endpoint on a link
intersection or a node. Before proceeding, we note that the
set of all possible cuts is compact and the objective function
takes on a finite number of bounded values. This leads to the
following observation.

Observation 1:There always exists an optimal solution to
(1) (i.e., a worst-case cut).

Below, we present the algorithm which finds a worst-case
cut. It can be seen that the complexity of Algorithm WCBG is
O(N6). This results from the following facts: (i) links are line
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segments and a pair of line segments can have at most one inter-
section point (no three nodes are collinear), resulting in at most
O(N4) link intersections; (ii) there are two candidate cuts per
link intersection or node (cuts have two endpoints), and there-
fore, the total number of candidate cuts is at mostO(N4); (iii)
since evaluating1yk≤(rj−li)xk+li1yk+h≥(rj−li)xk+li (Line 8)
takesO(1) time and it has to be evaluated for all(i, j), finding
the capacity of a candidate cut takesO(N2).5

Algorithm 1 Worst-Case Cut in a Bipartite Graph (WCBG)
1: input: h, height of cut
2: worstCaseCapacityCut← 0
3: for every node location and link intersection[xk, yk] do
4: call evaluateCapacityofCut(xk, yk)
5: call evaluateCapacityofCut(xk, yk − h)

Procedure evaluateCapacityofCut(xk, yk)
6: capacityCut← 0
7: for every (i, j) do
8: if 1yk≤(rj−li)xk+li

1yk+h≥(rj−li)xk+li
= 1 then

9: capacityCut← capacityCut+ cijpij
10: if capacityCut≥ worstCaseCapacityCutthen
11: x∗ ← xk

12: y∗ ← yk
13: worstCaseCapacityCut← capacityCut

We now use a number of steps to prove the theorem below.
Theorem 1:Algorithm WCBG finds a worst-case cut which

is a solution to the optimization problem in (1).
Before proving the theorem, we introduce some useful

terminology and prove two supporting lemmas. Ifcuth(x, y)
intersects any links, the links which are intersected closest to
the endpoint[x, y] are denoted by(iα, jα) and the point where
they intersect the cut is denoted by[xα, yα] (see Fig. 7 for an
example). Let those links which intersectcuth(x, y) furthest
from the endpoint[x, y] be given by(iω, jω) and let the point
where they intersect the cut be given by[xω, yω]. Note that
(iω, jω) or (iα, jα) need not be unique. This is because[xω , yω]
or [xα, yα] can be a link intersection. It should be noted that
since the model assumes that there exists a link withpijcij > 0
for somei andj, all worst-case cuts must intersect at least one
link. This implies(iω, jω) and(iα, jα) exist for all worst-case
cuts.

Lemma 1: If there exists a worst-case cut,cuth(x
∗, y∗), such

that either(iω, jω) is not unique,(iα, jα) is not unique, or
x∗ ∈ {0, 1}, then there exists a worst-case cut which has an
endpoint on a node or a link intersection.

Proof: Assume (iα, jα) is not unique orx∗ ∈ {0, 1}
([x∗, yα] is a node or link intersection). Considercuth(x∗, yα)
which is a ‘slid up’ version of the worst-case cutcuth(x

∗, y∗).
cuth(x

∗, yα) intersects at least the same links ascuth(x
∗, y∗)

since, by definition of[xα, yα], there exist no links atx∗ from
y∗ to yα. Thus,cuth(x∗, yα) is also a worst-case cut and has
an endpoint on a node or link intersection. For an example,

5Computational geometry results can probably be used to reduce the com-
plexity of Algorithm WCBG. Particularly, [10] (based on [5]), enables counting
and locating all the intersections ofN2 line segments inO(N2 logN + I)
time, whereI is the number of line segment intersections. A modified version
of the algorithm of [10] can be used within Algorithm WCBG.

(iω, jω)(iω, jω)

(iα, jα)

[xω, yω]

[xα, yα]

cuth(x, y)

Fig. 7. Example showing(iω , jω) and (iα, jα). (iα, jα) is the lowest link
intersected by the cut and this intersection is at[xα, yα]. (iω , jω) are the
highest links intersected by the cut and this intersection is at [xω , yω ]. Note
(iω , jω) is not unique.

cuth(x
∗, y∗)

cuth(x
∗, yα)

Fig. 8. Example showing howcuth(x∗, yα) is a ‘slid up’ version of
cuth(x

∗, y∗). cuth(x∗, yα), which has an endpoint on a link intersection,
is guaranteed to intersect every linkcuth(x∗, y∗) does because there exist no
links at x∗ from y∗ to yα.

see Fig. 8. The case where(iω, jω) is not unique is analogous
except thatcuth(x∗, yω−h), which is a ‘slid down’ version of
cuth(x

∗, y∗), is considered.
Lemma 2: If there exists a worst-case cut,cuth(x

∗, y∗), such
that both(iω, jω) and (iα, jα) are unique, then there exists a
worst-case cut which has an endpoint on a link intersection or
node.

Proof: see Appendix A.
Basically, according to Lemma 2, if(iω, jω) and(iα, jα) are

both unique for a worst-case cut, we can find another worst-case
cut such that it has at least one endpoint on a link intersection
or node (see Fig. 9).

Using the above lemmas, we now prove Theorem 1.
Proof of Theorem 1:Since(iω, jω) and (iα, jα) exist for

all worst-case cuts, Lemmas 1 and 2 imply that we need only
check cuts which have endpoints at nodes or link intersections
to find a worst-case cut. Algorithm 1 checks all possible nodes
and intersections as endpoints, and therefore will necessarily
find also a worst-case cut.

We note that although algorithm WCBG finds a worst-case
cut, there may be other worst-case cuts with the same value.

cuth(x
∗, y∗)

cuth(x
′, yα(x

′))

Fig. 9. cuth(x
∗, y∗) is a worst-case cut and has a unique(iω , jω) and

(iα, jα). From this we are able to findcuth(x′, yα(x′)), a worst-case cut
which has an endpoint on a link intersection.
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The endpoints of these cuts do not necessarily have to be on
a link intersection or a node. However, there cannot be a cut
with a higher value than the one obtained by the algorithm.

VI. WORST-CASE L INE SEGMENT CUT – GENERAL MODEL

In this section, we present a polynomial time algorithm for
finding the solution of the GNIL Problem; i.e., for finding a
worst-case line segment cut in the general model. We show
that we only need to consider a polynomial-sized subset of all
possible cuts. We first focus on theTEC performance measure
and then discuss how to obtain a worst-case cut for other
measures. Our methods are similar to the approach for solving
the BGNI Problem, described in Section V. In this section, a
worst-case cut refers to a worst-caseline segmentcut.

A. TEC Performance Measure

Before proceeding, note that the set of all possible cuts is
compact and the objective function in (2) takes on a finite num-
ber of bounded values. This leads to the following observation.

Observation 2:There always exists an optimal solution to
(2) (i.e., a worst-case cut).

Below we present an algorithm that finds a worst-case line
segment cut under theTEC measure in the general model. This
algorithm considers all cuts that (i) have an endpoint on a link
intersection and contain a node not at the intersection, (ii) have
an endpoint on a link intersection and another endpoint on a
link, (iii) contain two distinct nodes and have an endpoint on a
link, and (iv) contain a node and have both endpoints on links.

Algorithm 2 Worst-Case Line Segment Cut in the General
Model (WLGM)

1: input: h, length of cut
2: worstCaseCapacityCut← 0
3: L← {}
4: for every link intersection[xk, yk] do
5: for every nodei such that[xi, yi] 6= [xk, yk] do
6: L = L ∪ {cut that has an endpoint at[xk, yk] and contains

[xi, yi]}
7: for every (i, j) do
8: L = L∪{cuts that have an endpoint at[xk, yk] and another

endpoint on(i, j)}
9: for every (i, j) and nodek do

10: for every nodel such thatk 6= l do
11: L = L ∪ {cuts that have an endpoint on(i, j) and contain

[xk, yk] and [xl, yl]}
12: for every (m,n) do
13: L = L ∪ {cuts that have an endpoint on(i, j), another

endpoint on(m,n), and contain[xk, yk]}
14: for everycuth([xk, yk], [vk, wk]) ∈ L do
15: call evaluateCapacityofCut(xk, yk, vk, wk)
16: return cut∗h
Procedure evaluateCapacityofCut(xk, yk, vk, wk)
17: capacityCut← 0
18: for every (i, j) do
19: if zij([xk, yk], [vk, wk]) = 1 then
20: capacityCut← capacityCut+ cijpij
21: if capacityCut≥ worstCaseCapacityCutthen
22: cut∗h ← cuth([xk, yk], [vk, wk])
23: worstCaseCapacityCut← capacityCut

cut∗h
cut′h

Fig. 10. cut′
h

contains a node as well as intersects all links whichcut∗
h

does.

We now use a number of steps to prove the theorem below.
Theorem 2:Algorithm WLGM has a running time ofO(N8)

and finds a worst-case line segment cut that is a solution to the
GNIL Problem.

Before proving the theorem we present some lemmas to
reduce the set of candidate worst-case cuts.

Lemma 3:There exists a worst-case cut that contains a node
or has an endpoint at a link intersection.

Proof: Let cut∗h be a worst-case cut with endpoints given
by [x∗, y∗] and [v∗, w∗]. We now define some useful termi-
nology. Let the links that intersectcut∗h closest to the endpoint
[x∗, y∗] be given by(iα, jα) and let the closest point to[x∗, y∗]
where(iα, jα) intersectscut∗h be given by[xα, yα]. Let those
links which intersectcut∗h furthest from the endpoint[x∗, y∗]
be given by(iω, jω) and let the closest point to[v∗, w∗] where
(iω, jω) intersectscut∗h be given by[xω, yω]. We consider two
cases, one where either(iα, jα) or (iω, jω) are not unique and
the other where(iα, jα) and (iω, jω) are unique.

In the first case, either(iα, jα) or (iω, jω) are not unique
for cut∗h. Without loss of generality, we assume(iα, jα) is not
unique. We considercut′h which is a translated version ofcut∗h
such that it has an endpoints on[xα, yα] and on[v∗ + xα −
x∗, w∗ + yα − y∗]. Since there exist no links between[x∗, y∗]
and [xα, yα], we know cut′h intersects at least as many links
as cut∗h and thus is a worst-case cut that satisfies the lemma.
Fig. 8 shows the analogous case for the bipartite model.

In the second case,(iα, jα) and (iω, jω) are both unique
for cut∗h. If cut∗h contains a node, the lemma is satisfied. In
the following, assumecut∗h does not contain a node. Now we
considercut′h([x

∗+a, y∗+b], [v∗+a, w∗+b]) andcut′′h([x
∗−

c, y∗ − d], [v∗ − c, w∗ − d]) to be translated versions ofcut∗h
such that (i)sign(a) = sign(c) and sign(b) = sign(d), (ii)
there does not exist any nodes in the parallelogram defined by
cut∗h and cut′h (which we denote “parallelogramB”) except
those contained incut′h and in the parallelogram defined by
cut∗h and cut′′h (which we denote “parallelogramC”) except
those contained incut′′h, and (iii) no link intersects(iα, jα) or
(iω, jω) in either parallelogram except oncut′h or cut′′h. Since
a node does not exist within the interior of either parallelogram
all links intersected bycut∗h must also cut one of the other three
edges of each parallelogram.

Now choose the maximuma and c such that the edge
([x∗, y∗], [x∗ + a, y∗ + b]) of parallelogramB and the edge
([x∗, y∗], [x∗−c, y∗−d]) of parallelogramC are both parallel to
the link (iα, jα) and the parallelograms satisfy the constraints in
the paragraph above. This implies bothcut′h andcut′′h contain
a node or contain a point where(iα, jα) or (iω, jω) intersects
a link. Since(iα, jα) is parallel to both edges([x∗, y∗], [x∗ +
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cut∗hcut′h

cut′h

h

A

Fig. 11. Translate an endpoint ofcut∗
h

along the circumference of the circle
until the cut intersects a node or the translated endpoint intersects a link; call
this new cutcut′

h
. Since every link which intersectscut∗

h
intersectscut′

h
,

cut′
h

is a worst-case cut.

a, y∗ + b]) and ([x∗, y∗], [x∗ − c, y∗ − d])) and since(iω, jω)
can cut at most one of the edges([v∗, w∗], [v∗+a, w∗+b]) and
([v∗, w∗], [v∗ − c, w∗ − d]) or be parallel to them (as they both
lay on the same straight line), we know at least one ofcut′h
or cut′′h intersects the same links that are intersected bycut∗h.
Therefore, we can choosea, b, c, andd such that eithercut′h
or cut′′h is a worst-case cut and (i) contains a node (Fig. 10)
or (ii) contains a point where(iα, jα) or (iω, jω) intersects a
link. In the latter case, we can translate this worst-case cut in
a similar fashion to the first case to construct a worst-case cut
which satisfies the lemma.

We now consider two cases of worst-case cuts. The first case
is a worst-case cut which has anendpointat a link intersection.
The second case is a worst-case cut whichcontainsa node. In
both cases, let the node or link intersection that is in the cut
be denoted byA. Lemma 4 considers the first case whereA is
a link intersection.

Lemma 4: If there exists a worst-case cut that has an end-
point onA, then (i) there exists a worst-case cut that has an
endpoint onA and has its other endpoint on a link or (ii) there
exists a worst-case cut that has an endpoint onA and contains
a node that is notA.

Proof: Assume there exists a worst-case cut with endpoint
A, denoted bycut∗h. Therefore, the other endpoint ofcut∗h must
be on rem: the boundary of a circle of radiush. Denote byθ
the angle ofcut∗h in some coordinate system. Denote byθi the
angles fromA to all nodes inside the circle and all intersections
of links with the circle (including links tangent to the circle).
Chooseθ′ = θj such thatj = argmini |θ−θi|. Choosecut′h to
be the cut with endpoint atA and having lengthh and angleθ′.
By definition ofθ′ and theθi’s, all links intersectingcut∗h must
also intersectcut′h (because betweenθ andθ′ no link intersects
with the circle and there exists no node within the interior of
that sector). Thus,cut′h is a worst-case cut (see Fig. 11).

The following two lemmas consider the second case where
A is a node.

Lemma 5: If there exists a worst-case cut that containsA
then there exists a worst-case cut that containsA and has an
endpoint on some link.

Proof: Let cut∗h be a worst-case cut that intersectsA
with endpoints given by[x∗, y∗] and [v∗, w∗]. Let the links
that intersectcut∗h closest to the endpoint[x∗, y∗] be given
by (iα, jα) and let the closest point to[x∗, y∗] where(iα, jα)
intersectscut∗h be given by[xα, yα]. We considercut′h which

cut∗h
cut′h

A

Fig. 12. Translatecut∗
h

along the line which contains it until one of its
endpoints intersects a link; we call this new cutcut′

h
. cut′

h
intersects all links

cut∗
h

intersects.

is a translated version ofcut∗h such that it has endpoints at
[xα, yα] and at[v∗ + xα − x∗, w∗ + yα − y∗]. Since there exist
no links between[x∗, y∗] and [xα, yα], and because the same
line contains bothcut∗h and cut′h, we know that every link
which intersectscut∗h also intersectscut′h in the same location
(see Fig. 12). Thus,cut′h is a worst-case cut that containsA
and has an endpoint on a link (this endpoint is[xα, yα]).

Lemma 6: If there exists a worst-case cut that containsA
and has an endpoint on a link, then there exists a worst-case
cut that containsA, has an endpoint on a link, and at least one
of the following holds: (i) the cut contains a node that is not
A, (ii) one of the cut endpoints is also a link intersection that
is notA , or (iii) the cut has both endpoints on links.

Proof: Let cut∗h be a worst-case cut such that it contains
A and has an endpoint on a link. Ifcut∗h has an endpoint on
A, then Lemma 4 implies Lemma 6. Assumecut∗h containsA
and has an endpoint on a link and doesnot have an endpoint
on A. Denote the link which contains this endpoint byL, and
its endpoints by[x1, y1] and[x2, y2]. Denote the point at which
cut∗h intersectsL by [x0, y0]. Now ‘slide’ the endpoint ofcut∗h
alongL so that this new cut still containsA. That is, consider
the cut, of lengthh, with endpoint at[ax1 + (1− a)x0, ay1 +
(1 − a)y0] and passing throughA, for 0 ≤ a ≤ 1. For a = 0
this is just cut∗h. We slide alongL by increasinga until a
new cut, calledcut′h, either has an endpoint that ish away
from A (we cannot slide further) orcut′h can no longer satisfy
∑

(i,j) pi,jci,jcut
′
h =

∑

(i,j) pi,jci,jcut
∗
h. In the first case, the

cut has both endpoints on links. In the second case,cut′h may
no longer be able to slide alongL and be a worst-case cut, if
cut′h has an endpoint onL that is a link intersection (considered
in Lemma 4),cut′h intersects a node which is notA, or cut′h
has an endpoint onL and the other endpoint on a link. The first
two possibilities are demonstrated in Fig. 13. They implycut′h
can have endpoint on a link intersection or can contain another
node that is notA. Fig. 14 showscut′h that containsA and has
both endpoints on links. This can occur when an endpoint of
cut∗h slides alongL and the other endpoint intersects a link.

Using the lemmas above we now prove Theorem 2.
Proof of Theorem 2:The lemmas presented in this section

imply we only need to consider a polynomially sized set of
cuts. By Lemma 3 there are two possible cases of worst-case
cuts. The first case is a worst-case cut which has a endpoint at
a link intersection. The second case is a worst-case cut which
contains a node. In the first case, Lemma 4 implies that for
every link intersection,O(N4), there exists a possible worst-
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cut∗h
cut′h

cut′h

L

A

Fig. 13. Slide an endpoint ofcut∗
h

right alongL until it intersects a link
intersection. This new cut is thecut′

h
on the right. We can also slide and

endpoint ofcut∗
h

left alongL until it intersects a node. This new cut is the
cut′

h
on the left.

cut∗hcut′h

L

A

Fig. 14. Slide an endpoint ofcut∗
h

alongL until it can no longer intersect
the bottom link. This new cut iscut′

h
.

case cut for every link and node,O(N2). In the second case,
Lemmas 5 and 6 imply that for every node-link pair (A and
some linkL), O(N3), there exist several possible worst-case
cuts for every node and link,O(N2). Since naively checking
each cut for the total cut capacity takesO(N2), the algorithm
has a total running time ofO(N8) (the first case provides the
greatest running time).

It should be noted that similarly to the bipartite case, al-
though the algorithm finds a worst-case cut, there may be other
worst-case cuts with the same value. However, there cannot be
a cut with a better value than the one obtained by the algorithm.

B. ATTR, MFST, and AMF Performance Measures

As mentioned in Section III-B, the formulation of the GNIL
Problem, presented in (2) should be slightly modified in order
to accommodate theATTR, MFST, and AMF performance
measures. We now briefly discuss how the algorithm has to
be modified in order to obtain results for these problems. In
Section VIII, we present numerical results obtained using these
modified algorithms. Using the lemmas and theorem above, it is
easy to show that only a polynomial number of candidate cuts
need to be checked in order to find the worst-case cut under any
of the performance measures. This is due to the fact that the
performance measures are monotonic. Therefore, any additional
link removed/added only increases/decreases the measure and
all the arguments supporting our lemmas still hold.

For each potential cut some links and/or nodes are removed.
Hence, one has to update the network adjacency matrix. Then,
different operations have to be performed for each measure:

• ATTR - If the network is fully connected, the value of
ATTRis 1. Otherwise, one has to sum over all components
the value ofk(k− 1), wherek is the number of nodes in

each of the components. Then the sum has to be divided by
N(N − 1). In order to verify connectivity or to count the
number of nodes in each component, Breadth First Search
(BFS) algorithm or the adjacency matrix eigenvalues and
eigenvectors can be used.

• MFST - Run a max-flow algorithm (e.g.,O(N3) [1]).
• AMF - Run a max-flow algorithm for any node pair.

VII. W ORST-CASE CIRCULAR CUT – GENERAL MODEL

In this section we present a polynomial time algorithm for
finding a solution of the GNIC Problem; i.e., for finding a
worst-case circular cut in the general model. We show that we
only need to consider a polynomial-sized subset of all possible
cuts. We focus on theTEC performance measure and then
briefly discuss how to obtain a worst-case cut for the other
performance measures. In this section, a cut refers to acircular
cut of a particular radius.

Before proceeding, note that the set of all possible cuts is
compact and the objective function in (3) takes on a finite num-
ber of bounded values. This leads to the following observation.

Observation 3:There always exists an optimal solution to
(3) (i.e., a worst-case cut).

Above, we present an algorithm which finds a worst-case
circular cut under theTEC measure in the general model.

Algorithm 3 Worst-Case Circular Cut in the General Model
(WCGM)

1: input: r, radius of cut
2: worstCaseCapacityCut← 0
3: L← {}
4: for every (i, j) do
5: L = L∪{cuts that intersect(i, j) at exactly one point and are

centered on the line which contains(i, j)}
6: for (k, l) such that(i, j) 6= (k, l) do
7: if (i, j) is parallel to(k, l) then
8: L = L ∪ {cuts that contain nodei or j on its boundary

and intersect(k, l) at exactly one point}
9: else

10: L = L ∪ {cuts that intersect(i, j) and (l, k) at exactly
one point each such that these points are distinct}

11: for every cutr(xk, yk) ∈ L do
12: call evaluateCapacityofCut(xk, yk)
13: return cut∗r
Procedure evaluateCapacityofCut(xk, yk)
14: capacityCut← 0
15: for every (i, j) do
16: if minimum distance from(i, j) to [xk, yk] is ≤ r then
17: capacityCut← capacityCut+ cijpij
18: if capacityCut≥ worstCaseCapacityCutthen
19: cut∗r ← cutr(xk, yk)
20: worstCaseCapacityCut← capacityCut

Theorem 3:Algorithm WCGM has a running time of
O(N6) and finds a worst-case circular cut which is a solution
to the GNIC Problem.

Before proving the theorem, we present a useful lemma about
cuts and line segments and then present some lemmas to reduce
the set of candidate cuts.
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cut∗r

cut′r

Fig. 15. An example illustrating rem:the observation in Lemma 8.cut′r is a
translated version ofcut∗r such that[x′, y′] lies on the line which contains the
intersected link andcut′r intersects the link at exactly one point (recall[x′, y′]
is the center ofcut′r).

Lemma 7: If a line segment intersects only the boundary of
a cut, then the line segment and cut intersect at exactly one
point.

Proof: Proof by contradiction. Assume a line segment
intersects only the boundary of a cut and this intersection
contains more than one point. Since a line segment and a cut
region are both convex, their intersection must be convex as
well. However, we assumed at least two points on the boundary
of the cut are in the intersection. The fact that the intersection
must be convex implies the chord connecting these two points
must be in the intersection as well. Since part of the chord is
in the interior of the cut, this leads to a contradiction.

Lemma 8: If there exists a worst-case cut, denoted bycut∗r ,
which intersects exactly one link, then there exists a worst-case
cut, denoted bycut′r, which intersects that link at exactly one
point such that[x′, y′] lies on the line which contains the link
(recall [x′, y′] is the center ofcut′r).

Proof: Sincecut∗r is a worst-case cut and only intersects
a single link, any cut which intersects the same link is also a
worst-case cut. See Fig. 15.

Lemma 9: If there exists a worst-case cut, denoted bycut∗r ,
that intersects at least two links, then there exists a worst-case
cut, denoted bycut′r, that intersects at least two links at exactly
one point each and at least one of the following holds: (i) at
least two of the points are distinct and are not diametrically
opposite, (ii) at least two of the points are distinct and oneof
them is a node, or (iii)[x′, y′] lies on a line which contains one
of the two links.

The proof of the lemma above is similar to the proofs of
the lemmas in Section VI. Essentially, it is shown that we can
translate a worst-case cut such that it remains a worst-casecut
and satisfies the properties in the lemma.

Proof: Assume a link that intersectscut∗r has node loca-
tions given by[xi, yi] and [xj , yj]. Considercutr[x∗ + h(xj −
xi), y

∗+h(yj−yi)] whereh is the minimum nonnegative value
such that only the boundaries of this cut and some link intersect.
Denote this translation ofcut∗r by cut′′r and note by Lemma 7
this cut must intersect at least one link at exactly one point.
Every link which is intersected bycut∗r must intersectcut′′r
because as a line segment and a cut are continuously translated
away from each other, the last non-empty intersection is an
intersection of their boundaries. Thus,cut′′r is also a worst-
case cut. In the proceeding we consider two cases. In the first
case we assumecut′′r intersects at least two links at exactly one

cut′r cut′rcut′′r

A

B

Fig. 16. A case in the proof of Lemma 9. Parallel links are tangent to
cut′′r at diametrically opposing points,A andB. Consider a translation of this
cut such that it remains tangent to the two parallel links, intersects at least the
same links ascut′′r , and i) two links intersect only the boundary of this cut at
distinct and non-diametrically opposing points or ii) two links intersect only
the boundary of this cut and one of these intersection pointsis a node. Denote
this translated cut bycut′r . Now either cut′r intersects the parallel links at
exactly one point each where one of these points is a node, orcut′r intersects
two links at exactly one point each such that they are not diametrically opposite
and distinct.

point each and in the second case we assumecut′′r intersects
exactly one link at exactly one point.

We first consider the case wherecut′′r intersects at least two
links at exactly one point each (in addition to possibly other
links that intersect the interior ofcut′′r ). Denote one of the
points byA and another byB. If A and B are distinct and
not diametrically opposite, the conditions in the lemma are
satisfied. Now we will consider two sub-cases. In the first sub-
case, we assumeA andB reside in two diametrically opposing
points oncut′′r and in the second sub-case we assumeA and
B are not distinct. In the first sub-case, if eitherA or B is a
node, the lemma holds true. If neitherA or B are nodes, then
A andB are diametrically opposing points where parallel links
are tangent tocut′′r . Denote one of these parallel links by(i, j).
Now considercutr[x′′ + h(xj − xi), y

′′ + h(yj − yi)] whereh
is the minimum nonnegative value such that two links intersect
only the boundary of this cut at distinct and non-diametrically
opposing points or two links intersect only the boundary of this
cut and one of these intersection points is a node. Denote this
translated cut bycut′r. Now, by Lemma 7 one of the following
must hold: eithercut′r intersects the parallel links at exactly
one point each where one of these points is a node, or a link
which intersected the interior ofcut′′r now intersectscut′r at
exactly one point such thatcut′r intersects two links at exactly
one point each such that they are not diametrically opposite
and distinct (see Fig. 16).

In second sub-case, two links intersectcut′′r at a single point,
C. This impliesC is a node of at least one of these links. Now
choose a link with a node given byC and denote the link
by (k, l). Let p(t) be a continuous parameterized closed curve
which is always a distancer from (k, l) such thatp(0) =
[x′′, y′′] andp(tC) wheretC > 0 is the point onp(t) closest
to C that intersects the line containing(k, l) (see Fig. 17).
Additionally, we require thatp(t) is exactlyr units away from
C for 0 ≤ t ≤ tC . Let px(t) and py(t) denote thex and
y components ofp(t) respectively. Sincecut′′r intersectsC,
we know [x′′, y′′] is on a semi-circular shaped part ofp(t)
(these are the only parts ofp(t) that arer units away from
an endpoint of(k, l)). Now considercutr[px(t), py(t)] where



11

cut′′r

cut∗r

cut′r

p(t)

C(k, l)

(i, j)

p(0)

p(tC)

Fig. 17. A case in the proof of Lemma 9.cut∗r is first translated in the
direction of(i, j) to becomecut′′r which intersects only(k, l) at exactly one
point and intersects another link (in this case(i, j)) at exactly the same point.
Then cut′′r is translated alongp(t) towardsp(tC ) to cut′r such that[x′, y′]
lies on the line which contains(k, l).

t is the minimum value such that two links intersect only the
boundary of this cut and these intersection points are distinct
or t = tC . Denote this translated cut bycut′r. If t = tC we
know cut′r is centered on the line which contains(k, l). As
before, we know every link which is intersected bycut′′r must
intersectcut′r. This is because as a line segment and a cut
are continuously translated away from each other, the last non-
empty intersection is an intersection of their boundaries.Also,
the links that intersectcut′′r atC remain intersected throughout
the translation becausecutr[px(t), py(t)] intersectsC on 0 ≤
t ≤ tC . Thus,cut′r is a worst-case cut and by Lemma 7 we
know two links intersect this cut at exactly one point each and
one of the following: i) these points are distinct and one of
them is a node given byC or ii) [x′, y′] lies on a line that
contains(k, l) ([x′, y′] = p(tC)).

Now we consider the case wherecut′′r intersects exactly one
link at exactly one point (in addition to other links that intersect
the interior of cut′′r ). Similarly as above, denote this link by
(k, l) . Letp(t) be a continuous parameterized closed curve
which is always a distancer from (k, l) such thatp(0) =
[x′′, y′′] (see Fig. 18). Considercutr[px(t), py(t)] where t is
the minimum nonnegative value such that two links intersect
only the boundary of this cut (we assumecut∗r intersects at least
two links). By Lemma 7 we know these two links intersect this
cut at exactly one point each. So this case reduces to the first
case for which we know the lemma holds.

Lemma 10:There are at most20 cuts of radiusr that
intersect two non-parallel line segment links at exactly one
point each such that these points are distinct.

Proof: If a link intersects a cut at exactly one point, then
either a node of the link intersects the boundary of the cut orthe
link is tangent to the cut (we call a link tangent to a cut if the
line containing the link is tangent to the boundary of the cut).
For a particular pair of links, this implies a cut that satisfies the
lemma falls into at least one of three cases: i) the boundary of
the cut intersects two distinct nodes (one from each link), ii)
the boundary of the cut intersects a node of one link and the
cut is tangent to the other link, or iii) both links are tangent to
the cut.

In case one, by geometry we know there are at most two cuts

cut′′r

cut∗r

cut′r

p(t)

(k, l)
(i, j)

p(0)

Fig. 18. A case in the proof of Lemma 9.cut∗r is first translated in the direction
of (i, j) to becomecut′′r which intersects(k, l) at exactly one point. Thencut′′r
is translated alongp(t) to cut′r where(i, j) and(k, l) each intersectcut′r at
exactly one point.

of radiusr whose boundary contains two distinct nodes. In case
two, given a node and a link, we know by geometry there are
at most two cuts of radiusr that the link is tangent to and
whose boundary contains the node. In case three, given two
non-parallel links, the lines containing these segments divide
the plane into four pieces. There exist at most one cut tangent
to both lines in each of these pieces. Thus, there are at most
four cuts tangent to both links. Since for a pair of non-parallel
links there are four pairs of nodes to consider (with at most two
cuts per pair that satisfy the lemma), four endpoint-link pairs
(with at most two cuts per pair that satisfy the lemma), and
one link-link pair (with at most four cuts per pair that satisfy
the lemma), we know there exists at most20 cuts that satisfy
the lemma.

Note that the bound above is a simple upper bound on the
number of possible cuts and can possibly be further reduced.

Using the above lemmas, we now prove Theorem 3.
Proof of Theorem 3:The lemmas presented in this section

imply there exists a worst-case cut which intersects a link at
exactly one point such that the center of this cut lies on the
line which contains this link or there exists a worst-case cut
which intersects two links at exactly one point each and at
least one of the following: (i) at least two of the points are
distinct and are not diametrically opposite or (ii) at leasttwo
of the points are distinct and one of them is a node. Algorithm
WCGM enumerates all these possible cuts. It considers each
link, O(N2), and finds both cuts that intersect the link at exactly
one point and whose center lies on the line which contains this
link. Then, it considers every combination of two links,O(N4),
and if the links are not parallel it finds every cut (if any exist)
which intersect each of the two links at exactly one point such
that these points are distinct. By Lemma 10 we know there are
at most20 of these cuts for every pair of links. If the links
are parallel, we need only consider cuts that intersect one of
the links at exactly one point and whose boundary intersects
the other links endpoint. In total, Algorithm WCGM considers
O(N4) cuts and since naively checking each cut for the total
expected capacity removed takesO(N2), the algorithm has a
total running time ofO(N6).

As mentioned in Section III-B, the formulation of the GNIC
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Fig. 19. Line segments cuts optimizingTEC for h = 2 - the red cuts
maximizeTEC and the black lines are nearly worst-case cuts.

Problem, presented in (3), can be slightly modified in order
to accommodate theATTR, MFST, and AMF performance
measures. This modification is done in exactly the same way
as it was done for the GNIL Problem (see Section VI-B).

It should be noted that we can also consider the case of an
elliptic cut with fixed axis (that is, no rotation of the ellipse
is considered). This disaster model more closely resemblesthe
effect of an EMP. This case can be solved by applying an affine
transformation to the network node locations and then running
WCGM.

VIII. N UMERICAL RESULTS

In this section we present numerical results that demonstrate
the use of the algorithms presented in sections VI and VII.
These results shed light on the vulnerabilities of a specificfiber
network. Clearly, the algorithms can be used in order to obtain
results for additional networks or for a combined fiber plantof
several operators. The results were obtained using MATLAB.

We used Algorithm WLGM, presented in Section VI, to
compute worst-case cuts under theTEC, ATTR, MFST ,
andAMF performance measures for a fiber plant of a major
network provider [22]. In all cases, we found that the results
are intuitive. We also used Algorithm WCGM, presented in
Section VII, to compute worst-case circular cuts under the
MFSTperformance measure for the same fiber plant. We found
these circular cuts are in similar locations to their line segment
counterparts. All distance units mentioned in this sectionare in
longitude and latitude coordinates (one unit is approximately
60 miles) and for simplicity we assume latitude and longitude
coordinates are projected directly to[x, y] pairs on the plane.
We also assume that all the link capacities are equal to 1.

Fig. 19 presents line segment cuts ofh = 2 which maximize
the TEC performance measure. As expected, we find that
TEC is large in areas of high link density, such as areas in
Florida, New York, and around Dallas. Fig. 20 presents line
segment cuts ofh = 2 which minimize theATTR performance
measure.ATTR is smallest where parts of the network are
disconnected, such as at the southern tip of Texas, Florida
and most of New England. This is intuitive since in order to
decrease theATTR, the graph must be split and under a small
cut, only small parts of the graph can be removed.

Fig. 21 illustrates line segment cuts ofh = 4 which minimize
the MFST performance measure between Los Angeles (s)

Fig. 20. Line segments cuts optimizing theATTR for h = 2 - the red cuts
minimize ATTR and the black lines are nearly worst-case cuts.

Fig. 21. Line segments cuts optimizingMFST between Los Angeles and
NYC for h = 4 - the red cuts minimizeMFST and the black lines are nearly
worst-case cuts. Cuts which intersect the nodes representing Los Angeles or
NYC are not shown.

and New York City (NYC) (t). Removal of thes and t nodes
themselves is not considered as this is a trivial worst-case
cut. We found thatMFST is smallest directly around Los
Angeles and NYC as well as in Colorado, Utah, Arizona, New
Mexico, and Texas. There are also cuts in the East Coast which
completely disconnect NYC from Los Angeles without actually
going through NYC. The cuts in the southwest are intuitive
since the network in that area is very sparse. In some sense,
the fact that in this case we obtain expected results validates
the assumptions and approximations.

We note that different networks (e.g., networks in Europe or
Asia) have a different structure than the sparse structure of the
southwest U.S. network. In such cases, the solution will not
be straightforward. In order to demonstrate it, we will discuss
below theMSFT measure between NYC and Forth-Worth.
Before that, we present in Fig. 22 line segment cuts ofh = 2
which minimize theAMF performance measure. TheAMF
values are minimized by cuts in the southwest as well as in
Florida and New York.

Finally, we tested how line segment cuts compare to circular
cuts. Using Algorithm WCGM we found circular cuts ofr = 2
which minimize theMFST performance measure between Los
Angeles and NYC (see Fig. 23). Our results were similar to the
line segment case; worst-case circular cuts were found close
to both to Los Angeles and NYC. The southwest area also
appeared to be vulnerable, just as in the line segment case.

As mentioned above, we tested theMFST measure for
circular cuts between Fort Worth and NYC (see Fig. 24). Due to
the complexity of the network along the east coast, the results
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Fig. 22. Line segments cuts optimizing theAMF for h = 2 - the red cuts
minimize AMF and the black lines are nearly worst-case cuts.

Fig. 23. The impact of circular cuts of radius 2 on theMFST between Los
Angeles and NYC. Red circles represent cuts that result inMFST = 0 and
black circles result inMFST = 1. Cuts which intersect the nodes representing
Los Angeles or NYC are not shown.

were less straightforward than in the Los Angles-NYC case.
Finally, for a circular cut in the fiber plant illustrated in

Fig. 1, we computed the maximum value ofTEC (removed
capacity) as a function of the cut radius. The results are
illustrated in Fig. 25. As expected, the maximum value ofTEC
monotonically increases with the cut radius. This implies that
the minimum radius that guarantees a certain level of a specific
performance measure (e.g., finding the radius of a circular cut
that ensures thatAMF ≤ 3) can be found by using binary search
along with the methods described in Section VII.

IX. CONCLUSIONS

Motivated by applications in the area of network robustness
and survivability, in this paper, we focused on the problem
of geographical network inhibition. Namely, we studied the
properties and impact of geographical disasters that can be
represented by either a line segment cut or a circular cut in the
physical network graph. We considered a simple bipartite graph
that abstracts the fiber links between the east and west coasts
in the U.S. or transatlantic/pacific links. Then, we considered
a general graph model in which nodes are located on the
Euclidian plane and studied two related problems in which cuts
are modeled as line segments or as circular disks. For all cases,
we developed polynomial-time algorithms for finding worst-
case cuts. We then used the algorithms to obtain numerical
results for various performance measures.

Our approach provides a fundamentally new way to look
at network survivability under disasters or attacks that takes
into account the geographical correlation between links. Some

Fig. 24. The impact of circular cuts of radius 2 on theMFST between Fort
Worth and NYC. Red circles represent cuts that result inMFST = 0, black
circles result inMFST = 1, and yellow circles result inMFST = 2. Cuts
which intersect the nodes representing Fort Worth or NYC arenot shown.
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Fig. 25. The maximum value ofTEC as a function of the cut radius for a
circular cut in the fiber plant illustrated in Fig. 1.

future research directions include the analytical consideration of
arbitrarily shaped cuts and the use of computational geometric
tools for the design of efficient algorithms. Moreover, we plan
to study the impact of geographical failures on the design of
survivable components, networks, and systems.

APPENDIX A
PROOF OFLEMMA 2

Let yω(x) = (rω − lω)x + lω be the equation of(iω, jω)
on x ∈ [0, 1]. Let yα(x) = (rα − lα)x + lα be the equation
of (iα, jα) on x ∈ [0, 1]. Let yij(x) = (rj − li)x + li be the
equation of(i, j) on x ∈ [0, 1].

Consider the slopes ofyω(x) andyα(x). There are two cases:
1) The slope ofyω(x) is smaller or equal to the slope of

yα(x): rω − lω ≤ rα − lα.
2) The slope ofyω(x) is greater or equal to the slope of

yα(x): rω − lω ≥ rα − lα.

We consider now the first case. Let:

x′ =



















minx such thatx∗ ≤ x ≤ 1 and

yij(x) = yα(x) for any yij not yα or

yij(x) = yω(x) for any yij not yω
1 if the x above does not exist

Essentially,x′ is the firstx-location afterx∗ whereyω(x) or
yα(x) intersect another link. Ifyω(x) or yα(x) do not intersect
another link afterx∗, thenx′ = 1.

We now show thatx′ is anx-location where it is possible to
cut all the links which intersectcuth(x∗, y∗). Since links are
line segments, we knowyij(x′) = yij(x

∗) + (x′ − x∗)(rj −
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li) ∀i, j. Since we knowyω(x∗) ≤ yα(x
∗) + h

(

cuth(x
∗, y∗)

intersects bothyω(x) and yα(x)
)

and (rω − lω)(x
′ − x∗) ≤

(rα − lα)(x
′ − x∗)

(

case 1 above andx′ − x∗ ≥ 0
)

, we have
yω(x

∗)+(rω− lω)(x
′−x∗) ≤ yα(x

∗)+(rα− lα)(x
′−x∗)+h.

Thusyω(x′) ≤ yα(x
′) + h. See Fig. 9.

This meanscuth(x′, yα(x
′)) will intersect both(iω, jω) and

(iα, jα). Since both these links do not intersect another link on
x∗ ≤ x < x′, links which are intersected bycuth(x∗, y∗) are
also intersected bycuth(x′, yα(x

′)) (they are ‘trapped’ between
(iω, jω) and (iα, jα) on x∗ ≤ x < x′).

Now we knowcuth(x
′, yα(x

′)) is a worst-case cut andx′ =
1, [x′, yα(x

′)] is a link intersection, or[x′, yω(x
′)] is a link

intersection. Therefore, by Lemma 1, we know there exists a
worst-case cut which has an endpoint on a link intersection or
node. The second case follows in an analogous fashion.
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