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Abstract—Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to phyalic
attacks, such as an Electromagnetic Pulse (EMP) attack. Shc
real-world events happen in specific geographical locati® and
disrupt specific parts of the network. Therefore, the geograhical
layout of the network determines the impact of such events on
the network’s connectivity. In this paper, we focus on asseing
the vulnerability of (geographical) networks to such disaters. In
particular, we aim to identify the most vulnerable parts of the
network. That is, the locations of disasters that would havethe
maximum disruptive effect on the network in terms of capaciy
and connectivity. We consider graph models in which nodes ah Fig. 1.
links are geographically located on a plane. First, we conder
a simplistic bipartite graph model and present a polynomial
time algorithm for finding a worst-case vertical line segmet cut.

We then generalize the network model to graphs with nodes at U.S. telecommunications capabilities. Our approach isaio g
arbitrary locations. We model the disaster event as a line ggnent insight into robust network design by developing the nemgss

or a disk and develop polynomial time algorithms that find a . .
worst-case line segment cut and a worst-case circular cut.ifrally, theory to find the most geographically vulnerable areas of a

we obtain numerical results for a specific backbone network, N€twork. This can provide important input to the developmen
thereby demonstrating the applicability of our algorithms to real-  of network design tools and can support the efforts to mi¢iga
W_orld_networks. Our nove_l approach provides a promising new the effects of regional disasters.
gggﬁﬂgn for network design to avert geographical disastes or  pare are several works on the topology of the Internet as
' S _ a random graph [4] and on the effect of link failures in these
_Index 'I_'erms—l_\letwork surV|vab|_I|ty, geographically correlated graphs [12], [23] (for more details see Section Il). However
failures, fiber-optic, Electromagnetic Pulse (EMP). most of these works are motivated by failures of routers due
to logical attacks (e.g., viruses and worms), and theredpyd
I. INTRODUCTION on the logical Internet topology. There have also been some

The global communications infrastructure is primarily ds attempts to model the Internet using geographical notigt [
on fiber-optic networks, and as such has physical vulnérab{B9]. Yet, these works do not consider the effect of failures
ties. Fiber links and backbone nodes can be destroyed by affiat are geographically correlated. Finally, [29] studitbe
thing from Electromagnetic Pulse (EMP) attacks [14], [{8)] network inhibition problem in which a set of links has to be
to dragging anchors [8], [36]. Such real-world disasterspem removed from a graph such that the effect on the graph will
in specific geographic locations, and therefore, the geafical be maximized. Yet, to the best of our knowledge, the network
layout of the network affects their impact. For example, afthibition problem was not studied under the assumption of
EMP is an intense energy field that can instantly overlodgeographically correlated failures.
or disrupt numerous electrical circuits at a large distance Since disasters affect a specific geographical area, they
thereby affecting electronic components in a large gedgcapwill result in failures of neighboring network components.
area [37]. Hence, such an attack over a U.S. city which isTderefore, one has to consider the effect of disasters on the
telecommunications hub would have a disastrous impacten tphysical layer rather than on the network layer (i.e., tHeatf
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(email {bastian, modian@mited. i Zussman i with fhe Departmenat fibers are subject to regional failures resulting frovers
of Electrical Engineering, Columbia University, New YorlJY (e-mail: Such as earthquakes, floods, and even an EMP attack; as thes
gil@ee.columbia.edu). Reuven Cohen is with the DepartrabMathematics, may lead to failure of the electrical circuits (e.g., amphﬁ)

Bar-llan University, Ramat-Gan, Israel (e-mail: reuven@mbiu.ac.il). This :
work was supported by a DTRA grants number HDTRA1-07-1-0G04 that are needed to operate the fiber plant [37]'

HDTRA1-09-1-0057, NSF grant number CNS-0830961, the ND$t&ow- Our long-term goal is to understand the effect of a regional

ship Program, and by a Marie Curie International Fellowshithin the 6th  {ailure on the bandwidth connectivity, and reliability tife
European Community Framework Programme. Preliminary amtigb versions Internet. and to expose the desian tradeoffs related toarktw
of this paper appeared in Proc. IEEE INFOCOM’09, Apr. 2008] [2nd Proc. ’ p g

IEEE MILCOM'08, Nov. 2008 [27]. survivability under a disaster with regional implicatiorg&uch

The fiber backbone operated by a major U.S. networkigieo [22].



tradeoffs may imply that in certain cases there may be a needrinally, we present numerical results and demonstrate the
to redesign parts of the network while in other cases theuse of these algorithms. We identify the locations of thestvor
is a need to protect electronic components in critical areease line segment and circular cuts in the network presented
(e.g., protecting against EMP attacks by shielding [15)])3 in Fig. 1! In particular, we illustrate the locations of cuts that
In this paper, we are interested in the location of geogighi optimize the different performance measures describedeabo
disasters that have the maximum effect on the network, mger The main contributions of this paper are the formulation of
of capacity and connectivity. That is, we want to identife tha new problem (termed as tlgeographical network inhibition
worst-case location for a disaster or an attack as well as pgoblem), the design of algorithms for its solution, and the
effect on the network. demonstration of the obtained numerical solutions on a U.S.
The global fiber plant has a complicated structure. Fénfrastructure. To the best of our knowledge, we are the tiirst
example, Fig. 1 presents the fiber backbone operated byattempt to study this problem.
major network provider in the U.S. (point-to-point fibersear This paper is organized as follows. We briefly discuss relate
represented by straight lines). We consider two graph nsodw@lork in Section Il. In Section Ill, we introduce the network
which serve as an abstraction of the continental/undersea fimodels and formulate the geographical network inhibition
plant. In these models, nodes, links, and cuts are geographi problems. In Section IV, we consider a simple case of the
located on a plane. Nodes are represented as points and lipigsrtite model and provide numerical examples that prvid
are represented as line segments between these points.ivgight into the location of a worst-case cut. In Section V,
first study a bipartite graph model (in the topological ande develop a polynomial-time algorithm for finding the werst
geographical sense). That model is analogous to the east aase cuts in the bipartite model. In Sections VI and VII we
west coasts of the U.S., where nodes on the left and righs sickudy the general model with line segment and circular cuts.
of the graph represent west and east coast cities (resplggtivin Section VIII we present numerical results. We conclude an
and the cities within the continent are ignored. Similaitigan discuss future research directions in Section IX.
represent transatlantic or transpacific cables. Sincécaétine
segment cuts are simpler to analyze, we focus initially ahsu Il. RELATED WORK
cuts and provide some motivating examples.

. . . . The issue of network survivability and resilience has been
However, the bipartite model does not consider the 'mpa(%t(tensivel studied in the past (e [6], [18], [24], [4id
on nodes located within the continent; nor does it consider t y P 9. 15), ! ’

impact of a disaster that is not simply a vertical cut. Tharef references therein). However, most of the previous workis t

we later relax thebipartite graph andvertical cut assumptions area and in particular in the area of physical topology aner fib

by considering a general model where nodes can be art;'rtrar?lemorks (e.g., [25], [26]) focused onsmall number of fiber

located on the plane. Under this model, we consider ailures or on the concept ofShared Risk Link GroufSRLG)

problems. In the first one, disasters are modeled as lineesay 80]' On the contrary, in th|s. paper we focus_ on events that
. : : cause a large number of failures in a specific geographical
cuts (not necessarily vertical) in the network graph. In thé .
. . : region (e.g., [8], [15], [31], [36]). To the best of our knauge,
second one, disasters are modeled as circular areas in whj

the links and nodes are affected. These general problems ggﬁgraphmally correlated failurehave been considered only

be used to study the impact of disasters such as EMP atta'@ﬁ few papers and under very specific assumptions [2], [19],

(circular disks) and tornadoes (line segments) more téezlky.

We assume that a regional disaster affects the electrow
components of the network within a certain region. Hence, th
fibers that pass through that region are effectively cut due
such a disaster. There are various performance measures;
the effect of a cut. We consider the following: (i) the exgett . . .
capacity of the removed links, (i) the fraction of pairs fdtes destruction cost is no greater than the budget. The obgdiv

that . ted. (i th : ible flow betw to find an attack that minimizes the value of a maximum flow in
atremain connected, (iif) the maximum possible flow Y€ ihe graph after the attack. A few variants of this problemeewe

a given source-d_estination pair, and (iv) the average maxim studied in the past (e.g., [9], [11], [30]). However, as niemed
_flt?\_/v_tbetweeg palrfs oftnlodef_. we Sh(l)w that Ialthou_gr ther(ka) gove, the removal of (geographically) neighboring linkes h
infinite number of cut localions, only & polynomial NUMDEp .o, rarely considered [7], [33]. One of the first and perhaps

\(/)vf (r:atndldate Ctu';S rhte;]ve to b(ifcrcmsferer?] n orrderitno 'iem';y}ﬁe closest to this concept is the problem studied in [34].
orst-case cut for these performance measures in any o hen the logical (i.e., IP) topology is considered, wide-

problems above. Thus, we are able to show that the location . . .
a worst-case cut can be found by polynomial time aIgoriths.S%read failures have been extensively studied [12], [1G],[

. 23]. Most of these works consider the topology of the Inétrn
should be noted that any other quantity that can be caI(dJIa{éas a random graph [4] and use percolation theory to study

in polynomial time may be used as a performance measuy h .
poly y per ¢ effects of random link and node failures on these graphs.
Hence, measures such as concurrent maximum flow and other

measures that are derived from multicommodity flow problemsiyye present results only for one major operator. The sameadelixgies
may also be used. can be used in order to obtain results for all other major atpes.

The theoretical problem most closely related to the problem
& consider is known as theetwork inhibition problenj29].

nder that problem, each edge in the network has a destnuctio
fst, and a fixed budget is given to attack the network. A

Sible attack removes a subset of the edges, whose total



There are many ways to define the effect of a cut on the
loss of communication capability in a network. We define the
performance measures and the worst-case cut as follows.

Definition 1 (Performance MeasuresThe performance
measures of a cut are (the last 3 are defined as the values aftel
the removal of the intersected links):

« TEC- The total expected capacity of the intersected links.

o« ATTR- The fraction of pairs of nodes that remain con-
nected (this is similar to the average two-terminal reliabi
ity of the network).

o« MFST- The maximum flow between a given pair of nodes
s andt.

Fig. 2. A bipartite network and an example of a cut.

The focus on the logical topology rather than on the physical )
topology is motivated by failures of routers due to attacks * AMF - The average value of maximum flow between all
by viruses and worms. Based on various measurements (e.g., Pairs of nodes.

[16]), it has been recently shown that the topology of the Definition 2 (Worst-Case Cut)Under a specific perfor-
Internet is influenced by geographical concepts [3], [239][ mance measure, &orst-case cytdenoted bycuty (x*, y*), is
These observations motivated the modeling of the Intersi@t aa cut which maximizes/minimizes the value of the perforneanc
scale free geographical graph [35], [40]. Although thesel@el® measuré.

may prove useful in generatiriggical network topologies, we ~ We now demonstrate the formulation of the following opti-
decided to present numerical results basedreal physical mization problem using th&EC performance measure.

topologies (i.e., the topolo resented in Fig. 1).
pologies ( pology P g- 1) Bipartite Geographical Network Inhibition (BGNI) Prob-

lem: Given a bipartite graph, cut height, link probabilities, &n
[1l. M ODEL AND PROBLEM FORMULATION capacities, find a worst-case vertical line segment cut unde

. . . . rPerformance measuréecC.
In this section we present three geographical network inhi-

bition problems. The first problem assumes that the netwsork i We define the following0, 1) variables:

bipartite in the topological and geographic sense and that t

cuts are vertical line segments. We then present two prablem 1 if (4,7) is removed bycut, (x,y)
where network links (represented as line segments) can be in zij(2,y) = {0 otherwise

almost arbitrary locations on the plane. In one of the pnoisie

the disasters correspond to line segment cuts in any directiA solution to the BGNI optimization problem below is an
In the other, the cuts are modeled by arbitrarily placedutanc  endpoint of a worst-case cut.

disks on the plane.

max Z(i,j) PijCijZij (T, y)

. . . . . h th
A. Bipartite Model with Vertical Line Segment Cuts f)ui t<a1t
<a<
We now define thgyeometricbipartite graph. It has a width “h<y<hg (1)

of 1 and height (south-to-north) df;. The height of a left
(west) nodei is denoted by;. Similarly, the height of a right
(east) nodg is denoted by-;. Nodes cannot overlap and mUSMi
have non-negative height; thatis # r; > 0V 4,5 and(; #
l; > 0V 1i,j. Denote the total number of nodes on the left a
right side by N. We denote a link from nodé to node; as {
U5 =

The above optimization problem can be formulated as a
xed Integer Linear Program (MILP) as follows. Define the
nfé:)llowing (0,1) variables:

1 if (4,4) crosses the cut location: abovey

(i,7) and let(7, j) be represented by a line segment fr{ihi;] .
0 otherwise

to [1,7;]. We definep;; as the probability that linki, j) exists,
andc;; as the capacity of linki, j) wherec;; € [0,00). To

avoid considering the trivial case in which there are nodink {1 if (i, /) crosses the cut location( belowy + h

with positive capacity, we assume that there exist séraad d,; = )
0 otherwise

j for which ¢;;p;; > 0. We assume that the disaster results in

a vertical line segment cut of height whose lowest point is

at point [z, y]. We denote this cut byut;(z,y). Such a cut

removes all links that intersect it. For clarity, in this papve _ o _ By

refer to the start and the end of a link as nodes and the stdrt an '€ two-terminal reliability between two nodes is the piuby they
. . r;:-fmam connected after random independent link failureg. [3

the end of a cut as endpoints. Fig. 2 demonstrates a speci

- Kror performance measurEC, the worst-case cut obtains a maximum
construction of the model and an example of a cut. value, while for the rest, it obtains a minimum value.

For hg < 1, the solution to the MILP below is a worst-case



cut. A solution to the GNIL optimization problem below is a worst-

case cut.
max DPijCijZij
% S max ;o Pijcij Zij ([, yl, [v, w])
such that such that
(rj—lL)r—(y—1;)>u;—1 Vi j [z,y] # [v, ]
Wth—1)—(r;— L)z >dij—1 ¥ij Vi =02+ -w?<h
wij +dij > 225 Vi, j z; < x < x; for some ¢ and j
0<z2<1 yi <y < yj for some ¢ and j (2)
—h <y <hg When dealing withCircular Cutswe assume that a disaster
wij, dij, 2 €{0,1} results in a cut of radiug which is centered afx,y]. We

define this cut asut,.(z,y). Such a cut removes all links which

Solving integer programs can be computationally intensivéitersect it (including the interior of the circle). We ctille set
Yet, the geographical (geometric) nature of the BGNI Prable®f points for which the Euclidean d|§tancer|away _from[x,y]
lends itself to relatively low complexity algorithms (seecs the boundary otut,(z,y). For brevity, we sometimes denote
tion V). Although we initially focus only on th# EC measure, e worst-case cutut,(a",y") as cut;. We now define the
variants of the BGNI Problem can be formulated for perfofollowing problem and demonstrate its formulation.

mance measureSTTR MFST, and AMF (by definition, when Geographical Network Inhibition by Circular Cuts (GNIC)
computing these measures we assume ghat {0,1} V4, j). Problem: Given a graph, cut radius, link probabilities, and

In the bipartite model, the worst-case cut under some ofethesapacities, find a worst-case circular cut under performanc
measures is trivial. However, in the general model, a woase measureTEC.

cut is non-trivial. . . )
We define the following (0,1) variable:

B. General Model

wi(my) = 1 if (4,4) is removed bycut, (z,y)
YT 0 otherwise

The general geometric graph model contaifs non- A sojution to the GNIC optimization problem below is the
overlapping nodes on a plane. Let the location of neédecenter of a worst-case cut.

be given by the cartesian pajt;,y;]. Assume the points
representing the nodes are in general form, that is no three max ), o PijCijZij (2, Y])
points are collinear. Denote a link from noddo node; as such that
(,7) and let(i, 7) be represented by a line segment frpm ;]
to [z;,y;]. We definep;; as the probability of(i, j) existing
andc;; as the capacity ofi, j) wherec;; € [0,00). We again
assume that;;p;; > 0 for somei and j. We now define two  gjmjlar GNIL and GNIC problems can be formulated for
types of cuts and the corresponding problems. performance measureATTR MFST, and AMF (for these
When dealing withArbitrary Line Segment Cutwe assume measures we assume that < {0,1}Vi,j). For example,
that a disaster results in a line segment cut of lerigtihich  under MFST, flow conversation constraints should be added
starts at[x,y] and contains the poinf,w] (with [z,y] # to the set of constraints, the flow through links for which
[v, w]). We define this cut asut, ([z, y], [v, w]) (note there can 2;;([x,y], [v,w]) = 1 is 0, and the flow between and ¢ has
be infinitely many ways to express a single cut). A cut removes be maximized. In sections VI and VIl we use the geometric
all links which intersect it. For brevity, we sometimes denthe nature of the GNIL and GNIC problems to show that under all
worst-case cututy, ([z*,y*], [v*, w*]) ascut}. We now define these measures, we only need to check a polynomial number

z; < x < x; for some ¢ and j

yi <y < yj for some ¢ and j 3)

the following problem and demonstrate its formulation. of locations in order to find a worst-case cut.

Geographical Network Inhibition by Line Segments (GNIL)

Problem: Given a graph, cut length, link probabilities, and IV. A MOTIVATING EXAMPLE

capacities, find a worst-case cut under performance measurdn this section, we consider a simple case of the bipartite
TEC. model in which the network is fully connected (in the biptrti

sense), each side had&2 nodesp;; = 1, andc;; = 1. We also
place nodes evenly on each side such that they are separatec
by distancex. An example is shown in Fig. 3. We first obtain a
lower bound for the BGNI problem by considering cuts down
zij([z, 9], [v,w]) = by cuty, ([, y], [v, w]) the center. Then, we provide numerical results for the BGNI
0 otherwise problem.

We define the following (0,1) variable:

1 if (i,7) is removed
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as a function of the cut height] in a bipartite graph with 15 nodes on each Position along x-axis
side (V = 30).

Fig. 6. The maximum number of removed linKBEC) as a function of the
z-location of the cut forh = 0.1. Note the two ‘spikes’ in the function at
= .3andx =~ .7.

A. A Lower Bound

In this simple model, we can bound the valuel&C for the
worst-case cut by considering cuts with endpoints at 0.5. at each horizontal positior) is not decreasing monotonically
In the very center of the graph there is an intersectiolvg? s we move away from the center. With= 1.6 the results
links. a/2 units vertically up and down from this point, anwere relatively monotonic, with the worst-case cut appeari
additional(N/2) — 1 links intersect. Anothew/2 units up and at the center while the number of removed links more or less
down from these points, anoth@¥,/2) —2 links intersect. This descends from there (Fig. 5). When the cut height is reduced
pattern continues until all of the links are included. There, to 0.1, significant local maxima begin to appear (Fig. 6). It

the capacity removed by a worst-case cut of helglg lower seems the smaller the cut height, the more pronounced these
bounded by: local maxima are. This possibly results from large inteises

21 ] of links crossing at different horizontal locations in theagh.
N < N i—1 Small cuts can cut these off-center intersections and remaov
9 T Z (3 -1-] 2 D). ) large number of links but these small cuts are not as effectiv
=1 elsewhere in the graph (where links do not intersect).
. ) The results above motivate us to analytically study theceffe
B. Intuition from Numerical Results of the cut location on the removed capacity. In the following
We now describe numerical solutions obtained for the BGNkctions, we focus on developing polynomial-time algonih
problem (1)* We obtained solutions for a network with 15for identifying a worst-case cut.
nodes on each sideM = 30) and witha = 1 (hg = 14).
Fig. 4 describes the values ®EC under the worst-case cut for V. WORSTCASE CUTS - BIPARTITE MODEL

_(Ij_léfgrgnt cut hltalgthisiih(notlcebthat :Orp” - é Iankd CijTi L In this section we present & N'®) algorithm for solving the
is i lst_equtvatﬁn Io ebnumdefr otk:emowte n ts)i 4e r?‘?}%NI problem. The main underlying idea is that the algorithm
IS identical to the lower bound for the center cuts in (4).sThi nly needs to consider cuts which have an endpoint on a link

gpggﬁs that a worst-case cut is located at the center of tﬁnefersection or a node. Before proceeding, we note that the

. . set of all possible cuts is compact and the objective functio
Next, we study the effect of the horizontal cut location o P P )

: - tak n a finite number of n values. This | h
TEC (the number of removed links) on the same network. F'ggllg\?viﬁg gbse:\?atil(;n ber of bounded values s leads to the

\lj;'sui %nedh?)rli"zuosr:::;cz tgiitr:;xg??hrz :5;2?}%222&8;’; dFll)nrkSObservation 1:There always exists an optimal solution to
P ' (1) (i.e., a worst-case cut).

a given cut height#q), the maximum number of removed links Below, we present the algorithm which finds a worst-case

4These solutions were initially obtained using MATLAB’s ggic algorithms cut. It. can _be seen that the comple.xity of Angrit_hm WCBG is
and later on verified using the algorithm described in Sactio O(N®). This results from the following facts: (i) links are line




segments and a pair of line segments can have at most one inter (iw, juw)
section point (no three nodes are collinear), resulting imast

O(N*) link intersections; (ii) there are two candidate cuts per

link intersection or node (cuts have two endpoints), andethe

fore, the total number of candidate cuts is at mA&N*); (iii)

since evaluatingl,, <, —,)ux+1 Lysth> (s —1:)ertt; (LINE 8) ® (ias Jo) ) ®
takesO(1) time and it has to be evaluated for &l j), finding cuty (z,y)

the capacity of a candidate cut take@gN?).>

Fig. 7. Example showingi., jo) and (ia, ja)- (ta,ja) is the lowest link
Algorithm 1 Worst-Case Cut in a Bipartite Graph (WCBG) intersected by the cut and this intersection is[#, ya]. (iw,j.) are the
1. input: &, height of cut highest links intersected by the cut and this intersect®atiz.,, y.,]. Note

f . 5.) is not unique.
2: worstCaseCapacityCut- 0 (i, Juo) 1S ot unique
3: for every node location and link intersecti¢ny, yx| do

4:  call evaluateCapacityofCuty, yx) cuth (%, Ya)
5.  call evaluateCapacityofCut@y, yx — h)
Procedure evaluateCapacityofCut{r, yx) . .

6: capacityCut«— 0
7. for every (i, j) do

8: if lykS(Tj*li)l‘leilyk+h2(rj*lq,)mk+lq, = 1then

9: capacityCut« capacityCut+ c;;pi;

10: if capacityCut> worstCaseCapacityCihen

11: %+« xp Fig. 8. Example showing howutj, (z*,y) is a ‘slid up’ version of
120y <y cuty (z*, ™). cutp (@™, ya), Which has an endpoint on a link intersection,
13:  worstCaseCapacityCut- capacityCut is guaranteed to intersect every linkt; (z*, y*) does because there exist no

links atz* from y* t0 yq.

We now use a number of steps to prove the theorem below.
Theorem 1:Algorithm WCBG finds a worst-case cut whichsee Fig. 8. The case whefg,, j,,) is not unique is analogous

is a solution to the optimization problem in (1). except thatuty (z*, y., — h), which is a ‘slid down’ version of
Before proving the theorem, we introduce some usefailty,(z*,y*), is considered. ]
terminology and prove two supporting lemmas.cifty, (z,y) Lemma 2:1f there exists a worst-case catity, (z*, y*), such

intersects any links, the links which are intersected clbse that both(i., j.,) and (is,j~) are unique, then there exists a

the endpoinfz, y] are denoted byi,, j.) and the point where worst-case cut which has an endpoint on a link intersectron o

they intersect the cut is denoted by, .| (see Fig. 7 for an node.

example). Let those links which interseeit, (z,y) furthest Proof: see Appendix A.

from the endpoinfz, y] be given by(i,, j.,) and let the point  Basically, according to Lemma 2, (t.,, j.,) and (i, jo) are

where they intersect the cut be given py,,y,]. Note that both unique for a worst-case cut, we can find another worsg-ca

(iw, jw) OF (ia, jo) NEed not be unique. This is becalisg, y,,]  cut such that it has at least one endpoint on a link intersecti

or [z4,Yy.] can be a link intersection. It should be noted thair node (see Fig. 9).

since the model assumes that there exists a link witty; > 0 Using the above lemmas, we now prove Theorem 1.

for somei andj, all worst-case cuts must intersect at least one  Proof of Theorem 1Since (i, j,) and (ia, jo) exist for

link. This implies (i, j.,) and (i, j.) €Xist for all worst-case all worst-case cuts, Lemmas 1 and 2 imply that we need only

cuts. check cuts which have endpoints at nodes or link intersestio
Lemma 1:If there exists a worst-case cutity, (z*,y*), such to find a worst-case cut. Algorithm 1 checks all possible sode

that either (i, j.,) is not unique,(i., jo) iS NOt unique, or and intersections as endpoints, and therefore will nedgssa

x* € {0,1}, then there exists a worst-case cut which has dind also a worst-case cut. [ |

endpoint on a node or a link intersection. We note that although algorithm WCBG finds a worst-case

Proof: Assume (i,,j.) iS not unique orz* € {0,1} cut, there may be other worst-case cuts with the same value.

([z*,ya) is @ node or link intersection). Considett, (z*, y,)

which is a ‘slid up’ version of the worst-case autty, (z*, y*).

cuty, (2%, 9, ) intersects at least the same linkscas, (z*, y*) cutn(z', ya(2'))

since, by definition o[xa,ya]_, there exist no links at* from .\ ' I /:

y* 10 y4. Thus,cuty,(z*,y,) is also a worst-case cut and has

an endpoint on a node or link intersection. For an example,

cuty (z*,y")

SComputational geometry results can probably be used toceethe com-
plexity of Algorithm WCBG. Particularly, [10] (based on [5enables counting ) )
and locating all the intersections @2 line segments iO(N2log N 4+ 1)  Fig. 9. cutp(z*,y*) is a worst-case cut and has a uniglig, j.,) and
time, where! is the number of line segment intersections. A modified versi (ia;ja). From this we are able to finduty (z’, ya(2")), a worst-case cut
of the algorithm of [10] can be used within Algorithm WCBG. which has an endpoint on a link intersection.



The endpoints of these cuts do not necessarily have to be on cut cuty,
a link intersection or a node. However, there cannot be a cut
with a higher value than the one obtained by the algorithm.

V1. WORSTCASE LINE SEGMENT CUT — GENERAL MODEL

. , . . . o
In this section, we present a polynomlal time algorlthm fo'f"g' 10. cut} contains a node as well as intersects all links whicah; does.

finding the solution of the GNIL Problem; i.e., for finding a
worst-case line segment cut in the general model. We ShOV\W
that we only need to consider a polynomial-sized subsetlof al € Now use a ”‘,‘mbef of steps to provg th? theorem8below.
possible cuts. We first focus on tA&C performance measure Th_eorem 2:Algorithm _WLGM hasa runnmg_tlme GD(N )

and then discuss how to obtain a worst-case cut for otr%rf‘d finds a worst-case line segment cut that is a solutioneto th
measures. Our methods are similar to the approach for sgplvﬁNlL Problem_.

the BGNI Problem, described in Section V. In this section, a Beforé proving the theorem we present some lemmas to

worst-case cut refers to a worst-cdise segmentut. reduce the set of candidate worst-case cuts. _
Lemma 3:There exists a worst-case cut that contains a node

or has an endpoint at a link intersection.

A. TEC Performance Measure Proof: Let cut} be a worst-case cut with endpoints given

Before proceeding, note that the set of all possible cutshy [z*,y*] and [v*,w*]. We now define some useful termi-
compact and the objective function in (2) takes on a finite humology. Let the links that interseetit; closest to the endpoint
ber of bounded values. This leads to the following obsewwati [z*, y*] be given by(i,, j.) and let the closest point fo*, y*|

Observation 2:There always exists an optimal solution tovhere(i,, jo) intersectscut; be given by[z,,y.]. Let those
(2) (i.e., a worst-case cut). links which intersectcut;, furthest from the endpoinc*, y*]

Below we present an algorithm that finds a worst-case life given by(i., j.,) and let the closest point fe*, w*] where
segment cut under tHEEC measure in the general model. Thigi,,, j.,) intersectscut; be given by[z.,, v.,]. We consider two
algorithm considers all cuts that (i) have an endpoint omk li cases, one where eithéi,, j.) or (iw, j.,) are not unique and
intersection and contain a node not at the intersectionhéve the other wheréi,, j,) and (i,, j.) are unique.
an endpoint on a link intersection and another endpoint on aln the first case, eithefi,, j.) or (i,,j.) are not unique
link, (iii) contain two distinct nodes and have an endpointeo for cut; . Without loss of generality, we assunig,, j.) is not
link, and (iv) contain a node and have both endpoints on linksnique. We considerut}, which is a translated version ofit;
such that it has an endpoints ¢n,,y,] and on[v* + x, —
Algorithm 2 Worst-Case Line Segment Cut in the General*, w* + y, — y*]. Since there exist no links betweér", y*|

Model (WLGM) and [z, y»), we knowcutj, intersects at least as many links
1: input: h, length of cut ascut; and thus is a worst-case cut that satisfies the lemma.
2: worstCaseCapacityCut- 0 Fig. 8 shows the analogous case for the bipartite model.

i ér:\;{e}ry link intersectior{z, yi| do f In thf Secon*d Case(fio"ja> and (i, j.,) are k.mth l.mi.que

5. for every node such thatfz, yi] # [z, ] do or cuty. If cut; contains a node, the Iemma is satisfied. In

6: L = L U {cut that has an endpoint &t;, yx] and contains the following, assumeut;, does not contain a node. Now we
(@i, vi]} considercut), ([z* 4+ a,y* +b], [v* 4+ a, w* +b]) andcut), ([z* —

7. for every (i, j) do _ c,y* —d), [v* — c,w* — d]) to be translated versions ofit}

8: L = LU{cuts that have an endpoint fat., y| and another

such that (i)sign(a) = sign(c) and sign(b) = sign(d), (ii)

endpoint on(i, j)} there does not exist any nodes in the parallelogram defined by

9: for every (i,7) and nodek do

10:  for every nodel such thatk # I do cut} and cutj, (which we denote “parallelogram3”) except
11: L = L U {cuts that have an endpoint @, j) and contain those contained irut) and in the parallelogram defined by
[z, y] and [z, yi]} cut; and cut/ (which we denote “parallelograr@™) except

12:  for every(m,n) do
13: L = L U {cuts that have an endpoint df, ), another
endpoint on(m,n), and containz, yx|}

those contained irut;, and (jii) no link intersectsi,, j) or
(iw, jw) in either parallelogram except amt; or cut). Since

14: for everycuty ([, yx], [vk, wi]) € L do a node does not exist within the interior of either paratieton
15:  call evaluateCapacityofCut@y, yx, v, wi) all links intersected byut; must also cut one of the other three
16: return cutj, edges of each parallelogram.

Procedure evaluateCapacityofCut{r, yx, vk, wk)

17: capacityCutc 0 Now choose the maximuna and ¢ such that the edge

18: for every (i, j) do ([z*,y*], [x* + a,y™ + b]) of parallelogramB and the edge
19:  if i ([zn, i), [vk, wi]) = 1 then ([z*,y*], [x* —c,y*—d]) of parallelogranC are both parallel to
20: capacityCut«— capacityCut+ c;;pi; the link (i, j») and the parallelograms satisfy the constraints in
21: if capacityCut> worstCaseCapacityCuhen the paragraph above. This implies betkt) andcut) contain

22:  cuty < cutp([zr, yi), [vk, wi])

23 worstCaseCapacityCut. capacityCut a node or contain a point whefe,, j,) or (i, j.) intersects

a link. Since(iq,jo) is parallel to both edgefa*, y*], [z* +




cutj,
cutj,

Fig. 12.  Translatecut; along the line which contains it until one of its
endpoints intersects a link; we call this new eut} . cut intersects all links
cut} intersects.

Fig. 11. Translate an endpoint ofit; along the circumference of the circle
until the cut intersects a node or the translated endpotetsacts a link; call
this new cutcut),. Since every link which intersectsut;; intersectscut,,
cut), is a worst- Case cut.

is a translated version afut; such that it has endpoints at
a,y* + b)) and ([z*,y*], [z* — ¢, y* — d])) and since(i,, j,) [Ta>Ya) @nd atv* + x4 — 2%, w* +y, — y*]. Since there exist
can cut at most one of the edggs*, w*|, [v* +a,w* +b]) and no links betweer{z*,y*] and [z,,y.], and because the same
([v*, w*], [v* — ¢,w* — d]) or be parallel to them (as they bothline contains bothcut; and cutj,, we know that every link
lay on the same straight line), we know at least onenaf, which intersectsutj also intersectsut;, in the same location
or cut} intersects the same links that are intersectedty. (see Fig. 12). Thussut; is a worst-case cut that contain
Therefore, we can choose b, ¢, andd such that eitherut; and has an endpoint on a link (this endpoinfis, y.]). ™
or cut} is a worst-case cut and (i) contains a node (Fig. 10) Lemma 6:1f there exists a worst-case cut that contaiis
or (ii) contains a point wheré¢i,, j.) or (i,,j.) intersects a and has an endpoint on a link, then there exists a worst-case
link. In the latter case, we can translate this worst-cagdrncu cut that containsd, has an endpoint on a link, and at least one
a similar fashion to the first case to construct a worst-case ©f the following holds: (i) the cut contains a node that is not
which satisfies the lemma. m A, (ii) one of the cut endpoints is also a link intersectionttha
We now consider two cases of worst-case cuts. The first casenot A , or (iii) the cut has both endpoints on links.
is a worst-case cut which has andpointat a link intersection. Proof: Let cut; be a worst-case cut such that it contains
The second case is a worst-case cut whichtainsa node. In A and has an endpoint on a link. ¢fit; has an endpoint on
both cases, let the node or link intersection that is in thie cd, then Lemma 4 implies Lemma 6. Assurmet; containsA
be denoted byd. Lemma 4 considers the first case wherés and has an endpoint on a link and does have an endpoint
a link intersection. on A. Denote the link which contains this endpoint by and
Lemma 4:If there exists a worst-case cut that has an enids endpoints by, y;] and[zz, y2]. Denote the point at which
point on A, then (i) there exists a worst-case cut that has anmt}, intersectsL by [z, yo]. Now ‘slide’ the endpoint otut;
endpoint onA and has its other endpoint on a link or (ii) therealong L so that this new cut still containd. That is, consider
exists a worst-case cut that has an endpointicand contains the cut, of lengthi, with endpoint afax: + (1 — a)zo, ay1 +
a node that is no#. (1 — a)yo] and passing through, for 0 < a < 1. Fora =0
Proof: Assume there exists a worst-case cut with endpoititis is justcut;. We slide alongL by increasinge until a
A, denoted byut;.. Therefore, the other endpointeft; must new cut, calledcut),, either has an endpoint that is away
be on rem: the boundary of a circle of radibsDenote by§ from A (we cannot slide further) arut), can no longer satisfy
the angle ofcutj, in some coordinate system. Denotedythe > ; ) pijcijeut), = >, ;) pijcijeuty,. In the first case, the
angles fromA to all nodes inside the circle and all mtersectloneut has both endpoints on links. In the second cas€, may
of links with the circle (including links tangent to the diey. no longer be able to slide along and be a worst-case cut, if
Choose’ = 6; such thatj = arg min, |# —6;|. Choosecut}, to  cut; has an endpoint oh that is a link intersection (considered
be the cut with endpoint at and having lengti and angle’. in Lemma 4),cut), intersects a node which is net, or cut),
By definition of ¢’ and thed;’s, all links intersecting-ut; must has an endpoint oh and the other endpoint on a link. The first
also intersectut), (because betweehandé’ no link intersects two possibilities are demonstrated in Fig. 13. They imply;,
with the circle and there exists no node within the interibr acan have endpoint on a link intersection or can contain anoth
that sector). Thus;utj, is a worst-case cut (see Fig. 11).m node that is notA. Fig. 14 shows:ut), that contains4d and has
The following two lemmas consider the second case whdveth endpoints on links. This can occur when an endpoint of
A is a node. cut; slides alongL and the other endpoint intersects a lirill.
Lemma 5:If there exists a worst-case cut that contaitis  Using the lemmas above we now prove Theorem 2.
then there exists a worst-case cut that containand has an Proof of Theorem 2The lemmas presented in this section
endpoint on some link. imply we only need to consider a polynomially sized set of
Proof: Let cut; be a worst-case cut that intersecls cuts. By Lemma 3 there are two possible cases of worst-case
with endpoints given byz*, y*] and [v*,w*]. Let the links cuts. The first case is a worst-case cut which has a endpoint at
that intersectcut] closest to the endpointc*,y*] be given a link intersection. The second case is a worst-case cuthwhic
by (ia,jo) and let the closest point to*, y*| where (i, jo) contains a node. In the first case, Lemma 4 implies that for
intersectscut; be given by[z,,v.]. We considercut) which every link intersectionO(N*), there exists a possible worst-



each of the components. Then the sum has to be divided by
N(N —1). In order to verify connectivity or to count the
number of nodes in each component, Breadth First Search
(BFS) algorithm or the adjacency matrix eigenvalues and
eigenvectors can be used.

o MFST - Run a max-flow algorithm (e.gQ(N?) [1]).

o AMF - Run a max-flow algorithm for any node pair.

Fig. 13. Slide an endpoint ofut; right along L until it intersects a link

interse_ction. This new cut is the_:u'_c;L_ on the right. We can also slide_ and VIl. WORSTCASE CIRCULAR CUT — GENERAL MODEL
endpoint ofcut left along L until it intersects a node. This new cut is the

cut}, on the left. In this section we present a polynomial time algorithm for
finding a solution of the GNIC Problem; i.e., for finding a
L-- worst-case circular cut in the general model. We show that we
Cuﬁcut/h only need to consider a polynomial-sized subset of all fdessi
cuts. We focus on th@ EC performance measure and then
s briefly discuss how to obtain a worst-case cut for the other
performance measures. In this section, a cut refersciccalar
cut of a particular radius.
Before proceeding, note that the set of all possible cuts is
Fig. 14. Slide an endpoint afut} along L until it can no longer intersect COMpact and the objective function in (3) takes on a finite hum
the bottom link. This new cut isut,. ber of bounded values. This leads to the following obseowvati
Observation 3:There always exists an optimal solution to
(3) (i.e., a worst-case cut).
case cut for every link and nod&(N?). In the second case, Above, we present an algorithm which finds a worst-case

Lemmas 5 and 6 imply that for every node-link pait @nd circular cut under thd EC' measure in the general model.
some link L), O(N?), there exist several possible worst-case
cuts for every node and linkQ(N*). Since naively checking Ajgorithm 3 Worst-Case Circular Cut in the General Model
each cut for the total cut capacity tak€$N?), the algorithm (WCGM)
has a total running time ab(N?®) (the first case provides the 1. input . radius of cut
greatest running time). B 2 worstCaseCapacityCut 0

It should be noted that similarly to the bipartite case, al-3: L + {}
though the algorithm finds a worst-case cut, there may be othd: for every (i, j) do o _
worst-case cuts with the same value. However, there careot I8 L = L'U{cuts that intersedti, j) at exactly one point and are

. . . centered on the line which contaifs j)}
a cut with a better value than the one obtained by the alguarith 6 for (k,1) such that(i, j) # (k, 1) do

7: if (4,7) is parallel to(k, 1) then

8: L = L U {cuts that contain nodéor 5 on its boundar

B. ATTR, MFST, and AMF Performance Measures and intgréec(k,l) at exactly one poijr}t y
As mentioned in Section 11I-B, the formulation of the GNIL else _ o

Problem, presented in (2) should be slightly modified in ordé®: L = LU {cuts that intersecti, j) and (i, k) at exactly

one point each such that these points are distinct

to accommodate the!\'!’TR MFST, and AMF perfqrmance 11: for every cut,(xx, yx) € L do

measures. We now briefly discuss how the algorithm has i9:  call evaluateCapacityofCutéy,, yi)

be modified in order to obtain results for these problems. It8: return cut;:

Section VIII, we present numerical results obtained usirgge Procedure evaluateCapacityofCut¢x, yx)

modified algorithms. Using the lemmas and theorem above, it%“’ capacityCutc— 0

. . 5: for every (i,7) do
easy to show that only a polynomial number of candidate cuig. minirglum distance fronti, j) to [zx, y] is < r then

need to be checked in order to find the worst-case cut under aiy capacityCut«— capacityCut+ c;;pi;

of the performance measures. This is due to the fact that the if capacityCut> worstCaseCapacityCuhen
performance measures are monotonic. Therefore, any awliti 19:  cuty < cuty(zx, yx) _

link removed/added only increases/decreases the measdre & WorstCaseCapacityCut- capacityCut
all the arguments supporting our lemmas still hold.

For each potential cut some links and/or nodes are removedTheorem 3:Algorithm WCGM has a running time of
Hence, one has to update the network adjacency matrix. Thefv6) and finds a worst-case circular cut which is a solution
different operations have to be performed for each measureig the GNIC Problem.

o ATTR- If the network is fully connected, the value of Before proving the theorem, we present a useful lemma about

ATTRIs 1. Otherwise, one has to sum over all componentsits and line segments and then present some lemmas to reduct
the value ofk(k — 1), wherek is the number of nodes in the set of candidate cuts.
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Fig. 15. An example illustrating rem:the observation in ean8.cut]. isa Fiq. 16. A case in the proof of Lemma 9. Parallel links are emgo
translated version afut;: such thafz’, y'] lies on the line which contains the cut! at diametrically opposing points} and B. Consider a translation of this
intersected link anut;. intersects the link at exactly one point (recall, '] ¢yt such that it remains tangent to the two parallel linkeerisects at least the
is the center otut;). same links agut”, and i) two links intersect only the boundary of this cut at
distinct and non-diametrically opposing points or ii) twiokls intersect only
the boundary of this cut and one of these intersection pasriésnode. Denote
. . . c{fis translated cut byut!.. Now either cut). intersects the parallel links at
Lemma 7:If a line segment intersects Only the boundary xactly one point each where one of these points is a nodeytdrintersects
a cut, then the line segment and cut intersect at exactly ame links at exactly one point each such that they are not elisiaally opposite
point. and distinct.

Proof: Proof by contradiction. Assume a line segment

intersects only the boundary of a cut and this intersection
contains more than one point. Since a line segment and a paint each and in the second case we assumg intersects
region are both convex, their intersection must be convex @xactly one link at exactly one point.
well. However, we assumed at least two points on the boundarywe first consider the case wheret!’ intersects at least two
of the cut are in the intersection. The fact that the intdisec links at exactly one point each (in addition to possibly othe
must be convex implies the chord connecting these two poititsks that intersect the interior ofut”). Denote one of the
must be in the intersection as well. Since part of the chord p®ints by A and another byB. If A and B are distinct and
in the interior of the cut, this leads to a contradiction. B not diametrically opposite, the conditions in the lemma are

Lemma 8:If there exists a worst-case cut, denotedchy;, satisfied. Now we will consider two sub-cases. In the first sub
which intersects exactly one link, then there exists a woase case, we assumé and B reside in two diametrically opposing
cut, denoted byut!., which intersects that link at exactly onepoints oncut! and in the second sub-case we assuinand
point such thafz’, '] lies on the line which contains the link B are not distinct. In the first sub-case, if eithéror B is a
(recall [z/, y'] is the center ofut!.). node, the lemma holds true. If neithdror B are nodes, then

Proof: Sincecut? is a worst-case cut and only intersects! and 5 are diametrically opposing points where parallel links

a single link, any cut which intersects the same link is alsoae tangent tout,’. Denote one of these parallel links biy 7).
worst-case cut. See Fig. 15. m Now considefcut, [x” + h(z; — z;),y" + h(y; — y:)] whereh

Lemma 9:1f there exists a worst-case cut, denotedchy:, is the minimum nonnegative value such that two links intetrse
that intersects at least two links, then there exists a wearsé only the boundary of this cut at distinct and non-diametiyjca
cut, denoted byut/, that intersects at least two links at exactlyppposing points or two links intersect only the boundaryha t
one point each and at least one of the following holds: (i) aut and one of these intersection points is a node. Denage thi
least two of the points are distinct and are not diametgcaltranslated cut byut;. Now, by Lemma 7 one of the following
opposite, (ii) at least two of the points are distinct and ohe must hold: eithercut!. intersects the parallel links at exactly
them is a node, or (iiijz’, '] lies on a line which contains oneone point each where one of these points is a node, or a link
of the two links. which intersected the interior afut!’ now intersectsut!. at

The proof of the lemma above is similar to the proofs ofxactly one point such thaut!. intersects two links at exactly
the lemmas in Section VI. Essentially, it is shown that we ca&@ne point each such that they are not diametrically opposite
translate a worst-case cut such that it remains a worstaaseand distinct (see Fig. 16).

and satisfies the properties in the lemma. In second sub-case, two links interseat!’ at a single point,
Proof: Assume a link that intersectsit} has node loca- C'. This impliesC is a node of at least one of these links. Now
tions given by[z;,y;] and [z}, y;]. Considercut,[z* + h(z; — choose a link with a node given by and denote the link

x;), y* +h(y; —y;)] whereh is the minimum nonnegative valueby (k,). Let p(¢) be a continuous parameterized closed curve
such that only the boundaries of this cut and some link iet#rs which is always a distance from (k,[!) such thatp(0) =
Denote this translation afut’ by cut!/ and note by Lemma 7 [2”,4”] andp(tc) wheretc > 0 is the point onp(t) closest
this cut must intersect at least one link at exactly one poirib C' that intersects the line containing,!) (see Fig. 17).
Every link which is intersected byut? must intersecicut!  Additionally, we require thap(t) is exactlyr units away from
because as a line segment and a cut are continuously tethslat for 0 < ¢ < t¢. Let p,(¢t) and p,(t) denote thex and
away from each other, the last non-empty intersection is gncomponents ofp(¢) respectively. Sincecut!’ intersectsC,
intersection of their boundaries. Thusyt! is also a worst- we know [z”,y"] is on a semi-circular shaped part pft)
case cut. In the proceeding we consider two cases. In the fitstese are the only parts ¢f(¢) that arer units away from
case we assumart!’ intersects at least two links at exactly on@n endpoint of(k,1)). Now considercut, [p,(t), p,(t)] where
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Fig. 17. A case in the proof of Lemma @ut} is first translated in the
direction of (4, j) to becomecut!’ which intersects onlyk, ) at exactly one Fig. 18. A case in the proof of Lemmad&ut;: is first translated in the direction
point and intersects another link (in this caggej)) at exactly the same point. of (¢, j) to becomesut;’ which intersectgk;, 1) at exactly one point. Themut;’
Thencut” is translated along(t) towardsp(tc) to cut’. such thatz’,y’]  is translated along(t) to cut]. where (i, j) and (k,[) each intersectut,. at
lies on the line which containék, 7). exactly one point.

t is the minimum value such that two links intersect only thef radiusr whose boundary contains two distinct nodes. In case
boundary of this cut and these intersection points arendisti two, given a node and a link, we know by geometry there are
or t = tc. Denote this translated cut byat... If ¢ = tc we at most two cuts of radius that the link is tangent to and
know cut!. is centered on the line which contaiiig, /). As whose boundary contains the node. In case three, given two
before, we know every link which is intersected &yt must non-parallel links, the lines containing these segment&eli
intersectcut’.. This is because as a line segment and a clite plane into four pieces. There exist at most one cut tangen
are continuously translated away from each other, the @st nto both lines in each of these pieces. Thus, there are at most
empty intersection is an intersection of their boundarédso, four cuts tangent to both links. Since for a pair of non-gdafal
the links that intersectut!’ at C' remain intersected throughoutlinks there are four pairs of nodes to consider (with at mast t
the translation becauseit, [p,(t), p,(t)] intersectsC' on 0 < cuts per pair that satisfy the lemma), four endpoint-linkpa
t < tc. Thus,cut!. is a worst-case cut and by Lemma 7 wdwith at most two cuts per pair that satisfy the lemma), and
know two links intersect this cut at exactly one point eact arone link-link pair (with at most four cuts per pair that sitis
one of the following: i) these points are distinct and one dhe lemma), we know there exists at m@stcuts that satisfy
them is a node given by or ii) [2/,y/] lies on a line that the lemma. |
contains(k, 1) ([«',y'] = p(tc)). Note that the bound above is a simple upper bound on the

Now we consider the case wheret! intersects exactly one number of possible cuts and can possibly be further reduced.
link at exactly one point (in addition to other links thatengect Using the above lemmas, we now prove Theorem 3.
the interior ofcut;’). Similarly as above, denote this link by  Proof of Theorem 3The lemmas presented in this section
(k,1) . Letp(t) be a continuous parameterized closed cunigply there exists a worst-case cut which intersects a link a
which is always a distance from (k,1) such thatp(0) = exactly one point such that the center of this cut lies on the
[z”,y"] (see Fig. 18). Considetut, [p.(t),p,(t)] wheret is line which contains this link or there exists a worst-case cu
the minimum nonnegative value such that two links intersegtich intersects two links at exactly one point each and at
only the boundary of this cut (we assume. intersects at least |east one of the following: (i) at least two of the points are
two links). By Lemma 7 we know these two links intersect thigistinct and are not diametrically opposite or (i) at letgo
cut at exactly one point each. So this case reduces to the figsthe points are distinct and one of them is a node. Algorithm
case for which we know the lemma holds. B \WCGM enumerates all these possible cuts. It considers each

Lemma 10:There are at mosR0 cuts of radiusr that link, O(NN?), and finds both cuts that intersect the link at exactly
intersect two non-parallel line segment links at exactlye orone point and whose center lies on the line which contairss thi
point each such that these points are distinct. link. Then, it considers every combination of two links(N*),

Proof: If a link intersects a cut at exactly one point, themnd if the links are not parallel it finds every cut (if any éxis

either a node of the link intersects the boundary of the ctii®r which intersect each of the two links at exactly one pointsuc
link is tangent to the cut (we call a link tangent to a cut if théhat these points are distinct. By Lemma 10 we know there are
line containing the link is tangent to the boundary of the).cutat most20 of these cuts for every pair of links. If the links
For a particular pair of links, this implies a cut that satisfthe are parallel, we need only consider cuts that intersect dne o
lemma falls into at least one of three cases: i) the boundfarytbe links at exactly one point and whose boundary intersects
the cut intersects two distinct nodes (one from each link), ithe other links endpoint. In total, Algorithm WCGM consider
the boundary of the cut intersects a node of one link and tl¥ N*) cuts and since naively checking each cut for the total
cut is tangent to the other link, or iii) both links are tangen expected capacity removed tak@$N?), the algorithm has a
the cut. total running time ofO(IN°). ]

In case one, by geometry we know there are at most two cutsAs mentioned in Section IlI-B, the formulation of the GNIC
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Fig. 19. Line segments cuts optimizinGEC for h = 2 - the red cuts Fig. 20. Line segments cuts optimizing th&l"T"'R for h = 2 - the red cuts
maximizeT'EC' and the black lines are nearly worst-case cuts. minimize ATT'R and the black lines are nearly worst-case cuts.

Problem, presented in (3), can be slightly modified in ord: \#
to accommodate thATTR MFST, and AMF performance
measures. This modification is done in exactly the same w
as it was done for the GNIL Problem (see Section VI-B).

It should be noted that we can also consider the case of
elliptic cut with fixed axis (that is, no rotation of the ellipse
is considered). This disaster model more closely resentb&es
effect of an EMP. This case can be solved by applying an affi
transformation to the network node locations and then mgnni

WCGM. Fig. 21. Line segments cuts optimizing/ 'ST between Los Angeles and
NYC for h = 4 - the red cuts minimizé// F'S'T" and the black lines are nearly

worst-case cuts. Cuts which intersect the nodes repragehtis Angeles or
VIII. NUMERICAL RESULTS NYC are not shown.

In this section we present numerical results that demaestra
the use of the algorithms presented in sections VI and VII.
These results shed light on the vulnerabilities of a spefitfier  @nd New York City (NYC) (). Removal of thes and¢ nodes
network. Clearly, the algorithms can be used in order toinbtdhemselves is not considered as this is a trivial worst-case
results for additional networks or for a combined fiber plaht cut. We found that\/ F'ST is smallest directly around Los
several operators. The results were obtained using MATLAB\Ngeles and NYC as well as in Colorado, Utah, Arizona, New
We used Algorithm WLGM, presented in Section VI, tgMlexico, and Texas. There are also cuts in the East Coast which
compute worst-case cuts under tigzC, ATTR, MFST, completelydisconnect NYC from Los Angeles without actyall
and AMF performance measures for a fiber p|ant of a maj(gomg thl’OUgh NYC. The cuts in the southwest are intuitive
network provider [22]. In all cases, we found that the resulfince the network in that area is very sparse. In some sense,
are intuitive. We also used Algorithm WCGM, presented i€ fact that in this case we obtain expected results vaidat
Section VII, to compute worst-case circular cuts under tf{Be assumptions and approximations.
MFST performance measure for the same fiber plant. We foundWe note that different networks (e.g., networks in Europe or
these circular cuts are in similar locations to their lingreent Asia) have a different structure than the sparse structiitieeo
counterparts. All distance units mentioned in this sectionin  southwest U.S. network. In such cases, the solution will not
longitude and latitude coordinates (one unit is approxétyat be straightforward. In order to demonstrate it, we will dise
60 miles) and for simplicity we assume latitude and longitudoelow the M SF'T measure between NYC and Forth-Worth.
coordinates are projected directly e, 3] pairs on the plane. Before that, we present in Fig. 22 line segment cuté ef 2
We also assume that all the link capacities are equal to 1. which minimize theAM F' performance measure. ThelM F'
Fig. 19 presents line segment cutshof= 2 which maximize values are minimized by cuts in the southwest as well as in
the TEC performance measure. As expected, we find thktorida and New York.
TEC is large in areas of high link density, such as areas in Finally, we tested how line segment cuts compare to circular
Florida, New York, and around Dallas. Fig. 20 presents lineuts. Using Algorithm WCGM we found circular cuts of= 2
segment cuts df = 2 which minimize theATT R performance which minimize theM F'ST performance measure between Los
measure ATTR is smallest where parts of the network aréngeles and NYC (see Fig. 23). Our results were similar to the
disconnected, such as at the southern tip of Texas, Floritize segment case; worst-case circular cuts were founce clos
and most of New England. This is intuitive since in order t&o both to Los Angeles and NYC. The southwest area also
decrease thelTT R, the graph must be split and under a sma#ippeared to be vulnerable, just as in the line segment case.
cut, only small parts of the graph can be removed. As mentioned above, we tested théF ST measure for
Fig. 21 illustrates line segment cuts/of= 4 which minimize circular cuts between Fort Worth and NYC (see Fig. 24). Due to
the M F'ST performance measure between Los Angel€s (the complexity of the network along the east coast, the t@sul
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Fig. 22. Line segments cuts optimizing theM F' for h = 2 - the red cuts Fig. 24. The impact of circular cuts of radius 2 on theF'ST' between Fort

minimize AM F' and the black lines are nearly worst-case cuts. Worth and NYC. Red circles represent cuts that resultfi"ST = 0, black
circles result inM F'ST = 1, and yellow circles result i/ ST = 2. Cuts
which intersect the nodes representing Fort Worth or NYCraxteshown.
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0.5 1 15
Fig. 23. The impact of circular cuts of radius 2 on theF'S’T" between Los Cut radius (1)

Angeles and NYC. Red circles represent cuts that resul/if'ST = 0 and

black circles result im/ FST = 1. Cuts which intersect the nodes representin{_ig' 25.  The maximum value JFEC as a function of the cut radius for a
Los Angeles or NYC are not shown. ircular cut in the fiber plant illustrated in Fig. 1.

future research directions include the analytical consititen of
were less straightforward than in the Los Angles-NYC casegrpitrarily shaped cuts and the use of computational getenet
Finally, for a circular cut in the fiber plant illustrated inigo|s for the design of efficient algorithms. Moreover, warpl
Fig. 1, we computed the maximum value SEC (removed to study the impact of geographical failures on the design of

capacity) as a function of the cut radius. The results aggrvivable components, networks, and systems.
illustrated in Fig. 25. As expected, the maximum valudBiC

monotonically increases with the cut radius. This implieatt APPENDIX A
the minimum radius that guargntges a certa?n level oflaﬁpeci PROOE OFLEMMA 2
performance measure (e.g., finding the radius of a circular c
that ensures tha&®MF < 3) can be found by using binary search N
along with the methods described in Section VII. 0

Let y,(z) = (ro — lu)z + l, be the equation ofi,, j.)

x € [0,1]. Let yo(x) = (ro — lo)z + lo be the equation
of (ia,ja) ONx € [0,1]. Let y;;(x) = (r; — li)x + I; be the
IX. CONCLUSIONS equation of(é,7) onx € [0, 1].

’ Consider the slopes @f, (z) andy, (x). There are two cases:

Motivated by applications in the area of network robustnessl) The slope ofy,,(x) is smaller or equal to the slope of
and survivability, in this paper, we focused on the problem Yo (2): T — ly < 7o — la

of geographical network inhibition. Namely, we studied the 2) The slope Ofyw_(m) is greater or equal to the slope of
properties and impact of geographical disasters that can be Ya(@): T — L > T — Lo

represented by either a line segment cut or a circular cutén . e .
physical network graph. We considered a simple bipartiéplr tWe consider now the first case. Let:

that abstracts the fiber links between the east and westscoast minz such thatz* <z <1 and
in the U.S. or transatlantic/pacific links. Then, we consde |, i (¥) = ya(x) for anyy;; noty, or
a general graph model in which nodes are located on th& yij(x) = yo(z) for anyy;; noty,

Euclidian plane and studied two related problems in whidis cu
are modeled as line segments or as circular disks. For abkgcas
we developed polynomial-time algorithms for finding worst- Essentiallyz’ is the firstz-location afterz* wherey,, (x) or
case cuts. We then used the algorithms to obtain numerigalx) intersect another link. If,,(x) or y,(x) do not intersect
results for various performance measures. another link afterc*, thenz’ = 1.

Our approach provides a fundamentally new way to look We now show that’ is anz-location where it is possible to
at network survivability under disasters or attacks th&esa cut all the links which interseatut, (z*,y*). Since links are
into account the geographical correlation between linken& line segments, we know;;(z') = yi;(z*) + (' — z*)(r; —

if the = above does not exist



l;) Vi, j. Since we knowy,, (z*) < yo(z*) + h (cutp(z*,y*) [19]
intersects bothy,,(z) and y,(z)) and (r,, — l,)(a" — z*) <

(ra —la)(2" — 2*) (case 1 above and — z* > 0), we have |y
Yo (27) + (ro =) (@' —27) < ya(@7) + (ra —la) (@' —27) +h.
Thusy, (2') < yo(2’) + h. See Fig. 9.

This means:uty, (¢, yo(«’)) will intersect both(i,, j,,) and
(ias jo)- Since both these links do not intersect another link on
z* <z < ', links which are intersected byut, (2*, y*) are 122
also intersected byut,, (', yo(z')) (they are ‘trapped’ between 3
(lws Juw) @Nd (iq, jo) ONz* < 2 < 2').

Now we knowcuty, (2, yo(z')) is a worst-case cut and =
1, [@,yo(2')] is a link intersection, ofz’,y.(z')] is a link
intersection. Therefore, by Lemma 1, we know there exists[2%]
worst-case cut which has an endpoint on a link intersection o
node. The second case follows in an analogous fashiorl  [2¢

[21]

(24]
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