
Noname manuscript No.
(will be inserted by the editor)

On Interval and Circular-Arc Covering Problems

Reuven Cohen · Mira Gonen

Received: date / Accepted: date

Abstract In this paper we study several related problems of finding optimal interval and

circular-arc covering. We present solutions to the maximum k-interval (k-circular-arc) coverage

problems, in which we want to cover maximum weight by selecting k intervals (circular-arcs) out

of a given set of intervals (circular-arcs), respectively, the weighted interval covering problem,

in which we want to cover maximum weight by placing k intervals with a given length, and the

k-centers problem. The general sets version of the discussed problems, namely the general mea-

sure k-centers problem and the maximum covering problem for sets are known to be NP-hard.

However, for the one dimensional restrictions studied here, and even for circular-arc graphs,

we present efficient, polynomial time, algorithms that solve these problems. Our results for the

maximum k-interval and k-circular-arc covering problems hold for any right continuous positive

measure on R.

1 Introduction

This paper presents several efficient polynomial time algorithms for optimal interval and circular-

arc covering. Given a set system consisting of a ground set of points with integer weights, subsets

of points, and an integer k, the maximum coverage problem selects up to k subsets such that the

sum of weights of the covered points is maximized. We consider the case that the ground set

is a set of points on a circle and the subsets are circular-arcs, and also the case in which the

ground set is a set of points on the real line and the subsets are intervals. The maximum coverage

by placing intervals problem is a variant of the maximum coverage problem in which there is a

given length of all the intervals, the intervals are not given in the input and can be placed to

R. Cohen

Department of Mathematics,

Bar-Ilan University,

Ramat-Gan 52900, Israel,

E-mail: reuven@math.biu.ac.il

M. Gonen

Department of Computer Science,

Ariel University,

Ariel, Israel,

E-mail: mirag@ariel.ac.il

2 Reuven Cohen, Mira Gonen

maximize the weight of the cover. A generalization of the problem to the problem of maximum

covering of a general measure by a given number of intervals (or a given number of circular-arcs)

is discussed as well. Finally, the k-center problem is the following: given a set P of points in a

measure space and a positive integer k, find a set of k supply points such that the maximum

distance between a point in P and its nearest supply point is minimized. For the cases of the L2

and L∞-measure the problem is referred to as the Euclidean and rectilinear k-center problem,

respectively.

Maximal cover problems arise naturally in many optimization problems. The one-dimensional

analog presented here can be used, for example, to find the optimal locations along a road for

positioning fuel stations, cellular communication towers or different facilities, given some measure

along the road such as traffic density, the locations of farms or the expected revenue.

The maximum coverage problem on the real line and on circular-arc graphs is obviously a

specific instance of the maximum coverage problem, and is related to the set cover problem.

Minimum set cover of integers on the real line was discussed by Hochbaum and Levin [24]. They

showed that packing and covering optimization problems over constraints in consecutive and

circular 1s have efficient polynomial algorithms. Specifically, Hochbaum and Levin showed that

the set cover problem, where the sets are restricted to be continuous intervals of integers can

be solved in linear time. Circular-arc graphs are a strict generalization of interval graphs. There

are several problems, such as graph coloring, that have a polynomial-time solution for interval

graphs, but do not admit an efficient algorithm, unless P=NP, for circular-arc graphs [14].

The maximum coverage problem on the real line is a special case of geometric covering

problems. Geometric covering problems have been extensively studied as they have applications

to real-world engineering and optimization problems. It has been shown [25] that even for very

simple classes of objects such as unit disks or unit squares in the plane, computing the exact

minimum set cover is strongly NP-hard. As a result, much of the research regarding geometric

set cover has focused on approximation algorithms, specifically of low VC-dimension [6, 17].

The approximability of the rectangle cover problem and its generalization, the 4-sided box cover

problem, have connections to related capacitated covering problems [8]. Mustafa and Ray [32]

proposed a PTAS for a wide class of unweighted geometric hitting set and set cover problems via

a local search technique. Erlebach and van Leeuwen [16] have obtained a PTAS for the weighted

version of geometric set cover for the special case of unit squares. Chan and Grant [10] studied

several geometric set cover and set packing problems involving configurations of points and

geometric objects in Euclidean space. They proved the APX-hardness of computing a minimum

cover of a set of points in the plane by a family of axis-aligned fat rectangles and several other

classes of objects. In addition they gave a polynomial-time dynamic programming algorithm for

geometric set cover for some classes of objects. Carmi et al. [7] discussed the problem of covering

a given set of points in the plane by a given set of unit disks. They showed that while this

special case of geometric set cover is still NP-hard, it can be approximated within a constant

factor of 38. Gonzalez [22] discussed several variants of covering a set of points in a given space.

He considered covering a set of points in the plane by fixed-size orthogonal squares, covering

points in d-dimensional space by orthogonal hypersquares with a given dimension, covering

points in d-dimensional space by fixed-size hyperrectangles with given dimensions, and covering

points by hyperdiscs with a given diameter. These problems are all known to be NP-hard for

d ≥ 2 [39, 29, 19]. Gonzalez presented a fast approximation algorithm that generates provably

good solutions and an improved polynomial-time approximation scheme for these problems.

The general problems of set cover and maximum k coverage are well known to be NP-hard

[20, 33, 18]. The set cover problem can be approximated within lnn− ln lnn+Θ(1) [37, 28, 38].

On Interval and Circular-Arc Covering Problems 3

By [36, 3] it follows that unless P = NP, there exists a constant 0 < c < 1 so that set cover

cannot be efficiently approximated to within any number smaller than c log2 n. Feige [18] has

shown hardness of approximating set cover in (1−o(1)) lnn. According to Feige [18] for all ε > 0,

the maximum k coverage problem cannot be approximated in polynomial time within a ratio

of 1 − 1/e + ε, unless P = NP. In addition the greedy algorithm (iteratively selecting the sets

that cover the largest number of yet uncovered elements) approximates the maximum k coverage

problem within a ratio of at least 1− 1/e.

A variation of the maximum k coverage problem is the following: given a family of subsets

we want to find a subcollection of size of at most k in order to maximize the number of subsets

having nonempty intersections with the subcollection. It is well known that the decision version

of this problem is NP-hard, and that a simple greedy algorithm approximates the problem

within a factor of 1− (1−1/k)k. Feige [18] proved that no polynomial time algorithm can have a

better performance guarantee unless P = NP. Moreover, Cornuejols, Nemhauser and Wolsay [13]

showed that the greedy algorithm almost always finds an optimal solution in the case of two-

element sets. Ageev and Sviridenko [2] presented an approximation algorithm that gives a factor

of 1− (1− 1/p)p, where p is the maximal size of a subset. In addition, the problem still remains

NP-hard for any fixed p ≥ 2. In the case when p = 2 the performance guarantee of the greedy

algorithm has the same value of 1− 1/e [13].

The general minimum k-center problem is approximable within 2 [21, 23], and is not approx-

imable within 2−ε for any ε > 0 [26, 34]. The variation where the maximum distance from each

vertex to its center is given by some L and the number of centers is to be minimized, is approx-

imable within logL+ 1 [4]. The vertex weighted version, where the objective is to minimize the

maximum weighted distance is approximable within 2 [35]. Efficient polynomial-time algorithms

have been found for the planar k-center problem when k is a small constant [9, 15]. Also, the

rectilinear 2-center problem has a polynomial-time solution, even when d is part of the input [30].

However both the Euclidean and rectilinear problems are NP-hard for d = 2 when k is part of the

input [19, 31], while the Euclidean 2-center and rectilinear 3-center are NP-hard when d is part

of the input [30]. Hwang et al. [27] gave an nO(
√
k)-time algorithm for the Euclidean k-center pro-

blem in the plane. Agarwal and Procopiuc [1] presented an nO(k1−1/d)-time algorithm for solving

the k-center problem in Rd under L2 and L∞-measures, and a (1 + ε)-approximation algorithm

with running time O(n log k) + (k/ε)O(k1−1/d). Brass et al. [5] considered several instances of the

k-center problem on a line, namely, the centers lie on a line `. They first discussed a version of

the problem where the line ` is given in advance, and gave an O(n log2 n) algorithm. In addition,

they investigated the cases where only the orientation of the line ` is fixed, and where the line `

can be arbitrary. They presented O(n2 log2 n) and expected O(n4 log2 n) algorithms, respectively.

In a recent paper [11] Chen and Wang presented an efficient algorithm for the weighted k-center

problem on a real line. Their definition of the target function is different than ours, as will be

discussed in Section 5.

The general exact k-coverage problem for the special cases of intervals and circular-arcs was

discussed by Cohen et al. [12]. This problem is a generalisation of the problem discussed in this

paper, in which each point i has an integer demand di which is not necessarily 1, and point i

is covered if exactly di subsets containing it are selected. Cohen et al. [12] studied this problem

and some related optimization problems. They proved that the exact k-coverage problem with

unbounded demands is NP-hard even for intervals on the real line and unit weights. parameters

is In addition the authors proved that if any parameter of the problem is restricted to be a

constant, then the problem is polynomial time solvable. The case where each demand is exactly

1, and a point can be covered by more intervals than its demand is not considered in [12]. where

one of the parameters is a constant).

4 Reuven Cohen, Mira Gonen

Our Results. In this paper we consider several related problems of finding optimal interval

and circular-arc covering. We discuss maximum coverage of points by intervals, maximum co-

verage of points by circular-arcs, maximum coverage by placing intervals, and one dimensional

k-centers. We provide polynomial time algorithms, based on dynamic programming. The vari-

ants we discuss were not discussed before. For the maximum coverage problems for interval and

circular-arc graphs when the intervals and circular-arcs are given, our results hold for any right

continuous positive measure. For interval graphs we present an algorithm with time complexity

of O(n · k2 + n log n + M), where n is the number of given intervals, and M is the time com-

plexity of computing the intervals’ measure. For the special case that the measure is the sum

of weights of given m points on the real line covered by the intervals, our algorithm has time

complexity of O(n · k2 +n log n+m logm). For circular-arc graphs we present an algorithm with

time complexity of O(n2 ·k2 +n2 log n+M ·n), where n is the number of given circular-arcs, and

M is the time complexity of computing the arcs’ measure. For the maximum coverage by placing

intervals problem we introduce an O(m · n) algorithm, where m is the number of points and n

is the number of intervals. Finally, we present an O(n2 log n) algorithm for the one dimensional

k-centers problem, where n is the number of points on the real line.

In the following we assume, as customary, that mathematical operations on integers and reals

including comparisons and storage require constant time. If one assumes that these operations

require time proportional to the number of digits appropriate adjustments to the results is

needed.

Organization: In Section 2 we design an efficient algorithm for the interval maximum coverage

problem. The solution uses an algorithm for the weighted independent set with a cost for in-

tervals. In Section 3 we generalize the algorithm to circular-arc maximum coverage problem by

reducing the arcs to intervals. In Section 4 we introduce an O(m ·n) algorithm for the problem of

covering maximum weight of n points by m intervals, and then present an algorithm for covering

general measure. In Section 5 we show an O(n2 log n) algorithm and an O(n · k) algorithm for

two variants of the one dimensional k-centers problem. We conclude with Section 6.

2 Maximum coverage by given intervals

In this section we show an efficient algorithm for the interval maximum coverage problem. The

solution uses an algorithm for the weighted independent set with a cost for intervals.

Consider the following problem:

Problem 1 real interval maximum coverage: for any right continuous positive measure, µ on R,

given a collection of n real intervals, I = {I1, . . . , In}, Ii = (ai, bi], find a subset J ⊆ I of cardinality

K such that µ(J) := µ(∪I∈J I) is maximum. Other types of intervals, such as closed or open intervals

may also be considered, at the price of treating startpoints and endpoints differently. For simplicity we

consider only open-closed intervals. We refer to µ(J) as maximum cover. Examples include:

1. Given a universe P = {p1, . . . , pm} of m integers or reals with weights {w1, . . . , wm}, and a

collection of n real intervals, I = {I1, . . . , In}, Ii = (ai, bi], find a subcollection I′ of I of size K

such that maxn
i=1 wi · δi is maximum, where δi = 1 if ∪Ij∈I′Ij covers element pi. This problem

can also be formulated by considering a list of intervals ending at the points pi. However, the

solution in Sec. 4 is more efficient since one needs not consider intersecting intervals.

2. Find the subset J ⊆ I such that |J | = K and the Lp norm of ∪J∈J J is maximum.

On Interval and Circular-Arc Covering Problems 5

Note that the integer interval problem is reducible to the real interval problem with any

integer interval {a, a + 1, . . . , b} replaced by the real interval (a − 1/2, b + 1/2]. Therefore the

integer interval maximum coverage problem can be solved using the same algorithm designed

for the real interval maximum coverage problem.

Given a sorted vector ofN real points, A, the following function calculates the vector µ((x,Ai])

for 1 ≤ i ≤ N , for some arbitrary x ≤ Ai. This allows the evaluation of µ((a, b]) = µ((x, b]) −
µ((x, a]). Denote the time required to complete function CalcMeasure by M .

For the specific case described in Item 1 of Problem 1 the function Function CalcMeasure

given bellow calculates the weights up to a given point on the line, namely the sum of weights

of points covered up to a given point on the line.

Function CalcMeasure //For problem 1.1

Input: a vector of reals x of length N and the universe P = {p1, . . . , pm} of real points, and a set

of weights {w1, . . . , wm}.

1. j ← 0.

2. W ← 0.

3. For i = 1 to N

(a) While pj+1 < xi do j ← j + 1, W ←W + wj .

(b) yi = W .

4. return y. //For this measure µ((−∞, x]) =
∑
{r|pr<x} wr.

The time complexity of computing this function is M = O(N + m logm) time to complete,

or M = O(N +m) if the universe P is already sorted.

For the specific case described in Item 1 of Problem 2 the function Function CalcMeasure is

given bellow:

Function CalcMeasure //Lp version

Input: a vector of reals x.

return x. //For the Lp measure µ((0, x]) = x.

The function CalcMeasure in this case is actually a stub, requiring no time to complete.

We now introduce an efficient algorithm for the real interval max coverage problem. Consider

the following high-level description of the algorithm. First we take the instance of max coverage

that we have, i.e., a set of real intervals, and create another instant of real intervals in the

following way: first we remove all intervals that are subsets of other intervals. Then, for every

pair of real intervals (a, b], (c, d] such that a < c ≤ b < d, we add the real interval (a, d]. Then we

assign integer cost for each real interval in the following way: the cost of a real interval is the

minimum number of intervals in the original instance which are needed to (fully) cover the real

interval. We show how to efficiently compute the cost of each of these intervals. We also assign a

weight for each real interval using the integrals on the measure. We then find a maximum weight

independent set of the new instance of intervals of cost at most K.

Computing the new instance of intervals and their costs and weights: For any pair of intervals

(a, b], (c, d] such that a < c ≤ b < d Algorithm 1 computes the cost and weight of the new interval

(a, d], without explicitly keeping the interval itself. The algorithm computes the weights by using

the function CalcMeasure, and computes the costs by computing maximum continuous cover.

Namely, for each endpoint bi of an interval Ii = (ai, bi] ∈ I and cost h, it computes the index of

the minimum endpoint that is covered by at most h intervals that also cover bi, such that each

6 Reuven Cohen, Mira Gonen

pair of consecutive intervals intersect. Sort the list I by ascending order of bi. Define the vector

B as the vector of distinct endpoints (excluding duplicates) and the vector S as the vector of

intervals’ indexes in the following manner. Si = i and Bi = bi if the interval (ai, bi] is not a

sub-interval of any other interval, and else Si = j and Bi = bj , where j is the smallest index of

an interval (aj , bj] that is a super-interval of (ai, bi] and is not a subinterval of any other interval.

Let A and B be the vectors of startpoints and endpoints, respectively, where Ai = aj , Bi = bj ,

and j = Si. Define the matrix Ci,h whose entries are indices of minimum endpoint covered by a

continuous covering containing also the ith smallest endpoint using at most h intervals.

We use the following algorithm for computing the costs and the weights of the new instance

of intervals. Namely, the algorithm computes the vectors S, A, B, and their weights WA, WB,

and the matrix C.

Algorithm 1 (Cost-Weight)

Input: I,K.

1. Sort the intervals by ascending order of the bi.

2. Set j ← 0.

3. For all i set Ai ←∞.

4. For i = 1 to n

(a) If j = 0 or bi > Bj

i. Set j ← j + 1.

ii. Set Bj ← bi.

iii. Set Aj ← ai, Sj ← i.

// Whenever a new endpoint is encountered set Sj to be the interval’s index and Aj and

Bj to be the respective start and endpoint.

5. For i = j − 1 down to 1 do if Ai ≥ Ai+1 set Ai ← Ai+1, Si ← Si+1.

6. h = 1.

7. For i = 1 to j do

(a) Ci,0 ← i.

(b) While Ai > Bh set h← h+ 1.

(c) Ci,1 ← h.

8. For h = 2 to K

(a) For i = 1 to j set Ci,h ← CCi,h−1,1.

9. WA = CalcMeasure(A), WB = CalcMeasure(B).

10. Return S, A, B, C, WA, WB.

Theorem 1 Algorithm 1 finds the minimum startpoint continuous covering for each endpoint i and

cost j in time O(nK + n log n+M)

Proof: The proof is by induction on the cost. For cost 1 the algorithm gives the minimum

startpoint continuous cover for each point i by finding the interval containing endpoint i with

minimum startpoint. For any cost h the correctness follows from the correctness of the algorithm

for cost h− 1 by extending this cover by the smallest startpoint single interval that contains the

leftmost endpoint in the cover with cost h− 1.

The time complexity of all steps is linear, except for the sorting which takes O(n log n) steps

and step 8a which is performed O(nK) times. Step 9 requires O(M) operations, depending on

the measure.

Corollary 1 For problem 1.1 the time complexity of Algorithm 1 is O(nK + n log n+m logm).

On Interval and Circular-Arc Covering Problems 7

We now design our algorithm for max coverage.

Let D(i, h) be the cost of the ith interval if it is in the cover, for the intervals I1, . . . , Ii,

with maximum cost h. Let W (i, h) be the sum of weights of the intervals in the cover for the

intervals I1, . . . , Ii, with maximum cost h. The algorithm stores the D(i, h) and W (i, h) values in

a table, that is, a two dimensional array, D(0 . . . n, 0 . . .K), W (0 . . . n, 0 . . .K), whose entries are

computed in a row-major order. That is, the first row of D and W is filled in from left to right,

then the second row, and so on. At the end of the computation, W (n,K) contains the weight of

the optimal solution. The algorithm then outputs the optimal solution as a set, M , computed

using D(0 . . . n, 0 . . .K).

Algorithm 2 (Dynamic weighted coverage)

Inputs: vectors A, B, WA,WB, S, matrix C, integer K.

1. D(0, 0)← 0, W (0, 0)← 0.

2. For h = 1 to K

(a) set D(0, h)← 0, W (0, h)← 0.

(b) For i = 1 to n

i. W (i, h)← max{W (i− 1, h),max1≤t≤h{WBi −WACi,t−1
+W (Ci,t − 1, h− t)}}.

//check if the interval (aCi,h−1
, bi] should be added to the cover.

ii. If W (i, h) = W (i− 1, h) set D(i, h)← 0.

Else, D(i, h)← arg max1≤t≤h{WBi −WACi,t−1
+W (Ci,t − 1, h− t)}.

3. Let i = n, h = K, M = φ.

4. While i > 0 do

(a) c← D(i, h).

(b) If c > 0 do

i. For t = 0 to c− 1 do

A. M ←M ∪ {SCi,t
}.

ii. i← Ci,h−1, h← h− c.
(c) i← i− 1

5. Output M .

Theorem 2 Algorithm 2 computes maximum cover with cost at most K with time complexity O(n ·
K2 + n log n+M).

Proof: The correctness of the Algorithm 2 follows by induction and from the claim that Algo-

rithm 1 gives the best continuous coverage for points up to i with cost h (Theorem 1). Every

coverage consists of a disjoint union of continuous intervals. For n = 1 and every cost K the

algorithm returns a cover of the point with cost K. Now assume that the algorithm gives the

best solution up to cost K for all points up to n. Then, the best cover for n+ 1 points with cost

K is either the best cover of the first n points with cost K or some cover containing the n+ 1st

point.

If the optimal cover contains the n+1st point it must consist of a union of a continuous cover

of some points including the n+1st point of some cost t and some cover of other points (possibly

0 points) with cost K − t. All such covers for all possible values of t are considered, such that

the cover consists of a union of a maximum continuous cover of cost t up to and including point

n+ 1 and an optimal cover up to (and not necessarily including) the first endpoint not covered

by the continuous cover.

We now turn to show that if the optimal cover up to point n + 1 includes point n + 1 it

necessarily consists of a disjoint union of an optimal maximum cover up to point n+ 1 (for some

8 Reuven Cohen, Mira Gonen

cost t) and the optimal cover up to the first endpoint not covered by this continuous cover. For

any given t, assume that the rightmost continuous part of optimal cover ends at point n+ 1 has

cost t and is not an optimal continuous cover. Then, the total weight of the cover can always be

improved by replacing this continuous interval by the optimal continuous interval of the same

cost, as it will cover at least all points covered by this cover1. Now, assume that the left part

of the cover (up to the last point not covered by the rightmost continuous part) is non optimal,

then changing it to the optimal will improve the total weight of the cover, contradicting the

assumption of optimality. Thus, the optimal cover is always in one of the cases checked by the

algorithm.

The time complexity stems from the minimum calculation requiring Θ(K) steps. This step is

performed Θ(nK) times. The complexity of the construction of M from the matrix D is O(n+K),

as the outer loop is performed at most n times and the inner loop is performed at most K times.

Thus, the total cost of the calculation is O(nK2 + n log n+M).

3 Maximum coverage by given arcs

In this section we show an efficient algorithm for the maximum coverage problem on circular-arc

graphs. The solution uses the algorithm for the interval maximum coverage problem given in the

previous section.

Consider the maximum coverage problem for circular-arc graphs:

Problem 2 circular-arc maximum coverage: for any right continuous positive measure, µ, given a

circular-arc graph with n arcs, A = {A1, . . . , An}, Ai = âibi, where ai /∈ Ai, bi ∈ Ai, find a subset

J ⊆ A of cardinality K such that µ(J) := µ(∪A∈JA) is maximum. We refer to µ(J) as maximum

cover.

We now present an algorithm for circular-arc graphs that is based on the algorithm for

interval graphs given in the previous section.

The idea of the algorithm is the following: first remove all arcs that are sub-arcs of arcs in

A. Then, for each arc j ∈ A find an optimal solution that contains arc j. Since no arc strictly

contains arc j, for each other arc i ∈ A it holds that i \ j is a single continuous arc which is a

sub-arc of the arc C \ j, where C is the circle. Thus, for each such j ∈ A one can compute an

optimal solution with K − 1 arcs in the set {i \ j|i ∈ A}. For computing such optimal solution

use analogs of Algorithms 1 and 2, where {i \ j|i ∈ A} is the set of arcs and K − 1 is the number

of arcs need to be selected. Notice that for each j the arcs in {i \ j|i ∈ A} can be easily modified

to intervals. Taking the optimal solution over all j, this algorithm will always find an optimal

solution.

Algorithm 3 (Max cover of arcs)

1. Remove from A all arcs that are sub-arcs of other arcs in A.

2. For all j ∈ A

1 Notice that this replacement may lead to an intersection with intervals to the left. However, this does not

affect the argument, as there still exists a better cover, possibly for a different t

On Interval and Circular-Arc Covering Problems 9

(a) Ij ←− A.

(b) For all i ∈ Ij do i←− i \ j.
(c) Remove all arcs in Ij that are sub-arcs of arcs in Ij .

(d) Jj ←− DynamicWeightedCoverage(Cost−Weight(Ij ,K − 1),K − 1).

3. jmax ←− arg maxj∈A (µ(Jj) + µ(j)).

4. Return Jjmax
∪ {jmax}.

Theorem 3 Algorithm 3 returns an optimal weighted cover, and its time complexity is O(n2 ·K2 +

n2 log n+M · n).

Proof: Proving correctness: let Aopt ⊆ A be an optimal solution, and let Aalg the solution

returned by Algorithm 3. Let j ∈ Aopt be some arbitrary arc. Then,

µ(Aopt) = µ
(
∪i∈Aopt

i
)

= µ
((
∪i∈Aopt\{j}i \ j

)
∪ j
)

= µ
(
∪i∈Aopt\{j}i \ j

)
+ µ(j) ≤ µ (Jj) + µ(j) ≤ µ(Aalg)

(The inequality in the second line follows from the fact that for each i ∈ Aopt i \ j is a sub-arc in

the circle minus arc j, so it is considered by Algorithm 3, and by the correctness of Algorithms 1

and 2).

The time complexity of the algorithm is O(n2 ·K2+n2 log n+M ·n), since the time complexity

of Algorithms 1 and 2 is O(n ·K2 + n log n + M), and these algorithms are run O(n) times by

Algorithm 3.

4 Maximum coverage by placing intervals

In this section we introduce an O(mn) algorithm for the problem of covering maximum weight

of m points by n intervals of a given length `, where the intervals are not given in the input.

Unlike the problem discussed in the previous section, the intervals can be placed to maximize the

weight of the cover. We then modify this algorithm to solve the problem of maximum covering

of a general measure by a given number of intervals. The above problem is different from the

problem in Section 2 since the intervals are not given, and are all of the same length.

4.1 Covering points using intervals

Consider the following problem.

Problem 3 Given a real number, `, a natural number, n, and a set of m points, P = {p1, . . . , pm},
with weights {w1, . . . , wm}, find the optimal location of n intervals of length ` that cover the maximum

possible total weight. Namely, find a location of the n intervals of length ` such that
∑m

i=1 wi · δi is

maximum, where δi = 1 if pi is covered and otherwise δi = 0.

As in the previous section we refer by ”maximum cover” to the maximum sum of weights of

the points covered by the ` intervals.

Denote by Ii the interval Ii = [pi − `, pi]. We mark by D(a, b) a set of a intervals that covers

the maximum possible weight of points out of the leftmost b points. For a set of intervals X

10 Reuven Cohen, Mira Gonen

define W (X) =
∑

t∈{j|pj∈P∩∪Ii∈XIi} wt, i.e., W (X) is the total weight of points covered by the

intervals in X. To evaluate these quantities we will define matrices D, O that will be used by the

algorithm. Oa,b will contain the weight of the optimal cover of points up to pb using a intervals

and Da,b will be 1 if this optimal cover contains the interval sb and 0 otherwise.

The suggested algorithm is the following:

Algorithm 4 (Covering points using intervals)

1. TW (0) = 0. For i = 1 to m, TW (i) = TW (i− 1) + wi.

// TW (i) = Total weight of all points up to pi.

2. Set q = 0. For each i ∈ {1, . . . ,m} while pq+1 < pi − ` do q ← q + 1. Set qi = q, W (i) =

TW (i)− TW (qi).

// qi = max(0,max{j|pj < pi − `})
// W (i) = weight of points covered by an interval ending at point i.

3. Set Oa,0 = 0, a = {0, . . . , n}.
4. Set O0,b = 0, b = {0, . . . ,m}.
5. For each a = {1, . . . , n}, and for each b = {1, . . . ,m} if W (b) + Oa−1,qb > Oa,b−1 set Da,b = 1,

Oa,b = W (b) +Oa−1,qb else set Da,b = 0, Oa,b = Oa,b−1.

6. Return the set D(n,m). (for a pair a, b, if Da,b = 0 then D(a, b) = D(a, b − 1) and otherwise

D(a, b) = {sb} ∪D(a− 1, qb)).

To prove the correctness of the algorithm we first present the following lemma.

Lemma 1 There exists an optimal cover such that:

1. Every interval ends at a point in P .

2. The intervals are pairwise disjoint.

Proof: For every cover one may move every interval [a − `, a] to end at the rightmost point

which it intersects, i.e., to move it to [p − `, p], such that p = max{pi|pi ∈ P ∧ pi ≤ a}. Every

point that is intersected by the original interval is still intersected by the new interval.

To see that one of the maximal covers has no intersections assume that all maximal covers

have intersections. Now, take one of the maximal covers such that the two leftmost intervals

intersecting are the rightmost among all maximal covers. Assume that these intervals are [pi−`, pi]
and [pj− `, pj] and that i ≤ j. Now, replacing [pi− `, pi] by [pqj − `, pqj] (or removing it altogether

if qj = 0) covers all points that are covered by the original cover, and has no intersections to

the right of pqj in contradiction to the maximality of the chosen cover. Thus, there is a maximal

cover with no intersections.

We have the following

Theorem 4 For any m and n, the algorithm above finds a cover of the points by at most n intervals

of length ` such that the sum of weights of the covered points is maximum. The time complexity of the

algorithm is O(nm).

Proof: For m = 1 and any n the algorithm returns one interval ending at the point, which is

optimal. The proof now follows by induction: consider now moving from m− 1 to m points. One

needs only consider adding an interval ending at pm, as such a segment covers all the points

(up to m) covered by any interval going further right. Now, if this interval intersects any other

On Interval and Circular-Arc Covering Problems 11

interval in the optimal configuration, then, the other interval may be moved to end at point

qm, without exposing any point (as all points right of qm are covered by the new interval). As

no overlap exists between the last interval and previous ones, the optimal cover containing the

interval [pm− `, pm] is the cover containing this interval and the intervals of the optimal cover of

m− 1 segments up to point qn. Thus, the optimal cover up to point m is the maximum between

the above cover and the optimal cover not containing the interval [pm − `, pm], which is the

optimal cover of m− 1 points with n intervals.

We now turn to prove the time complexity of the algorithm: Step 2 is done in time linear

in m. Step 5 repeats mn times, where each iteration requires only a constant time to perform.

Step 6 can be computed in linear time.

It is clear that this algorithm is optimal for calculating all sets D(a, b) for a = 1, . . . , n and

b = 1, . . . ,m. For given values of m and n we make the following conjecture.

Conjecture 1 For given values of m and n, the optimal algorithm for segment cover has time

complexity of O(mn).

4.2 Maximum covering of a measure

We now generalize the results of the previous section to any positive measure.

Consider now the following problem:

Problem 4 Given a segment [a, b], equipped with a positive measure dµ, a be real number, `, and

a natural number, n, find the optimal location of n intervals of length ` (assume b − a > n`) si,

1 ≤ i ≤ n, such that
∫
∪n

i=1si
dµ is maximum. Denote such an optimal solution by maximum cover.

Define the cumulative weight W (x) =
∫ x
a

dµ. Assume W (x) is continuous and differentiable.

Let Wr(x) = W (x)−W (x− r`). Let Pr be the set of all solutions of the equation W ′r(x) = 0 and

the beginning and end of the interval [a, b], i.e.,

Pr = {x|W ′r(x) = 0} ∪ {a+ r`, b}.

Let d = |∪nr=1Pr|.

Algorithm 5 (Covering measure using intervals)

1. For all 1 ≤ r ≤ n
(a) Compute Pr.

(b) For each xi ∈ Pr do

i. O0(xi) = 0

ii. Or(xi) = max0≤r′≤r{W (xi) + Or−r′(xqi,r′)}, where qi,r′ = arg max{xj ∈ Pr|xj <

xi − r′`}.
2. Let r = | ∪nr=1 Pr|. W.l.o.g assume that the Pr are disjoint.

3. Set Or,0 = 0 for every r ∈ {0, . . . , n}.
4. Set O0,k = 0 for every k ∈ {0, . . . , d}.
5. For each j ∈ {1, . . . , n}, k ∈ {1, . . . , d}

(a) Let r ∈ {1, . . . , n} be such that xk ∈ Pr.

12 Reuven Cohen, Mira Gonen

(b) Let tk = arg max0≤r′≤r{Wr′(xk) +Or−r′(xqk,r′)}.
(c) If Wtk(xk) +Oj−tk,qk,tk

> Oj,k−1 set Aj,k = 1, Oj,k = W (xk) +Oj−tk,qk,tk
.

(d) Else set Aj,k = 0, Oj,k = Oj,k−1

6. Return the set A(n, d). (for a pair j, k, if Aj,k = 0 then A(j, k) = A(j, k − 1) and otherwise

A(j, k) = {[xk − tk`, xk]} ∪A(j − tk, qk,tk)).

We have the following

Theorem 5 For any n, `, the algorithm above finds a maximum cover with at most n segments of

length `. The time complexity of the algorithm is
∑

r=1 nTr +O(nd), where Tr is the time complexity

of computing Pr, and d = | ∪nr=1 Pr|.

Proof: The correctness of the algorithm follows from the correctness of Algorithm 5, and the

fact that
∫
∪n

i=1Ii
dµ is maximum when the total weight of elements in ∪nr=1Pr is maximum.

As for the time complexity of the algorithm: the main issue is Step 1(b)ii, which can be

computed in O(|Pr|) for all r by going over Pr once and updating the maximum.

5 One dimensional generalized k-centers

In this section we introduce an O(n2 log n) algorithm for the one dimensional k-centers problem.

Consider the following problem.

Problem 5 Let P = {p1, . . . pn} be a set of points on the real line. We refer to these points as clients.

Each client pi has weight wi. Let di,j = |pi − pj |, the distance between the points pi and pj . For a

set F = {f1, . . . , fk} of facility points and a point pi ∈ P define d(pi, F) = min1≤j≤k |pi − fj |. For a

given number `, we say that a set of facility points F = {f1, . . . , fk} serves a point pi if d(pi, F) ≤ `/2.

We consider two variants of target functions:

1. Assuming that ` is given, find a set of facility points F = {f1, . . . , fk} such that∑
pi∈P

wi · δ(d(pi, F) ≤ `/2)

is maximum, where δ(d(pi, F) ≤ `/2) = 1 if d(pi, F) ≤ `/2, and 0 otherwise.

Note that the above is the dual problem to the segment covering problem of the previous section.

2. Given a number W , find a number ` and a set of facilities F` such that∑
pi∈P

wi · δ(d(pi, F`) ≤ `/2) ≥W,

and ` is minimum.

Notice that this version is different then that of Brass et. al [5], since we discuss segments and

not disks in the plan as in [5].

Solving the first target function, notice that this is exactly the problem of covering points

using intervals. Therefore we can run Algorithm 4 and get a set of k intervals that maximize∑
pi∈P wi · δ(d(pi, F) ≤ `/2). The desired set of facilities F is the set of centers of these intervals.

The time complexity of computing F is the time complexity of Algorithm 4, namely O(n · k).

On Interval and Circular-Arc Covering Problems 13

Now we propose the following algorithm for the second target function: (W.l.o.g assume that

the sum of weights of any subset of points of size k is smaller than W - otherwise ` = ε for any

ε > 0, since we can take F as a set of such k points.)

Algorithm 6 (One dimensional k-centers)

1. Set D to be the ordered list of di,j = |pi − pj |, for i > j.

// The distances between clients

2. Do a binary search on ` ∈ D for the minimal ` such that
∑

pi∈P wi · δ(d(pi, F`) ≤ `/2) ≥W . For

each considered ` run Algorithm 4 for checking if
∑

pi∈P wi · δ(d(pi, F`) ≤ `/2) ≥W .

3. Return the locations of the centers of the intervals in A(k, n)2 returned by Algorithm 4.

Theorem 6 The algorithm above solves the k-centers problem in O(n2 log n) time.

Proof: First notice that only distances in D should be considered, as if ` /∈ D then all intervals

do not have both endpoints at P and therefore may be shortened without exposing clients. In

addition, recall that, given `, Algorithm 4 returns k intervals that cover maximum weight of

points. A point pi is covered if its distance from some interval’s center is at least `/2. This

implies the correctness of the algorithm.

Computing the time complexity: building the distance list requires O(n2) time and sorting it

requires O(n2 log n) steps. The binary search requires O(log(n2)) = O(log n) steps, each of which

solves the interval covering problem, having time complexity O(n · k).

Alternatively, if a constant bit accuracy of r bits is desired, one can make a binary search on

the distances with O(r) steps and obtain a solution with time complexity O(nkr) (Or, O(nr) if

a covering of all points is sought using the algorithm in [24]).

As discussed in the introduction, Chen and Wang [11] presented an efficient algorithm for

the weighted k-center problem on a real line. Their target function is the following: find a set of

facilities F of size k such that maxpi∈P wi · d(pi, F) is minimum. This function is different from

both our target functions so their time complexity cannot be compared to ours.

6 Conclusions

We presented here polynomial time algorithms for the maximum k-interval coverage problem,

the maximum k-circular-arc coverage problem, the weighted interval covering problem, and the

k-centers problem. In the general setting all these problems are NP-hard. However, we have

shown that the one dimensional restriction of these problems is solvable in polynomial time

using methods based on dynamic programming.

Acknowledgments

Reuven Cohen thanks the BSF for support. Science and Technology of Israel.

2 Recall that A(a, b) is a set of a intervals that covers the maximum possible weight of points out of the

leftmost b points.

14 Reuven Cohen, Mira Gonen

References

1. P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering.

Algorithmica, 33:201–226, 2002.

2. A. A. Ageev and M. I. Sviridenko. Approximation algorithms for maximum coverage and

max cut with given sizes of parts. In Proc. IPCO, pages 17 – 30, 1999.

3. N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-restrictions. In

ACM Transactions on Algorithms (TALG), pages 153 – 177, 2006.

4. J. Bar-Ilan and D. Peleg. Approximation algorithms for selecting network centers. In Proc.

2nd Workshop on Algorithms and Data Structures, Lecture Notes in Comput. Sci., pages 343–

354, 1991.

5. P. Brass, C. Knauer, H.S. Na, C.S. Shin, and A. Vigneron. Computing k-centers on a line,

arxiv:0902.3282v1, 2009.

6. H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC dimension.

Discrete Comput. Geom., 14:263–279, 1995.

7. P. Carmi, M.J. Katz, and N. Lev-Tov. Covering points by unit disks of fixed location. In

Proc. 18th International Symposium on Algorithms and Computation (ISAAC), pages 644–655,

2007.

8. D. Chakrabarty, E. Grant, and J. Köenemann. On column-restricted and priority covering

integer programs. Integer Programming and Combinatorial Optimization, pages 355–368, 2010.

9. T. Chan. Geometric applications of a randomized optimization technique. Discrete and

Computational Geometry, 22:547–567, 1999.

10. T.M. Chana and E. Grant. Exact algorithms and apx-hardness results for geometric packing

and covering problems. Computational Geometry, 2012, 2012.

11. D. Z. Chen and H. Wang. Efficient algorithms for the weighted k-center problem on a real

line. In Proc. 22nd International Symposium on Algorithms and Computation (ISAAC), pages

584 – 593, 2011.

12. R. Cohen, M. Gonen, A. Levin, and S. Onn. On nonlinear multi-covering problems. Journal

of Combinatorial Optimization, pages 1–15, 2015.

13. G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey. Worst-case and probabilistic analysis of

algorithms for a location problem. Operations Research, 28:847–858, 1980.

14. D. de Werraa, C. Eisenbeisb, S. Lelaitc, and E. Stöhr. Circular-arc graph coloring: On chords

and circuits in the meeting graph. European Journal of Operational Research, 136:483–500,

2002.

15. D. Eppstein. Fast construction of planar two-centers. In Proc. of the 8th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 131–138, 1997.

16. T. Erlebach and E. J. van Leeuwen. PTAS for weighted set cover on unit squares. In Proc. of

the 13th Intl. Workshop on Approximation Algorithms for Combinatorial Optimization Problems

(APPROX) and of the 14th Intl. Workshop on Randomization and Computation (RANDOM),

pages 166–177, 2010.

17. G. Even, D. Rawitz, and S. Shahar. Hitting sets when the VC-dimension is small. Information

Processing Letters, 95:358–362, 2005.

18. Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–

652, 1998.

19. R. Fowler, M. Paterson, and S. Tanimoto. Optimal packing and covering in the plane are

np-complete. Information Processing Letters, 12:133–137, 1981.

20. M. R. Garey and D.S. Johnson. computers and intractability: A guide to the Theory of NP-

Completeness. Freeman, 1978.

On Interval and Circular-Arc Covering Problems 15

21. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical

Comput. Sci., 38:293–306, 1985.

22. T.F. Gonzalez. Covering a set of points in multidimensional space. Information Processing

Letters, 40:181–188, 1991.

23. D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms for

bottleneck problems. J. ACM, 33:533–550, 1986.

24. Dorit S. Hochbaum and Asaf Levin. Optimizing over consecutive 1’s and circular 1’s con-

straints. SIAM J. on Optimization, 17(2):311–330, 2006.

25. D.S. Hochbaum and W. Maass. Fast approximation algorithms for a nonconvex covering

problem. J. Algorithms, 8:305–323, 1987.

26. W. L. Hsu and G. L. Nemhauser. Easy and hard bottleneck location problems. Disc. Appl.

Math., 1:209–216, 1979.

27. R. Z. Hwang, R. C. T. Lee, and R. C. Chang. The slab dividing approach to solve the

euclidean pcenter problem. Algorithmica, 9:1–22, 1993.

28. Lovász. On the ratio of optimal integral and fractional covers. SIAM J. on Discrete Mathe-

matics, 13:383–390, 1975.

29. S. Masuyama, T. Ibaraki, and T. Hasegawa. The computational complexity of the m-centers

problem on the plane. Trans. IECE of Japan, pages 57–64, 1981.

30. N. Megiddo. On the complexity of some geometric problems in unbounded dimension.

Journal of Symbolic Computation, 10:327–334, 1990.

31. N. Megiddo and K. Supowit. On the complexity of some common geometric location pro-

blems. SIAM Journal on Computing, 13:182–196, 1984.

32. N.H. Mustafa and S Ray. Improved results on geometric hitting set problems. Discrete

Comput. Geom., 44:883–895, 2010.

33. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

34. J. Plesńık. On the computational complexity of centers locating in a graph. Aplikace Mate-

matiky, 25:445–452, 1980.

35. J. Plesnk. A heuristic for the p-center problem in graphs. Disc. Appl. Math., 17:263–268,

1980.

36. R. Raz and S. Safra. A sub-constant error-probability PCP characterization of NP. In Proc.

29th Symposium on the Theory of Computing (STOC), pages 475 – 484, 1997.

37. P. Slavik. Improved approximations of packing and covering problems. In Proc. 27th Sym-

posium on the Theory of Computing (STOC), pages 268 – 276, Baltimore, MD, USA, May

1995.

38. A. Srinivasan. Improved approximations guarantees for packing and covering integer pro-

grams. SIAM Journal on Computing, 29(2):648–670, 1999.

39. K.J. Supowit. Topics in computational geometry. Technical Report UIUCDCS-R-81-1062,

Department of Computer Science, University of Illinois, Urbana, IL, 1981.

