
Labeling Schemes for Tree Representation

Reuven Cohen

Dept. of Computer Science

Weizmann Institute

r.cohen@weizmann.ac.il

Pierre Fraigniaud∗

CNRS

LRI, Univ. Paris-Sud

pierre@lri.fr

David Ilcinkas∗

LRI

Univ. Paris-Sud

ilcinkas@lri.fr

Amos Korman
Dept. of Computer Science

Weizmann Institute

amos.korman@weizmann.ac.il

David Peleg
Dept. of Computer Science

Weizmann Institute

david.peleg@weizmann.ac.il

November 23, 2005

Abstract

This paper deals with compact label-based representations for trees.
Consider an n-node undirected connected graph G with a predefined
numbering on the ports of each node. The all-ports tree labeling Lall

gives each node v of G a label containing the port numbers of all the
tree edges incident to v. The upward tree labeling Lup labels each node
v by the number of the port leading from v to its parent in the tree.
Our measure of interest is the worst case and total length of the labels
used by the scheme, denoted Mup(T) and Sup(T) for Lup and Mall(T)
and Sall(T) for Lall. The problem studied in this paper is the follow-
ing: Given a graph G and a predefined port labeling for it, with the
ports of each node v numbered by 0, . . . ,deg(v) − 1, select a rooted
spanning tree for G minimizing (one of) these measures. We show
that the problem is polynomial for Mup(T), Sup(T) and Sall(T) but
NP-hard for Mall(T) (even for 3-regular planar graphs). We show that
for every graph G and port numbering there exists a spanning tree T

for which Sup(T) = O(n log log n). We give a tight bound of O(n)
in the cases of complete graphs with arbitrary labeling and arbitrary

1

graphs with symmetric port assignments. We conclude by discussing
some applications for our tree representation schemes.

1 Introduction

This paper deals with compact label-based representations for trees. Con-
sider an n-node undirected connected graph G. Assume that we are given
also a predefined numbering on the ports of each node, i.e., every edge e
incident to a node u is given an integer label lu(e) in {0, . . . , deg(u) − 1}
so that lu(e) 6= lu(e

′) for any two distinct edges e and e′ incident to u. In
general, one may consider two types of schemes for representing a spanning
tree in a given graph. An all-ports tree representation has to ensure that each
node in the graph knows the port numbers of all its incident tree edges. An
upward tree representation has to ensure that each node in the graph knows
the port number of the unique tree edge connecting it to its parent. Such
representations find applications in the areas of data structures, distributed
computing, communication networks and others.

Corresponding to the two general representation types discussed above,
we consider two label-based schemes. The all-ports tree labeling Lall labels
each node v of G by a label containing the port numbers of all the tree edges
incident to v. The upward tree labeling Lup labels each node v of G by the
number of the port connected to the unique edge e of T leading from v toward
the root. We use the standard binary representation of positive integers to
store the port numbers.

Our measure of interest is the worst case or average length of the labels
used by tree labeling schemes. Let us formalize these notions. Given a graph
G (including a port numbering) and a spanning tree T for G,

• the sum of the label sizes in the labeling Lup (respectively, Lall) on T
is denoted by Sup(T) (resp., Sall(T));

• the maximum label size in the labeling Lup (respectively, Lall) on T is
denoted by Mup(T) (resp., Mall(T)).

The problem studied in this paper is the following: Given a graph G and
a predefined port labeling for it, with the ports of each node v numbered by
0, . . . , deg(v)− 1, select a rooted spanning tree T for G minimizing (one of)
these measures.

2

We show that there are polynomial time algorithms that given a graph G
and a port numbering, construct a spanning tree T for G minimizing Mup(T)
or Sup(T). Moreover, we conjecture that for every graph G, and any port
numbering for G, there exists a tree T spanning G, for which Sup(T) = O(n).
In other words, we conjecture that there is a tree for which the upward
labeling requires a constant number of bits per node on average.

We establish the correctness of this conjecture in the cases of complete
graphs with arbitrary labeling and arbitrary graphs with symmetric port
assignments. For arbitrary graph, we show a weaker algorithm, construct-
ing for a given graph G (with its port numbering) a spanning tree T with
Sup(T) = O(n log log n).

Turning to all-port labeling schemes, for any spanning tree T the labeling
Lall has average label size O(log ∆) in graphs of maximum degree ∆, which
is optimal on some n-node graphs of maximum degree ∆. It turns out that
here there is a difference between the measures Sall(T) and Mall(T). We show
that there is a polynomial time algorithm that given a graph G and a port
numbering, constructs a tree T minimizing Sall(T). In contrast, the problem
of deciding, for a given graph G with a port numbering and an integer k,
whether there exists a spanning tree T of G satisfying Mall(T) ≤ k is NP-
hard. This holds even restricted to 3-regular planar graphs, and even for fixed
k = 3. Nevertheless, denoting the smallest maximum degree of any spanning
tree for the graph G by δmin, there is a polynomial time approximation of the
tree of minimum Mall(T), up to a multiplicative factor of O(log ∆/ log δmin).

We conclude by discussing some applications for our tree representation
schemes, including basic distributed operations such as broadcast, converge-
cast and graph exploration. A number of well-known solutions to these prob-
lems (cf. [11, 1, 12]) are based on maintaining a spanning tree for the network
and using it for efficient communication. All standard spanning tree construc-
tions that we are aware of do not take into account the memory required to
store the spanning tree, and subsequently, the resulting tree may in general
require a total of up to O(n log∆) memory bits over an n-node network of
maximum degree ∆. Using the tree representations developed herein may
improve the memory requirements of storing the tree representation. For
instance, for applications that require only an upward tree representation,
our construction yields a total memory requirement of O(n log log n) bits,
which is lower in high degree graphs. These applications are discussed in
more detail in Section 4.

The all-port labeling scheme is particularly convenient for broadcast ap-

3

plications because it minimizes the number of messages. For less demanding
tasks such as graph exploration, more compact labeling schemes can be de-
fined. In particular, [3] describes a labeling scheme which uses only three
different labels and allows a finite automaton to perform exploration in time
at most O(m) on m-edge graphs.

2 Upward tree labeling schemes with short

labels

2.1 Basic properties

Let us first establish a naive upper bound on Sup(T) and Mup(T). In the
basic upwards tree labeling scheme, the label kept at each node v is the port
number of the tree edge leading from v toward the root. Hence no matter
which tree is selected, the label assigned to each node v by the upwards tree
labeling scheme uses at most dlog deg(v)e bits. This implies the following
bounds. (Throughout, some proofs are omitted.)

Lemma 2.1 For every n-vertex graph G of maximum degree ∆, and for
every spanning tree T of G, we have

1. Mup(T) ≤ dlog ∆e and

2. Sup(T) ≤
∑

vdlog deg(v)e.

Note that the second part of the lemma implies that in graph families
with a linear number of edges, such as planar graphs, the average label size
for any spanning tree is at most O(1).

Given G = (V, E), let ~G = (V, X) be the directed graph in which every
edge {u, v} in E corresponds to two arcs (u, v) and (v, u) in X. The arcs of
~G are weighted according to the port numbering of the edges in G, i.e., the
arc (u, v) of ~G has weight

ω(u, v) =

{

1, p = 0,
blog pc + 1, p ≥ 1,

where p is the port number at u of the edge {u, v} in G. That is ω(u, v) is
the number of bits in the standard binary representation of positive integers

4

required to encode1 port number p.
Finding a spanning tree T minimizing Mup(T) is easy by identifying the

smallest k such that the digraph ~Gk obtained from ~G by removing all arcs
of weight greater than blog kc + 1, contains a spanning tree directed toward
the root. Thus we have the following.

Proposition 2.2 There is a polynomial time algorithm that, given a graph
G and a port numbering, constructs a spanning tree T for G minimizing
Mup(T).

Similarly, applying any Minimum-weight Spanning Tree (MST) algorithm

for digraphs (cf. [2, 7]) on ~G with weight function ω, we get the following.

Proposition 2.3 There is a polynomial time algorithm that, given a graph
G and a port numbering, constructs a spanning tree T for G minimizing
Sup(T).

There are graphs for which the bound on Mup specified in Lemma 2.1 is
reached for any spanning tree T (e.g., a graph composed of two ∆-regular
graphs linked by a unique edge labeled ∆ at both of its extremities). However,
this is not the case for Sup, and we will show that, for any graph, there
is a spanning tree T for which Sup(T) is much smaller than the bound in
Lemma 2.1.

2.2 Complete and symmetric graphs

First, consider the case of a complete graph with arbitrary labeling. We
show that there exists a spanning tree T of it, for which Sup(T) = O(n). We
establish the claim by presenting an algorithm that yields a labeling of this
cost. The algorithm is a variant of Kruskal’s minimum-weight spanning tree
(MST) algorithm (cf. [4]). The algorithm maintains a collection of rooted
directed trees with the edges of each tree directed towards its root. Initially,
each vertex forms a tree on its own. The algorithm merges these trees into
larger trees until it remains with a single tree giving the solution.

1Note that this encoding is not a prefix coding and therefore might not be decodable.
However, efficient encoding methods exist which are asymptotically optimal (cf. [8]) and
therefore the overall results are also valid for such encoding.

5

The algorithm operates in phases. Let size(T) denote the size (number
of nodes) of the tree T . A tree T is small for phase k ≥ 1 if size(T) < 2k.

Each phase k of the algorithm consists of four steps. At the beginning of
the phase, we identify the collection of small trees for the phase: Tsmall(k) =
{T | size(T) < 2k}. Second, for each tree T ∈ Tsmall(k) with root r(T), we
look at the set S(T) of outgoing edges that connect r(T) to nodes in other
trees T ′ 6= T , and select the edge e(T) of minimum weight in S(T). (Note
that S(T) 6= ∅ since the graph is complete.) Third, we add these edges to
the collection of trees, thus merging the trees into 1-factors. Formally, a
1-factor is a weakly-connected directed graph of out-degree 1. Intuitively, a
1-factor is a directed subgraph consisting of a directed cycle and a collection
of directed trees rooted at the nodes of the cycle. Figure 1 illustrates two
1-factors. Finally, for the last of the four steps, in each 1-factor we arbitrarily
select one of the edges on the cycle and erase it, effectively transforming the
1-factor back into a rooted directed tree.

Figure 1: Two 1-factors.

This process is continued until a single tree remains, which is the desired
tree.

Claim 2.4 Denote the collection of trees at the beginning of the kth phase,
k ≥ 1, by T k

1 , . . . , T k
mk

.

1.
∑mk

j=1 size(T k
j) = n for every k ≥ 1;

2. size(T 1
j) = 1 for every 1 ≤ j ≤ n (observe that m1 = n);

3. size(T k
j) ≥ 2k−1 for every k ≥ 1 and 1 ≤ j ≤ mk;

4. mk ≤ n/2k−1 for every k ≥ 1.

5. The number of phases is at most dlog ne.

6

Proof. Parts 1 and 2 are immediate from the choice of the initial trees, and
the way trees are merged at each phase. Part 3 is proved by induction on k.
The basis is clear. Assuming the claim for phase k, we prove it for phase k+1
relying on the observation that every tree that is large for phase k already
satisfies the required size bound for phase k +1, and each small tree of phase
k is merged into a 1-factor consisting of at least two trees of phase k. Parts
4 and 5 readily follow from Part 3, and the fact that trees are disjoint.

Observe that when selecting the outgoing edge e(T k
j) for the root r(T k

j) on
the kth phase, the only outgoing edges of r(T k

j) excluded from consideration
are the size(T k

j)− 1 edges leading to the other nodes in T k
j . Hence even if all

of these edges are “lighter” than the edges leading outside the tree, the port
number used for e(T k

j) is at most size(T k
j)− 1, hence:

{

ω(e(T k
j)) = 1 if k = 1

ω(e(T k
j)) ≤ blog(size(T k

j)− 1)c + 1 if k > 1

Moreover, we have log size(T k
j) < k because outgoing edges are selected only

for small trees, and thus we have ω(e(T k
j)) ≤ k. Hence the total weight Ck

of the edges added to the structure throughout the kth phase satisfies

Ck ≤
∑

T k
j ∈Tsmall(k)

k = k · |Tsmall(k)| ≤ k ·mk.

By Part 4 of Claim 2.4, Ck ≤ kn/2k−1, and the total weight C of the resulting
tree satisfies C =

∑

k≥1 Ck ≤
∑

k≥1 kn/2k−1 ≤ 4n. We have thus shown the
following.

Proposition 2.5 On the complete graph (with an arbitrary port numbering),
there exists a spanning tree T for which Sup(T) = O(n).

Next, we consider another interesting and potentially applicable special
case, namely, arbitrary graphs with symmetric port assignment. We prove
the following:

Proposition 2.6 On graphs with symmetric port assignments (i.e., where
for every edge e = {u, v}, the port numbers of e at u and v are identical),
there exists a spanning tree T for which Sup(T) = O(n).

7

Proof. For graphs with symmetric port assignments, we again present an
algorithm that yields a labeling of cost O(n). The algorithm is a variant of
the one used for proving Property 2.5. The general structure of the algorithm
is the same, i.e., it is based on maintaining a collection of rooted directed tree
and merging them until remaining with a single tree. The main difference
has to do with the fact that since the graph is not complete, it may be that
for the small tree T under consideration, the set S(T) is empty, i.e., all the
outgoing edges of the root r(T) go to nodes inside T .

Therefore, an additional step is needed, transforming T into a tree T ′ on
the same set of vertices, with the property that the new root, r(T ′), has an
outgoing edge to a node outside T ′.

This is done as follows. We look for the lightest (least port number)
outgoing edge from some node x in T to some node outside T . Note that
such an edge must exist so long as T does not span the entire graph G, as
G is connected. Let p(T) = (v1, v2, . . . , vj) be the path from r(T) to x in
T , where r(T) = v1 and vj = x. Transform the tree T into a tree T ′ rooted
at x by reversing the directions of the edges along this path. (See Figure 2
where dashed edges represent the path from the original root to T .) Observe
that by symmetry, the cost of T ′ is the same as that of T , so the proof can
proceed as for Property 2.5.

r(T)

r(T’)=x

(a) (b)

Figure 2: (a) The tree T . (b) The tree T ′.

2.3 Arbitrary graphs

For the general setting, we show the universal bound of O(n log log n) on
Sup. Again, the algorithm yielding this cost is a variant of the one used for
proving Property 2.5. As in the proof of Property 2.6, since the graph is not

8

complete, it may be that for the small tree T under consideration, all the
outgoing edges of the root r(T) go to nodes inside T . It is thus necessary to
transform T into a tree T ′ on the same set of vertices so that the new root
r(T ′) has an outgoing edge to a node outside T ′. However, it is not enough
to pick an arbitrary outgoing edge and make its internal endpoint the new
root because, in the absence of symmetry, the reversed route may be much
more expensive than the original path, thus causing the transformed tree to
be too costly.

Instead, the transformation is performed as follows (cf. Fig. 3). We look
for the shortest path (in hops) from the current root r(T) to the node in T
that is the closest to the root, and that has an outgoing edge to a node outside
T . Moreover, all the nodes of the path must be in T . (Such a path must
exist so long as T does not span the entire graph G, as G is connected.) Let
this path be p(T) = (v1, v2, . . . , vj), where (1) r(T) = v1, (2) v1, . . . , vj ∈ T ,
and (3) vj has a neighbor z 6∈ T . For every 1 ≤ i ≤ j − 1, we add the
edge (vi, vi+1) of p(T) to T . In turn, for 2 ≤ i ≤ j, we remove from T
the (unique) outgoing edge of vi in T , (vi, wi). The resulting subgraph is a
directed tree T ′ rooted at r(T ′) = vj. (Note that in case the original root
r(T) has an outgoing edge to some node z outside T , this transformation
uses p(T) = (r(T)) and leaves T unchanged.)

p(T)

3v

2v

1r(T)=v

r(T’)

(b)(a)

Figure 3: (a) The tree T and the escape path p(T) (dashed). (b) The tree
T ′.

Clearly, applying these transformations on the small trees in each phase
incurs additional costs. To estimate them, we bound from above the addi-
tional cost incurred by adding the paths p(T) for every tree T ∈ Tsmall(k) in
every phase k. For such a tree T with p(T) = (v1, v2, . . . , vj), denote the set
of nodes whose outgoing edge was replaced (hence whose labels may increase)
by A(T) = {v1, v2, . . . , vj−1}, and let Ak =

⋃

T∈Tsmall(k) A(T) and A =
⋃

k Ak.

9

To effectively bound the cost increases, we rely on the following obser-
vation. A node v may participate in several paths p(T) throughout the
construction. Each time, it may replace its outgoing edge with a new one.
Nevertheless, the cost it incurs in the final tree is just the cost of its final
outgoing edge, since all the other outgoing edges added for it in earlier phases
were subsequently replaced. By definition, this cost is at most dlog deg(v)e
and hence, denoting Z(W) =

∑

v∈W dlog deg(v)e for a set of nodes W , the
total additional cost incurred by the nodes of A is bounded by Z(A). We
would like to prove that Z(A) = O(n log log n).

Claim 2.7
∑

v∈A(T) deg(v) ≤ 3 · size(T) for every tree T ∈ Tsmall(k) in every
phase k ≥ 1.

Proof. Note that the nodes of A(T) have all their neighbors inside T , hence
their degrees in the (undirected) subgraph G(T) induced by the nodes of T
are the same as their degrees in G. Since p(T) is a shortest path from v1 to
vj in G(T), we have that every node w in G(T) has at most 3 neighbors in
p(T) (otherwise it would provide a shortcut yielding a shorter path between
v1 and vj in G(T), contradicting the assumption). Thus the number of edge
ports in the nodes of p(T) is at most 3 · size(T).

It follows that
∑

v∈Ak
deg(v) ≤ 3n for every phase k ≥ 1, and as the

number of phases is at most dlog ne by Claim 2.4, item 5, we have that
∑

v∈A deg(v) ≤ 3ndlog ne. By the arithmetic-geometric means inequality,
∑

v∈A log deg(v)

n
≤ log

∑

v∈A deg(v)

n
≤ log(3 log n).

Therefore,
∑

v∈A log deg(v) ≤ n log(3 log n), yielding Z(A) = O(n log log n).
Consequently, we have the following.

Theorem 2.8 There is a polynomial time algorithm that given a graph G
and a port numbering constructs a spanning tree T for G in which Sup(T) =
O(n log log n).

3 All-ports tree labeling schemes with short

labels

Let us now turn our attention to Sall and Mall. Any spanning tree T enables
the construction of a labeling Lall with average label size O(log ∆) in graphs

10

of maximum degree ∆. This is optimal in the sense that there are n-node
graphs of maximum degree ∆ and port numberings for which Sall(T) =
Ω(n log ∆) for any spanning tree T . For instance, take a bipartite graph G =
(V1, V2, E) where Vi = {(i, x), x = 0, . . . , n−1}, i = 1, 2, and {(1, x), (2, y)} ∈
E if and only if (y − x) mod n ≤ ∆− 1. Then, label any {(1, x), (2, y)} ∈ E
by l = (y−x) mod n at (1, x), and by ∆−l at (2, y). For any tree T spanning
G, at least one of the two labels at the extremity of every edge of T is larger
than b∆/2c, and therefore Sall(T) ≥ Ω(n log ∆).

However, for many graphs, one can do better by selecting an appropriate
spanning tree T . Assign a weight ω(l) + ω(l′), where

ω(x) =

{

1, x = 0,
blog xc+ 1, x ≥ 1,

to every edge e where l and l′ are the port numbers of e at its two endpoints. It
is easy to check that running any MST algorithm returns a tree T minimizing
Sall(T). Thus, we have the following.

Proposition 3.1 There is a polynomial time algorithm that given a graph
G and a port numbering constructs a tree T minimizing Sall(T).

On the other hand, we have the following negative result.

Proposition 3.2 The following decision problem is NP-hard.
Input: A graph G with a port numbering, and an integer k;
Question: Is there a spanning tree T of G satisfying Mall(T) ≤ k.

This result holds even restricted to 3-regular planar graphs, and even for fixed
k = 3.

Proof. It is known [10] that it is NP-complete to decide whether a 3-regular
planar graph has a Hamiltonian path (see also [5]). We reduce the Hamilto-
nian path problem in 3-regular planar graphs to our problem. In 3-regular
graphs, ports are labeled 0, 1, and 2 at each node, using respectively 1, 1,
and 2 bits. If there exists a spanning tree T such that Mall(T) ≤ 3 then
its maximum degree satisfies ∆T ≤ 2 since 1 + 1 + 2 = 4. Conversely, if
Mall(T) > 3 then ∆T > 2 since 1 + 2 = 3. Hence Mall(T) ≤ 3 iff the graph
has an Hamiltonian path.

Obviously, one way to obtain a tree T with small Mall(T) is to construct a
spanning tree with small maximum degree. Finding a spanning tree with the

11

smallest maximum degree δmin in an arbitrary graph G is NP-hard. However,
it is known (cf. [9]) that a spanning tree with maximum degree at most δmin+1
can be computed in polynomial time. Hence we have the following.

Theorem 3.3 There is a polynomial time algorithm that given a graph G
and a port numbering constructs a spanning tree T for G in which Mall(T) =
O(δmin log ∆).

On the other hand, any tree T ∗ minimizing Mall in a graph G has a degree
∆T ∗ ≥ δmin. Thus

Mall(T
∗) ≥

∆T∗

∑

i=1

log i ≥
δmin
∑

i=1

log i ≥ Ω(δmin log δmin).

Hence we obtain a polynomial time approximation of the optimal tree for
Lall, up to a multiplicative factor of O(log ∆/ log δmin).

4 Applications of tree labeling schemes

Let us now discuss the applicability of our tree representation schemes in
various application domains, mainly in the context of distributed network
algorithms.

Throughout this section we consider an n-vertex m-edge graph G of max-
imum degree ∆, such that the smallest maximum degree of any spanning tree
for G is δmin.

4.1 Information dissemination on spanning trees

A number of fundamental distributed processes involve collecting information
upwards or disseminating it downwards over a spanning tree of the network.
Let us start with applications of our tree representation schemes for these
operations.

4.1.1 Broadcast

The broadcast operation requires disseminating an information item initially
available at the root to all the vertices in the network. Given a spanning tree
of the graph, this operation can be performed more efficiently than by the

12

standard flooding mechanism (cf. [11, 1, 12]). Specifically, whereas flooding
requires O(m) messages, broadcasting on a spanning tree can be achieved
using only O(n) messages.

Broadcast over a spanning tree can be easily performed given an all-ports
tree representation scheme, with no additional communication overheads.
Consider the overall memory requirements of storing such a representation.
Using an arbitrary spanning tree may require a total of O(n log ∆) memory
bits throughout the entire network and a maximum of O(∆ log ∆) memory
bits per node. In contrast, using the constructions of Property 3.1 or Theo-
rem 3.3, respectively, yields the following bounds.

Corollary 4.1 For any graph G, it is possible to construct an all-port span-
ning tree representation using either optimal total memory over the entire
graph or maximum memory O(δmin log ∆) per node, in a way that will allow
performing a broadcast operation on the graph using O(n) messages.

4.1.2 Upcast and convergecast

The basic upcast process involves collecting information upwards over a span-
ning tree, towards the root. This task is rather general, and refers to a setting
where each vertex v in the tree has an input item xv and it is required to
communicate all the different items to the root. Analysis and applications of
this operation can be found, e.g., in [12]. Any representation for supporting
such operation must allow each vertex to know its parent in the tree.

Again, using an arbitrary spanning tree may require a total of O(n log∆)
memory bits throughout the network. Observe, however, that the upcast
process does not require knowing the children so it can be based on an up-
wards tree representation scheme. Given such a representation, the upcast
process can be implemented with no additional overheads in communication.
Hence using the construction of Theorem 2.8 we get the following.

Corollary 4.2 For any graph G, it is possible to construct an upwards tree
representation using a total of O(n log log n) memory bits over the entire
graph in a way that will allow performing an upcast operation on the graph
using O(n) messages.

A more specialized process, known as the convergecast process, involves
collecting information of the same type upwards over a spanning tree. This
process may include the computation of various types of global functions.

13

Suppose that each vertex v in the graph holds an input xv and we would like
to compute some global function f(xv1

, . . . , xvn
) of these inputs. Suppose

further that f is a semigroup function, namely, it enjoys the following two
properties:

1. f(Y) is well-defined for any subset Y ⊆ {xv1
, . . . , xvn

} of the inputs,

2. f is associative and commutative.

A semigroup function f can be computed efficiently on a tree T by a
convergecast process, in which each vertex v in the tree sends upwards the
value of the function on the inputs of the vertices in its subtree Tv, namely,
fv = f(Xv) where Xv = {xw | w ∈ Tv}. An intermediate vertex v with k
children w1, . . . , wk computes this value by receiving the values fwi

= f(Xwi
),

1 ≤ i ≤ k, from its children, and applying fv ← f(xv, fw1
, . . . , fwk

), relying
on the associativity and commutativity of f . The message and time complex-
ities of the convergecast algorithm on a tree T are O(n) and O(Depth(T)),
respectively, matching the obvious lower bounds. For a more detailed expo-
sition of the convergecast operation and its applications see [12].

Examples for semigroup functions include addition, maximum or logical
condition computation. The convergecast process can also be applied in order
to collect global knowledge from local information. Specifically, suppose
each vertex v holds a bit variable xv. It is then possible to accumulate
this information efficiently, ending up with the root knowing, for instance,
whether there exists some vertex v with xv = 1 or whether all vertices v
satisfy xv = 1. The former can be achieved by setting f to the logical
“or” function and performing a global convergecast computation as above.
Computing ∀v, xv = 1 is achievable in a similar way, setting f to be the logical
“and” function. In particular, the common acknowledgement process used
for “broadcast with echo” can be implemented by this type of convergecast
by setting xv = 1 iff v has received the message. (This is a rather trivial use
of the logical “and” computation, as all inputs are 1 once defined, hence so
is the output.) For a more detailed exposition of the convergecast operation
and its applications see [12].

Observe that the convergecast process requires each vertex to receive
messages from all its children before it can send a message upwards to its
parent. This implies, in particular, that a vertex needs to know the number
of children it has in the tree. This means that when using the spanning
tree T , the label size at each node v has another component of log(degT (v)).

14

Hence the maximum label size increases by log δmin, and the average label
size increases by 1

n

∑

v log(degT (v)) = O(1).
Here, too, using an arbitrary spanning tree would require a total of

O(n log∆) memory bits throughout the network. In contrast, using the con-
struction of Theorem 2.8 we get the following.

Corollary 4.3 For any graph G, it is possible to construct an upwards tree
representation using a total of O(n log log n) memory bits over the entire
graph in a way that will allow performing a convergecast operation on the
graph in time at most Diam(G) using O(n) messages.

4.2 Fast graph exploration

Graph exploration is an operation carried out by a finite automaton, simply
referred to in this context as a robot, moving in an unknown graph G =
(V, E). The robot has no a priori information about the topology of G and
its size. The robot can distinguish between the edges of the currently visited
node by their port numbers. The robot has a transition function f , and a
finite number of states. If the robot enters a node of degree d through port
i in state s, then it switches to state s′ and exits the node through port i′,
where (s′, i′) = f(s, i, d). The objective of the robot is to explore the graph,
i.e., to visit all its nodes.

The tree labeling schemes allow fast exploration. Specifically, the all-ports
labeling scheme Lall allows exploration to be performed in time at most 2n
in n-node graphs. The upward labeling scheme Lup allows exploration to be
performed in time at most 4m in m-edge graphs.

More compact labeling schemes can be defined for graph exploration. In
particular,[3] describes a labeling scheme using only 2 bits per node. However,
this latter scheme yields slower exploration protocols, i.e., ones requiring 20m
steps in m-edge graphs.

Suppose our graph G has a spanning tree T . As a consequence of [6], if the
labels allow the robot to infer at each node v, for each edge e incident to v in
G, whether e belongs to T , then it is possible to traverse G perpetually, and
traversal is ensured after time at most 2n. Indeed, the exploration procedure
in [6], which applies to trees only, specifies that when the robot enters node
v by port i, it leaves the node by port (i+1) mod d where d = deg(v). In the
case of general graphs, exploration is performed as follows. When the robot
enters node by port i, it looks for the first j in the sequence i + 1, i + 2, . . .

15

such that port j mod d is incident to a tree-edge and leaves the node by port
j mod d.

Clearly, this exploration procedure performs a DFS traversal of T . Hence,
as a corollary of [6], using the all-ports labeling scheme Lall, we get the
following.

Corollary 4.4 It is possible to label the nodes of every graph G in polynomial
time, with labels of maximum size O(δmin log ∆) and average size O(log ∆),
in a way that will allow traversal of the graph in time at most 2n by a robot
with no memory.

The following result shows that exploration can be performed with smaller
labels, using the upward labeling scheme on a spanning tree of the graph.

Lemma 4.5 Consider a node-labeled m-edge graph G, with a rooted spanning
tree T . It is possible to perform traversal of G within time at most 4m,
terminating at the root of T .

Proof. The exploration will use the upward labeling scheme Lup on T . At
node u, we denote by root(u) the port-label corresponding to the edge of T
leading to the root. At the root r, root(r) = −1. If not initially at the root,
the robot follows the edges leading to the root in state to root. Once at
the root, it starts the traversal and leaves the root by port 0 in state down.

When the robot enters a node u of degree d by port i in state down, it
proceeds as follows. If i 6= root(u), then the robot backtracks through port i
in state up. If i = root(u), then the robot leaves u through port (i+1) mod d
in state down, unless d = 1, in which case, it leaves u by port 0 in state up.

When the robot enters a node u of degree d by port i in state up, it
proceeds as follows. Let j = (i + 1) mod d. If root(u) = −1, then the robot
stops if j = 0, and leaves u by port j otherwise. If root(u) 6= −1, then the
robot leaves u via port j in state up if j = root(u), else it leaves u via port
j in state down.

During the traversal, every tree-edge is traversed twice, once in each di-
rection. Every non tree-edge {u, v} is traversed four times: from u to v, and
backtrack from v to u; and from v to u, and backtrack from u to v. Initially,
the robot traverses at most n− 1 edges to go to the root.

By Lemma 4.5, using a labeling Lup on an arbitrary spanning tree and
relying on Lemma 2.1 and Theorem 2.8, we get the following.

16

Corollary 4.6 It is possible to label the nodes of every graph G with labels
of maximum size O(log ∆) and average size O(log log n) in a way that will
allow traversal of the graph in time at most 4m.

Note that by Lemma 2.1, the scheme uses labels of total size at most
∑

vdlog deg(v)e. This means, in particular, that in graph families with a
linear number of edges, such as planar graphs, the average label size for any
spanning tree is at most O(1).

4.3 Representing goal-seeking game trees

The upward tree labeling scheme Lup can be used to succinctly represent
the solution tree for certain games whose course progresses only upwards in
the tree. This includes various goal-seeking games in which, starting from an
arbitrary initial position, the goal of the game is to reach a unique predefined
end-position. (A concrete example for such a game is Rubik’s cube.)

References

[1] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simu-
lations and Advanced Topics. McGraw-Hill, 1998.

[2] Y. Chu and T. Liu. On the shortest arborescence of a directed graph.
Science Sinica 14, pp. 1396–1400, 1965.

[3] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman and D. Peleg. Label-
Guided Graph Exploration by a Finite Automaton. In Proc. 32nd Int.
Colloq. on Automata, Languages & Prog. (ICALP), LNCS 3580, pages
335-346, 2005.

[4] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-
rithms. MIT Press/McGraw-Hill, 1990.

[5] A. Czumaj and W.-B. Strothmann. Bounded-degree spanning tree. In
Proc. 5th European Symp. on Algorithms (ESA), LNCS 1284, pages
104–117, 1997.

[6] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration
with Little Memory. In Proc. 13th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 588–597, 2002.

17

[7] J. Edmonds. Optimum branchings. J. Research of the National Bureau
of Standards 71B, pp. 233–240, 1967.

[8] P. Elias. Universal Codeword Sets and Representations of the Integers.
IEEE Trans. Inform. Theory 21(2):194–203, 1975.

[9] M. Fürer and B. Raghavachari. Approximating the minimum degree
spanning tree within one from the optimal degree. In Proc. 3rd ACM-
SIAM Sump. on Discrete Algorithms (SODA), pages 317–324, 1992.

[10] M. Garey, D. Johnson, and R. Tarjan. The planar Hamiltonian circuit
is NP-complete. SIAM Journal on Computing 5(4):704–714, 1976.

[11] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1995.

[12] D. Peleg. Distributed Computing: A Locality-Sensitive Approach.
SIAM, 2000.

18

