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Abstract— In this paper we model the tomography of
scale free networks by studying the structure of layers
around an arbitrary network node. We find, both analyt-
ically and empirically, that the distance distribution of all
nodes from a specific network node consists of two regimes.
The first is characterized by rapid growth, and the second
decays exponentially. We also show analytically that the
nodes degree distribution at each layer is a power law
with an exponential cut-off. We obtain similar empirical
results for the layers surrounding the root of multicast
trees cut from such networks, as well as the Internet.

I. INTRODUCTION

In recent years there is an extensive effort to model
the topology of the Internet. While the exact nature of
the Internet topology is in debate [5], it was found that
many realistic networks posses a power law, or scale free
degree distribution [13], [14], [18], [6], [10]. Albert and
Barabási [2], [1] suggested a dynamic graph generation
model for such networks. One of their main findings was
the self similarity characteristic of such networks. In-
terestingly, empirical findings on partial views obtained
similar results, which may lead to the assumption that
due to the self similarity nature of the Internet structure,
this characteristic would be exposed through different
cuts and filters.

In this paper we study the tomography of scale free
networks and multicast trees cut from them. We use the
Molloy Reed graph generation method [19] in conjunc-
tion with similar techniques to study the layer structure
(tomography) of networks. Specifically, we study the
number and degree distribution of nodes at a given
(shortest path) distance from a chosen network node.
We show analytically that the distance distribution of
all nodes from a specific network node consists of two
regimes. The first can be described as a very rapid
growth, while the second is found to decay exponentially.
We also show that the node degree distribution at each
layer obeys a power law with an exponential cut-off.
We back our analytical derivations with simulations, and
show that they match.

As noted by Lakhina et al. [17], it is a significant
challenge to test and validate hypotheses about the

Internet topology, because of lack of highly accurate
maps. Our analytical findings suggest a simple local test
for the validity of the power law model as an exact
model of the Internet. Indeed our findings suggest that
there is a good agreement of the empirical and analytical
results. The slight difference we had can be attributed to
bias in data collection and to second order phenomena
such as, degree correlation, hierarchies, and geographical
considerations.

We also study shortest path trees cut from scale
free networks, as they may represent the structure of
multicast trees. We investigate their layer structure and
distribution. We show that the structure of a multicast
tree cut from a scale free network exhibits a layer
behavior similar to the network it was cut from. We
validate our analysis with simulations and real Internet
data. We believe that enriching our understanding of the
structure of multicast trees, can aid us in developing
better multicast algorithms, e.g., in the past we used the
statistics of high degree nodes to devise better algorithms
for estimating the multicast group size [10].

The paper is organized as follows. Section II details
previous findings. In section III we introduce the process
used for generating scale free graphs and their layers.
Then, we analyze the resulting tomography of such
networks, and back the results with simulations and
real data in section IV. In Section V we investigate the
tomography of multicast trees cut from such networks,
and back our findings with real Internet data.

II. BACKGROUND

A. Graph Generation

Recent studies have shown that many real world
networks, and, in particular, the Internet, are scale free
networks. That is, their degree distribution follows a
power law,
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, where

	
is an appropriate

normalization factor, and � is the exponent of the power
law.

Several techniques for generating such scale free
graphs were introduced [2], [19]. Molloy and Reed
suggested an interesting construction method for scale
free networks in [19]. The construction was part of a
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model describing an “exposure” process used to evaluate
the size of the largest component in a random scale
free network. We term this model the MR model. The
construction method is as follows. A graph with a given
degree distribution is generated out of the probability
space (ensemble) of possible graph instances. For a given
graph size � , the degree sequence is determined by
randomly choosing a degree for each of the � nodes
from the degree distribution. Let us define � as the set
of � chosen nodes, � as the set of unconnected outgoing
links from the nodes in � , and � as the set of edges in
the graph. Initially, � is empty. Then, the links in � are
randomly matched, such that at the end of the process, �
is empty, and � contains all the matched links �����
	�� ,�
�
	���� . Throughout this paper, we refer to the set of
links in � as open connections.

Note, that while in the BA model the graph degree
distribution function emerges only at the end of the
process, in the MR model the distribution is known a-
priori, thus enabling us to use it in our analysis during
the construction of the graph.

B. Distribution Cut-Off

Recent work [9], [7], has shown that the radius1, � ,
of scale free graphs with ��� ����� is extremely small
and scales as ����������������� . The meaning of this is that
even for very large networks, finite size effects must be
taken into account, because algorithms for traversing the
graph will get to the network edge after a small number
of steps.

Since the scale free distribution has no typical degree,
its behavior is influenced by externally imposed cutoffs,
i.e. minimum and maximum values for the allowed
degrees,

�
. The fraction of sites having degrees above

and below the threshold is assumed to be  . The lower
cutoff, ! , is usually chosen to be of order " �$# � , since
it is natural to assume that in real world networks
many nodes of interest have only one or two links. The
upper cutoff, % , can also be enforced externally (say,
by the maximum number of links that can be physically
connected to a router). However, in situations where no
such cutoff is imposed, we assume that the system has
a natural cutoff.

1We define the radius of a graph, & , as the average distance of all
nodes in the graph from the node with the highest degree (if there is
more than one we will arbitrarily choose one of them). The average
hop distance or diameter of the graph, ' , is restricted to:

&�(�')(�*+&-, (1)

Thus the average hop sequence is bound from above and from below
by the radius.

To estimate the natural cutoff of a network, we assume
that the network consists of � nodes, each of which
has a degree randomly selected from the distribution������� � 	 � ���

. An estimate of the average value of the
largest of the � nodes can be obtained by looking for
the smallest possible tail that contains a single node on
the average [8]:./

02143 ��������576 .3 �������98 � �:#<; �>= (2)

Solving the integral yields % 5 !?��@BA-C � � @BD , which is
the approximate natural upper cutoff of a scale free
network [8], [11], [20].

In the rest of this paper, in order to simplify the
analysis presented, we will assume that this natural cutoff
is imposed on the distribution by the exponential factor������� � 	�� ���FE � 0 A 3 .

III. TOMOGRAPHY OF SCALE FREE NETWORKS

In this section we study the statistical behavior of
layers surrounding the maximal connected node in the
network. First, we describe the process of generating the
network, and define our terminology. Then, we analyze
the degree distribution at each layer surrounding the
maximally connected node.

A. Model Description

We base our construction on the Molloy-Reed
model [19], also described in section II. The construction
process tries to gradually expose the network, following
the method introduced in [9], [7], and is forcing a
hierarchy on the Molloy-Reed model, thus enabling us
to define layers in the graph.

We start by setting the number of nodes in the net-
work, N. We then choose the nodes degrees according
to the scale-free distribution function

������� � 	 � ���
,

where
	G5 � �IH # � ! � � @ is the normalizing constant

and
�

is in the range J !K�+%>L , for some chosen minimal
degree ! and the natural cutoff % � !?�M@BA-C � � @BD of the
distribution [8], [11].

At this stage each node in the network has a given
number of outgoing links, which we term open con-
nections, according to its chosen degree. Using our
definitions in II, the set of links in � is empty at this
point, while the set of outgoing open links in � contains
all unconnected outgoing links in the graph.

We proceed as follows: we start from the maximal
degree node, which has a degree % , and connect it ran-
domly to % available open connections, thus removing
these open connections from � (see figure 1(a)). We have
now exposed the first layer (or shell) of nodes, indexed
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as � � #
. We now continue to fill out the second layer� � � in the same way: We connect all open connec-

tions emerging from nodes in layer No.
#

to randomly
chosen open connections. These open connections may
be chosen from nodes of layer No.

#
(thus creating a

loop) or from other links in � . We continue until all
open connections emerging from layer No.

#
have been

connected, thus filling layer � � � (see figure 1(b)).
Generally, to form layer ��� #

from an arbitrary layer� , we randomly connect all open connections emerging
from � to either other open connections emerging from� or chosen from the other links in � (see figure 1(c)).
Note, that when we have formed layer ��� #

, layer � has
no more open connections. The process continues until
the set of open connections, � , is empty.

B. Analysis

We proceed now to evaluate the probability for nodes
with degree

�
to reside outside the first � layers, denoted

by
��� �����

.
The number of open connections outside layer No. � ,

is given by: � � � � /
0 � ��� ����� (3)

Thus, we can define the probability that a detached
node with degree

�
will be connected to an open

connection emerging from layer � by
0�
	���
�	 , where � �

is the number of open connections emerging from layer� (see figure 1(b)).
Therefore, the conditional probability for a node with

degree
�

to be also outside layer ��� #
, given that it is

outside layer � , is the probability that it does not connect
to any of the � � open connection emerging from layer � ,
that is:

����� ����� #�� � � ��� # H �� � � � ��� � 	 5
5 E��
��� H �

# � 
 	� 	�� � (4)

for large enough values of � � .
Thus, the probability that a node of degree k will be

outside layer No. ��� #
is:

��� � @ ����� � ��� ����� ����� ����� #�� � � �
� ��� �����$E��
��� H �

# � 
 	�
	 � (5)

Thus we derive the exponential cutoff:

��� ����� � �������$E��
�"! H �
% ��# (6)

Where : #
% � � @ � #

% � � #
# � 
 	� 	 (7)

An alternate method for deriving the above relation-
ship is given in Appendix A.

Now let us find the behavior of � � and $ � , where $ �
is the number of links incoming to the ��� #

layer (and
approximately2 equals � � � @ , the number of nodes in the��� #

layer). The number of incoming connections to
layer ��� #

equals the number of connections emerging
from layer � , minus the number of connections looping
back into layer No. � . The probability for a connection
to loop back into layer � is:

���
loop

� � � � � �� � � � � (8)

and Therefore: $ � � @ � � � ! # H � �� � � � � # (9)

The number of connections emerging from all the
nodes in layer No. �%� #

is
� � H � � � @ . This includes

the number of incoming connections from layer � into
layer �&� #

, which is equal to $ � � @ , and the number of
outgoing connections � � � @ . Therefore:� � � @ � � � H � � � @ H'$ � � @ (10)

At this point we have the following relations:� � � @ � % � � @ � Eq. (3) and Eq. (6), $ � � @ � � � � � � � Eq. (9),% � � @ � % � �(� � � � � � Eq. (7), and � � � @ � � � � � � � @ �)$ � � @ � Eq.
(9) and (10). These relations may be solved numerically.
Note that approximate analytical results for the limit�+*-, can be found in [9], [7], [12]. 3

IV. EMPIRICAL RESULTS ON NETWORKS

Figure 2 shows results from simulations (colored
symbols) for the number of nodes at layer � , which can
be seen to be in agreement with the analytical curves of$ � (lines). We can see that starting from a given layer� �/.

the number of nodes decays exponentially. We
believe that the layer index

.
is related to the radius

of the graph [9], [7]. It can be seen that $ � is a good
approximation for the number of nodes at layer � . This
is true in cases when only a small fraction of sites in

2This holds true assuming that almost no site in layer 02143 is
reached by two connections from layer 0 . This is justified in the case
where 57683 , and also for the first layers in case of 5:9;3 .

3An approximate expression for the upper cutoff was found to
be [9]: <>=�?A@CBED)F�GIH 	 F�J F�JK F D L BMD)F�GNH 	D)F�JPO

(11)

where

@ 6�QSR�TI5VUXW
Y[Z�\S]%^`_ba�6 c UXWedgfihc UXW
Yjf clk W
Umf .
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each layer � have more than one incoming connection.
An example for this case is when ! � #

so that most
of the sites in the network have only one connection.
Figure 3 shows results for

�%� �����
with similar agreement.

Note the exponential cutoff which becomes stronger with� .
It is important to note that the simulation results

give the probability distribution for the giant percolation
cluster, while the analytical reconstruction gives the
probability distribution for the whole graph. This may
explain the difference in the probability distributions
for lower degrees: many low degree nodes are not
connected to the giant percolation cluster and therefore
the probability distribution derived from the simulation
is smaller for low degrees.

Figure 4 and Figure 5 show the same analysis for
a cut of the Internet at router level (Lucent mapping
project [3], LC topology - see table I). The actual
probability distribution is not a pure power law, rather
it can be approximated by � � � = � for small degrees
and � � � at the tail. Our analytical reconstruction
of the layer statistics assumes � � � , because the
tail of a power law distribution is the important factor
in determining properties of the system. This method
results in a good reconstruction for the number of nodes
in each layer, and a qualitative reconstruction of the
probability distribution in each layer.

In general, large degree nodes of the network mostly
reside in the lower layers, while the layers further away
from the source node are populated mostly by low degree
nodes [10]. This implies that the tail of the distribution
affects the lower layers, while the distribution function
for lower degrees affects the outer layers. Thus the
deviations in the analytical reconstruction of the number
of nodes per layer for the higher layers may be attributed
to the deviation in the assumed distribution function for
low degrees (that is: � � � instead of � � � = � ).

Our model does not take into account the corre-
lations in node degrees, which were observed in the
Internet [21], and hierarchical structures [24]. This may
also explain the deviation of our measurements from the
model predictions.

V. EMPIRICAL FINDINGS ON THE TOMOGRAPHY OF

MULTICAST TREES

In this section, we detail some of our findings on the
structure and characteristics of the depth rings around
the root node of shortest path trees. All of our findings
were also validated on real Internet data.

A. Topology and Tree Generation

Our method for producing trees is the following. First,
we generate power law topologies based on the Barabási-
Albert model [1]. The model specifies 4 parameters: ��� ,
� ,

�
and � 4. Where � � is the initial number of detached

nodes, and � is the initial connectivity of a node. When
a link is added, one of its end points is chosen randomly,
and the other with probability that is proportional to
the nodes degree. This reflects the fact that new links
often attach to popular (high degree) nodes. The growth
model is the following: with probability

�
, � new links

are added to the topology. With probability � , � links
are rewired, and with probability

# H � H�� a new node
with � links is added. Note that � ,

�
and � determine the

average degree of the nodes. We created a vast range
of topologies, but concentrated on several parameter
combinations that can be roughly described as very
sparse (VS), Internet like sparse (IS) and less sparse
(LS). Table I summarizes the main characteristics of the
topologies used in this paper.

From these underlying topologies, we create the trees
in the following manner. For each predetermined size of
client population we choose a root node and a set of
clients. Using Dijkstra’s algorithm we build the shortest
path tree from the root to the clients. To create a set of
trees that realistically resemble Internet trees, we defined
four basic tree types. These types are based on the rank
of the root node and the clients nodes. The rank of a
node is its location in a list of descending degree order,
in which the lowest rank, one, corresponds to the node
with the highest degree in the graph. For the case of a
tree rooted at a big ISP site, we choose a root node with
a low rank, thus ensuring the root is a high degree node
with respect to the underlying topology. Then, we either
choose the clients as high ranked nodes, or at random,
as a control group. Note, that due to the characteristic
of the power law distribution, a random selection of a
rank has a high probability of choosing a low degree
node. The next two tree types have a high ranked root,
which corresponds to a multicast session from an edge
router. Again, the two types differ by the clients degree
distribution, which is either low, or picked at random.

The tree client population is chosen at the rangeJ��  ���  � � L for the 10000 node generated topology,J��  � #  � � � L for the 100000 node generated topology, andJ��  � �	�  � � � L for the trees cut from real Internet data.
For each client population size, 14 realizations were
generated for each of the four tree types. All of our
results are averaged over these realizations. The variance
of the results was always negligible.

4The notations in [1] are 5�
 , 5 , � and 
 .
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Name Type Parameters No. of Nodes Avg. Node degree
VS generated � 6�3�� ��������� O ��	
��� O 	 10000 3 O ��� ^ ] O ���
IS generated � 6 *
� ��������� O ��	
��� O 	 10000 ] O ��� ^�� O �
LS generated � 6A]�� ��������� O ��	
��� O 	 10000 	

O ��� ^ 3+* O ���
Big IS generated � 6 3 O 	2,9*�� � 6�� O 3 50000;100000 ] O ] , �

O
�

BL[1,2] real data – Internet 3.2 5

LC real data – Internet 3.2 6

TABLE I

TYPE OF UNDERLYING TOPOLOGIES USED

(a)

= χ
0Κ 0

Τ 0

k

χ l
(b)

Τl

Sl+1

(c)
Τl+1

χ l

, χ l+1

Fig. 1. Illustration of the exposure process. The large circles denote
exposed layers of the giant component, while the small circles denote
individual sites. The sites outside the circles have not been reached
yet. (a) We begin with the highest degree node and fill out layer No. 3 .
(b) In the exposure of layer No. 0)1 3 any open connection emerging
from layer No. 0 may connect to any open node ( �

=
connections)

or loop back into layer No. 0 ( �
=

connections). (c) The number of
connections emerging from layer No. 0)1 3 is the difference between
�
=

and �
=
� d after reducing the incoming connections �

=
� d from layer

No. 0 .
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Fig. 2. Approximate number of nodes ( �
=
) vs. layer index 0 for

a network with
L 6 3���� nodes, _ 6�* O � 	 , and 5 6:3 . Symbols

represent simulation results while black lines are a numerical solution
for the derived recursive relations. Bottom: from the semi-log plot we
see that there is an exponential decay of �

=
for layers 0e9�� starting

from a given layer L which we believe is related to the radius of the
graph.

There are two underlying assumptions made in the
tree construction. The first, is that the multicast routing
protocol delivers a packet from the source to each of
the destinations along a shortest path tree. This scenario
conforms with current Internet routing. For example, IP
packets are forwarded based on the reverse shortest path,
and multicast routing protocols such as Source Specific
Multicast [15] deliver packets along the shortest path
route. In addition, we assume that client distribution in
the tree is uniform, as has been shown by [23], [4].

B. Tree Characteristics

Our results show that trees cut from a power law
topology obey a similar power law for the degree dis-
tribution, as well as the sub-trees sizes [10]. The results

5based on [16]
6based on [3]
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Fig. 3. Log-log plot of �
= \SR a for different layers 0�6��<,�3-,B* , OMOMO , for

a network with
L 6:3�� � nodes, _ 6G* O � 	 , and 5 6 3 . Symbols

represent simulation results while black lines are a numerical solution
for the derived recursive relations.
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Fig. 4. Number of nodes at each layer for a router level cut of
the Internet with

L 6 3 3
* , ����� nodes (LC topology). Analytical
reconstruction for �

=
is done with _ 6 ] , and 576 3 .

were shown to hold for all trees cut from all generated
topologies, even for trees as small as 200 nodes.

In this work we further investigated the tomography of
the trees, and looked at the degree distribution of nodes
at different depth rings around the root, i.e., tree layers.
It was rather interesting to observe that any layer with
sufficient number of nodes to create a valid statistical
sample obeyed a degree-frequency relationship which
was similar to a power law, although with different
slopes. We suspect that this is due to the exponential

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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−1

0

Degree Distribution of Layers: log−log plot

lo
g(

P
l(k

))

log(k)

0
1
2
3
4
5
6

Fig. 5. Log-log plot of �
= \SR�a for different layers 0�6 � ,�3 ,B*2, OMOEO ,

for a router level cut of the Internet with
L 6 3 3
* , ����� nodes (LC

topology). Qualitative analytical reconstruction is done with _V6�] ,
and 576 3 .
cut-off phenomenon discussed in the previous sections.
Figure 6 shows this for the third layer around the root
(i.e., nodes at distance three from the root) of a 300
client tree cut from a big IS topology (100000 nodes).
The root was chosen with a high degree, and the clients
with a low degree. Although the number of nodes is
quite small, we see a very good fit with the power law.
Figure 7 shows an excellent fit to the power law for the
fifth layer around the root of a 10000 client tree, cut from
the same topology. This phenomenon is stable regardless
of the tree type, and the client population size. Note that
the range of the power laws seen in figures 6 and 7 is
less than one order of magnitude. This could indicate a
crossover to exponential behavior.

To understand the exact relationship of the degree-
frequency at different layers, we plotted the distribution
of each degree at different layers. Cheswick at al. [6]
found a gamma law for the number of nodes at a certain
distance from a point in the Internet. Our results show
that the distribution of nodes of a certain degree at a
certain distance (layer) from the root seems close to
a gamma distribution, although we did not determine
its exact nature. Figure 8 shows the distribution of
the distance of two degree nodes, and Figure 9 the
distribution of the distance of high degree nodes, i.e.,
nodes with a degree six and higher. In both figures the
root is a low degree node, and the tree has 1000 low
degree clients. As can be seen, the high degree nodes
tend to reside much closer to the root than the low degree
nodes, and in adjacent layers. In this example, most of
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Fig. 6. Third layer of a 300 client tree cut from topology
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Fig. 7. Fifth layer of a 10000 client tree cut from topology
� 
�6 � , � 6 3 O 	 , � 6�� O 3-, 
 6��
them are in the second to forth layers around the root,
with only two more at layer five. This phenomenon was
even more obvious when the root was a high degree
node.

We also checked the distribution of the lengths of
the paths to the clients. Our results show that the less
connected the underlying topology, the higher is the
average tree cut from the topology. For a 10000 node
underlying topology with an average degree of three and
higher, the height of the trees was not more than ten. On
an underlying topology of 100000 nodes, the height of
the trees was not more than 12. In accordance with our
findings of a ’core’ of high degree nodes, the trees were
higher on the average when the root was a low degree
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Fig. 8. Distribution of degree two nodes in a tree cut from topology
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%6 � .
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Fig. 9. Distribution of the high degree nodes ( R�� �
) in a tree cut

from topology � 
�6 � , � 6 3 , � 6�� O ] , 
 6�� .
node, compared to trees with a high degree root.

We verify the above findings with results obtained
from a real Internet data set. Since we have no access
to multicast tree data we use the client population of
a medium sized web site with scientific/engineering
content. This may represent the potential audience of
a multicast of a program with scientific content. Two
lists of clients were obtained, and traceroute was used
to determine the paths from the root to the clients. It
is important to note, that the first three levels of the
tree consist of routers that belong to the site itself,
and therefore might be treated as the root point of the
tree, although in these graphs they appear separately.
Figure 10 shows the frequency of degrees in the tree.
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The linear fit of the log-log ratio is excellent, with a
correlation coefficient of 0.9829. The exponent is very
close to the exponent we derived for trees cut from
topologies that resemble the Internet.

Figures 11 and 12 show the frequency of degrees at
layers 5 and 10 of the tree, respectively. It can be seen
that the slope � of the distribution increases with the
layer number, e.g., layer � has a slope � 5 � = � � , and
layer

#  has a slope � 5 � =���� . As we claimed, the
shortest path tree cut from a scale free topology inherit
many of the characteristics of the network topology.
Moreover, we found for networks that the frequency-
degree for each separate distance around the root can be
approximated by a power law with an exponential cut-
off, which is becoming stronger with the layer number.
In Fig. 13 we plotted the slope of the distribution in the
layer against the layer number and found a very good
linear fit (note the outlier at � ���

which was not included
in the fit). The linear fit indicates that for the first layer
the slope will be H # =������  = # � � . For scale free networks,
it has been shown [22] that the first layer surrounding a
chosen network node has a distribution

� ������� � � ��� � @ .
Therefore, we can expect that in the first tree layer
surrounding the tree root will have a frequency-degree
slope of approximately H)� = # ��� # � H)� = # � ( � � H � = # � ,
the slope of the tree, is taken from Fig. 10) which
is close to the linear prediction. While the results for
the degree distribution in the first layer did not have
statistical significance the slope for the second layer wasH)� =  �� which conforms to the above numbers.
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Fig. 10. Frequency of degrees of the Internet tree.

VI. CONCLUSIONS

We define a “layer” in a network as the set of nodes
at a given distance from a chosen node. We find that the
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Fig. 11. Frequency of degrees at layer 5 of the Internet tree.
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Fig. 12. Frequency of degrees at layer 10 of the Internet tree.

degree distribution of the nodes of a scale free network
at each layer obeys a power law with an exponential
cutoff. We derive equations for this exponential cutoff
and compare them with empirical results. We also model
the behavior of the number of nodes at each layer,
and explain the observed exponential decay in the outer
layers of the network. We obtain similar results for layers
surrounding the root of multicast trees cut from such
networks, as well as the Internet.

We believe our findings can have dual importance.
First, they can help in devising better network algorithms
that take advantage of the network structure. For exam-
ple, we presented in the past [10] an algorithm for fast
estimation of the multicast group size that is based on
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Fig. 13. Slope of the degree distribution at specific layer as a
function of the layer number.

our previous finding regarding the distribution of high
degree nodes in Internet multicast trees. Second, our
analytical findings suggest a simple local test for the
validity of the power law model as an exact model of
the Internet. Indeed our findings suggest that there is a
good agreement of the empirical and analytical results.
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APPENDIX

A. Deriving the Exponential Cutoff Using Alternative
Analytic Approximation

Each node is treated independently, where the interaction
between nodes is inserted through the expected number of
incoming connections. At each node, the process is treated as
equivalent to randomly distributing ��� independent points on
a line of length ��������� and counting the resultant number of
points inside a small interval of length 	 . Thus, the number of
incoming connections 	�

� from layer � to a node with 	 open
connections is distributed according to a Poisson distribution
with: �

	 
������ 	
��������� � � (12)

and :

� ������� 	 

��� 	 � �"!�#�$�%'&�(�)
�
	 

�*� % &�(
	�
��,+ (13)

The probability for a node with 	 open connections not to
be connected to layer � , i.e. to be outside layer ���.- also, is:

� � 	�/0���.- � �1� � � ������� 	 

�*�"23� 	�� �.! #�$4% &�( ) �
�.!65�7 ��8 	

-9�;: 	< 	 � (14)

Thus the total probability to find a node of degree 	 outside
layer ���"- is:

� �����=� 	 � � � �>� 	 � � � 	�/0�?�@- � �1� � � �>� 	 � !65=7 � 8 	
-9�A: 	< 	 � (15)

And one obtains an exponential cutoff.


