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Eduardo López,1, ∗ Roni Parshani,2, ∗ Reuven Cohen,3 Shai Carmi,2 and Shlomo Havlin2

1Center for Non-Linear Studies & T-13, Theoretical Division,

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

2Minerva Center & Department of Physics,

Bar-Ilan University, Ramat Gan, Israel

3Massachusetts Institute of Technology, Cambridge, MA, USA

(Dated: February 14, 2007)

Abstract

We study the stability of network communication after removal of q = 1 − p links under the

assumption that communication is effective only if the shortest path between nodes i and j after

removal is shorter than aℓij(a ≥ 1) where ℓij is the shortest path before removal. For a large class

of networks, we find a new percolation transition at p̃c = (κo − 1)(1−a)/a, where κo ≡ 〈k2〉/〈k〉

and k is the node degree. Below p̃c, only a fraction N δ of the network nodes can communicate,

where δ ≡ a(1 − | log p|/ log (κo − 1)) < 1, while above p̃c, order N nodes can communicate within

the limited path length aℓij. Our analytical results are supported by simulations on Erdős-Rényi

and scale-free network models. We expect our results to influence the design of networks, routing

algorithms, and immunization strategies, where short paths are most relevant.
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The study of complex networks has emerged as an important tool to better understand

many social, technological, and biological real-world systems ranging from communication

networks like the Internet, to cellular networks [1]. In many cases, networks are the medium

through which information is transported, i.e., in social networks the propagation of epi-

demics, rumors, etc. and in the Internet the propagation of data packets [2–6].

An important question regarding networks is their stability, i.e, under what conditions the

network breaks down [7–10]. In communications, a network breakdown means information

cannot be transmitted to most nodes, and in epidemiology, that an epidemic has stopped.

The main approach for studying network stability is percolation theory [11]. In perco-

lation, a fraction q = 1 − p of the N network nodes (or links) are removed until a critical

value pc is reached. For p < pc the network collapses into small clusters, while for p > pc,

a spanning cluster of order N nodes appears [8, 9, 11–13]. However, even though in the

original network the nodes are connected through short paths, near pc the paths become

very long. For instance, in the original Erdős-Rényi network the typical distance between

nodes is of order log N [12] compared to order N1/3 near the percolation threshold [14].

These long distances may have a significant influence on network function. For example, in

communication, long paths are usually inefficient, and in epidemics, disease spreading often

decays in time due to mutations or natural immunization, so for long paths the epidemic

may die out before the network collapses. In these cases the interesting question is some-

times, not when does the network break down, but when the network connectivity becomes

inefficient.

To answer this question, we propose a new percolation model which we call limited path

percolation (LPP). In this model, after removing a fraction q = 1− p of the network nodes,

any two of these nodes, say i and j are considered connected only if the shortest path

between them is shorter than aℓij (a ≥ 1), where ℓij is the shortest path before removal. We

then ask, given our new limited path constrains, what is the value p at which a spanning

cluster appears. We find a new phase transition, which depends on a, at p̃c ≡ p̃c(a), where

pc < p̃c < 1. For pc < p < p̃c, the LPP spanning cluster is only a zero fraction (fractal) of

the network, which scales as N δ (δ < 1). For p > p̃c the LPP spanning cluster is of order N .

For simplicity, we start our analysis with Erdős-Rényi (ER) networks and then argue

that the theory is also valid in general for random networks. We begin with random removal

but extend our considerations to targeted removal on highly connected nodes, and find that
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similar phenomena appears. We support our theory with simulations.

Erdős-Rényi networks [12, 13] are random networks consisting of N nodes connected

with probability φ and disconnected with probability 1 − φ. The degree distribution Φ(k)

is Poisson with the form Φ(k) = 〈k〉ke−〈k〉/k!, where k, the degree, is the number of links

attached to a node, and 〈k〉 ≡
∑∞

k=1 kΦ(k) is the average degree of the network. The typical

distance between nodes is log N/ log〈k〉.

Next we evaluate Sa, the size of the spanning cluster under LPP. After the removal of

fraction q of the links, the spanning cluster can be considered tree-like since, up to order N ,

loops are negligible [8]. Thus, Sa can be approximated by

Sa ∼ c(p)[p〈k〉]a
log N

log 〈k〉 = c(p)N δ, δ ≡ a

(

1 −
| log p|

log 〈k〉

)

≤ 1 (Erdős-Rényi) (1)

where p〈k〉 is the average degree after removal, c(p) ≡ cop〈k〉/(p〈k〉 − 1) [15], and

a log N/ log 〈k〉 is the new tree depth imposed by the limited path length restriction. The

exponent δ = δ(a, p, 〈k〉) is an increasing function of a, i.e., for larger values of a longer

paths are valid and therefore more nodes are included in the spanning cluster, leading to a

higher value of δ. The exponent δ is bounded below by zero and above by 1, since N is the

maximum number of nodes available. Setting δ = 1 and solving for p in Eq. (1) we obtain

the transition threshold

p̃c(a) = 〈k〉
1−a

a (Erdős-Rényi). (2)

Figure 1 presents the phase diagram for LPP. For pc ≤ p ≤ p̃c(a) the spanning cluster

is a fractal of size N δ and δ continuously increases with p. For p > p̃c(a), a spanning

cluster of order N exists with path lengths ℓ′ij ≤ aℓij . Using the function 1 − p̃c(a) we are

able to calculate for a given value of a, the percentage of links that can be removed before

the network is no longer connected with effective paths, i.e., shorter than aℓij . Note that

for a → ∞, when no path length restriction is imposed, we recover the usual percolation

threshold p̃c(a → ∞) = pc = 1/〈k〉 [12]. Equations (1) and (2) are supported by the

simulations presented in Fig. 2(a) [16, 18]. For a summary of the various equations in the

article, see Table I.

Our results for the different regimes of Sa can be summarized by the scaling relation for

p > pc

Sa ∼ c(p)N δf

(

P∞N

c(p)N δ

)

(Erdős-Rényi), (3)
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where P∞ is the probability of an arbitrary node to belong to the usual percolation spanning

cluster [11]. The function f(x) scales as x when x ≪ 1 and approaches a constant as x ≫ 1.

In Fig. 3(a), we present simulation results for several a and p values for ER networks,

supporting the scaling form of Eq. (3).

The theory for LPP can be extended to all random networks with typical distance between

nodes of order log N by substituting 〈k〉 with the generalized form (κ − 1), known as the

branching factor, defined by κ − 1 ≡ 〈k2〉
〈k〉

− 1 [8]. Replacing 〈k〉 with (κ − 1) in Eq. (1) we

obtain the general equation for the spanning cluster size

Sa ∼ c(p)(κ − 1)
a log N

log (κo−1) = N δ, δ ≡ a
log(κ − 1)

log(κo − 1)
(4)

where κo − 1 is the branching factor of the original network and κ − 1 the branching factor

after removal, which depends on p. When a random fraction of the network is removed,

κ − 1 = p(κo − 1) [8]. Note that for the specific case of ER networks, κ − 1 = p〈k〉 and

κo − 1 = 〈k〉, reducing Eq. (4) to Eq. (1). In the general case of random networks, the LPP

transition is found by imposing δ = 1, which yields

p̃c(a) = (κo − 1)
1−a

a . (5)

The scaling form for Sa is the same as Eq. (3) with δ taken from Eq. (4).

Our general theory for LPP can be illustrated on scale-free (SF) networks. Scale-free

networks have generated much interest due to their relation to many real-world networks,

such as the Internet, WWW, social networks, cellular networks, and world-airline network [1,

19–22]. Scale-free networks are characterized by a power-law degree distribution Φ(k) ∼ k−λ

(m ≤ k ≤ K), where K ≡ mN1/(λ−1) [8]. The power-law distribution allows a network to

have a few nodes with a large number of links (“hubs”) which usually play a critical role in

network function. Calculating κ for SF networks one obtains [8]

κ =

(

2 − λ

3 − λ

)

K3−λ − m3−λ

K2−λ − m2−λ
. (6)

For λ > 3, Eq. (4) is valid and thus LPP is similar to ER networks, except that it depends

on κ−1 instead of 〈k〉. The phase diagram of SF networks is shown in Fig. 1(b). The results

of the simulations supporting the theoretical value of δ, Eq. (4), are shown in Fig. 2(b), and

for the scaling form of Sa are presented in Fig. 3(b).

For 2 < λ < 3 the typical network length scales as ℓ = 2 log log N/| log(λ − 2)| [23,

24]. For this regime, our scaling approach to calculate Sa is no longer valid since the tree
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approximation breaks down. However, the LPP transition still exists when aℓij = ℓ
′

ij, where

ℓ
′

ij is the distance after removal, with typical value ℓ
′

= 2 log log P∞N/| log(λ − 2)| [25].

Solving aℓij = ℓ
′

ij for N → ∞, we obtain

a =
ℓ′ij
ℓij

=
log log P∞N

log log N
→ 1 (Scale-free 2 < λ < 3). (7)

This implies that p̃c → 0 and thus, for any finite p, Sa is always of order N . The results of

the simulations presented in Fig. 2(c) support our prediction.

Up to this point, we have only considered random removal of links. Another kind of

removal is targeted removal where the nodes with the largest degree are removed first [8].

This kind of removal is common in many real world scenarios such as denial of service attacks

on WWW and delays in airline hubs.

In scale-free networks, targeted removal of a fraction of q nodes with the largest degree

can be treated as random removal of q′ = q(2−λ)/(1−λ) of the network links [8]. After removal,

the maximum degree is given by K ′ = mq1/(1−λ). For λ > 3, making the substitutions q → q′

and K → K ′ in Eq. (4) we obtain the equation for p̃c [26] and the scaling form for Sa (see

Table I). The change to q′ and K ′ reflects the fast collapse of the network and the rapid

change in the typical network length. The transition line p̃c(a) in targeted removal decreases

significantly more slowly compared to random removal as seen in Fig. 1(b).

In targeted removal for 2 < λ < 3, removing even a small fraction of the hubs produces

a change in the distance from 2 log log N/| log(λ− 2)| to log P∞N/ log(κ− 1) [23, 24]. Thus,

after percolation Sa can be calculated using the tree approximation which yields

Sa ∼ (κ−1)2a log log N

| log(λ−2)| = (log N)2a
log(κ−1)
| log(λ−2)| (Scale-free 2 < λ < 3, targeted removal). (8)

In this case, the phase transition to a spanning cluster of order N cannot be achieved for

any finite value of a and p < 1, as seen from Eq. (8). Simulation results supporting Eq. (8)

are shown in Fig. 3(d). Comparing random to targeted removal for 2 < λ < 3 for LPP yield

entirely opposite results. In random removal, order N nodes are still connected through the

original paths. On the other hand, in targeted removal for any finite a, the network collapses

into logarithmically small clusters.

In summary, our results suggest that the usual percolation theory cannot correctly de-

scribe connectivity when only a limited set of path lengths are useful. In usual percola-

tion, order N of the network nodes are connected when p > pc. However, in LPP, when

5



pc < p < p̃c, only a zero fraction of the network is connected. Therefore, a much smaller

failure of the network can lead to an effective network breakdown. As an illustration, con-

sider an ER network with 〈k〉 = 3, and limit the length between nodes to a = 1.5 times the

original length. The theory of LPP predicts that the removal of q = 0.31 of the network

links is enough to break down the network, compared to q = 0.67 in regular percolation. In

the context of infectious diseases, if the virus typically survives up to 1.5 log N steps, our

theory predicts that the immunization threshold is significantly smaller, 0.31 compared to

0.67. Due to the above considerations, we expect our results to be important for network

design, routing protocols and immunization strategies.
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FIG. 1: (a) Phase diagram for Erdős-Rényi networks of LPP with respect to parameters a and p,

demonstrating the linear and power law (fractal) phases for Sa ∼ N δ. (b) Similar phase diagram

for scale-free networks with λ > 3. The two transition lines represent networks with the same

κ. Note the slow decrease of the transition line for targeted removal compared to the transition

line for random removal. The region between the two lines has a power law (fractal) phase for

targeted removal and a linear phase for random removal. In both (a) and (b) the regular percolation

threshold is fiven by the limit a → ∞, i.e, pc = 〈k〉−1 for ER and pc = (κo − 1)−1 for SF with

λ > 3.
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FIG. 2: Simulation results (symbols) for Sa vs. N for various network types under random or

targeted removal and different values of a and p (indicated in plot legends), compared to the

theoretically predicted power laws (solid lines), with δ calculated from Table I. Network sizes are

typically between 1600 and 204800. In all plots the simulation results agree with the theoretical

predictions. (a) ER networks (random) with 〈k〉 = 3 for fixed p = 0.7 and different a values. Inset

shows the same networks with fixed a = 1.1 and p = 0.5(©), 0.6(2) and 0.7 (♦). (b) SF networks

(random) with λ = 3.5, m = 2, p = 0.7 and different a values. Inset shows the same networks with

fixed a = 1.1 and p = 0.5(©), 0.6(2), 0.7(♦) and 0.8 (△). (c) SF networks (random), λ = 2.2, 2.3

and 2.4, m = 3, p = 0.4, and a = 1. (d) SF networks (targeted) with λ = 3.5, m = 3, fixed p = 0.92

and different a values. Inset shows the same networks with fixed a = 1.2 and p = 0.92(©) and

0.94 (2).
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FIG. 3: Simulation results ((a) through (c)) for the scaling of Sa/(c(p)N δ) vs. P∞N/(c(p)N δ) for

various types of networks, for random and targeted removal for N between 1600 and 25600, and a

between 1.0 and 4. (a) Erdős-Rényi networks (random) with 〈k〉 = 3 and p = 0.5, 0.6 and 0.7. (b)

Scale-free networks (random) with λ = 3.5, m = 2 and p = 0.6, 0.7 and 0.8. (c) Scale-free networks

(targeted) for λ = 3.5, m = 3 and a between 1.01 and 3.0, and targeted removal with p = 0.92 and

0.94. (d) Simulation results of log Sa vs. log log N and comparison to the theoretical prediction

(line) for δ for SF networks (targeted) for λ = 2.3, m = 3, a = 1.5 and p = 0.97.
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