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In a system of interdependent networks, an initial failure of nodes ewakcascade of iterative failures that
may lead to a total collapse of the whole system in a form of an abrupt fiet transition. When the fraction
of initial failed nodes 1- p reaches criticalityp = p¢, the giant component decreases slowly in a plateau form
and the number of iterations in the cascadediverges. The origin of this plateau and its increasing with the
size of the system remained unclear. Here we find that simultaneously wititbtiupt first order transition a
second order percolation occurs. This shed light on the origin of theaplated the law its length scales with
the size of the system. Understanding the critical nature of the dynamarzdgs of cascading failures may be
useful for designing strategies for preventing and mitigating catastraphapses.

I. INTRODUCTION We also find, as a result of this new understanding, that
even though the mean-field (MF) approximations are found to
be accurate in predicting. andP,, it does not represent the

Interdependent network systems attract a growing interEjynamical process of cascading failures near criticalityis

est in the last é/ee;%ﬂ[ﬂ—lﬂ]. Thefy_ reprelser]t real world SYSis since, the critical dynamics is stronglffected by random
tems composed of derent types of interrelations, connectiv- g,ations due to the second order transition which are not

ity links between entities (nodes) of the same network toesha considered in the MF approach. We study tfieet of these

supply or information and dependency links which represenf,,ations on the total number of iterationsat criticality

a dependency of one node on the function of another node I, i that jts average and standard deviation scalds
another network. Consequently, failure of nodes may lead 1 contrast to the ME prediction @f) ~ N4 [5]. We present
two different éfects: removal of other nodes from the same theory for the dynamics at criticality, which explains thie

network wh!ch become disconnected _from the giant compo-gin of this difference.

nent and failure of dependent nodes in other networks. Th

synergy between these twéfects leads to an iterative chain

cascading of failures. Buldyreat al [5] show that, in a sys-

tem of two fully interdependent random networks, when the

fraction of failed nqdes } p is smaller than a c_ritica! value, . MODEL OF INTERDEPENDENT NETWORKS

p > pc, the cascading failures stop after some iterations and a

finite fraction of the systen®., > 0, remains functioning and

connected to the giant component. A larger initial damage, In the fully interdependent networks modé,and B are

p < pc, invokes a cascading failure that fragments the entirdwo networks of the same siZ¢. EachA-nodea depends

system andP., = 0. Thus, wherp approacheg. from above, on exactly one randomly-chos@&@inodeb;, andb; also only

the giant componen®.,, discontinuously jumps to zero in a depends om. The initial attack is removing randomly a frac-

form of a first order transition. The number of iterationshiet  tion 1 — p of A-nodes in one network. Nodes in one network

cascader, diverges wherp approaches., a behavior that that depend on removed nodes in the other network are also

was suggested as a clear indication for the transition point removed, causing a cascade of failures. As nodes and edges

numerical simulations [22]. are removed, each network breaks up into connected compo-

Jients (clusters). It is known that for single random network

there is at most one component (giant component) which oc-
upies a finite fraction of alN nodes (se€ [27]). We assume

that only nodes belonging to the giant component connecting

a finite fraction of the network are still functional. Sindest

Among the main features found are the collapse of the sy
tem with time in a plateau form (see Fidl), and the in-
crease of the plateau length with the system size. Althoug
this phenomena was observed ifffelient models and in real

data, its origin remained uncleéf [5]. To understand thgilri . .
of this phenomena we focus on fully interdependentd&ed two networks have dlierent topological structures, the failure

Renyi (ER) networks. Surprisingly, we find here that during Wil SPread as a cascading process in the systeni [18, 28, 29].

the abrupt collapse there appears a hidden spontaneous secThe MF theory of this model with ER networks with av-
ond order percolation transition that controls the casgadi erage degreek, andkg has been developed using generat-
failures, as demonstrated in Fifl We show here that this ing functions of the degree distribution. This theory potsli
simultaneous second order phase transition is the origimeof the giant component size as a functionmfand accurately
observed long plateau regime in the cascading failurestand ievaluate the first order phase transition threstpf for the
dependence on system size. Moreover, the second order tranfinite-size system. In fact, each realization in the satioh
sition sheds light on the critical behavior observed in thie ¢ has its own critical threshold which we denote py Note
lapse of real world systems such as the power law distributiothat forN — oo, p. for each realization is the same and equals
of blackout sized [23-26]. to pMF.
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FIG. 1. Demonstration of the simultaneous first and second ordeitioenssin cascading failures of interdependent networks. At the critical
point p., (a) the mutual giant component has a sudden jump to zero, while (lytiemical process of cascading failures is governed by
a long plateau stage. In this plateau stage, a second order percolatios, atich is (¢) characterized by a random branching process at
criticality, i.e., average branching factor is one (see [Fig] 3(b)).

Ill.  SCALING BEHAVIOR IN THE CRITICAL DYNAMICS independent of (Fig. [2(b)). This means that system sizes of
N < N* are at criticality even though < p.. ForN > N*,

Here, we investigate the dynamics of the critical cascading%ﬂ ~ N.l/_s U= (Pe - p)-1./2, independent oN (Fig. 2(b)
failures for each single realization of a pair of finite caagpl (non-critical behaviors). This yields the crossodér~ (p. -
networks. For simplicity, networka and B have the same P)™* = (Pc = p)"¥?, between the critical behavior fo¢ < N*
average degrele The value ofp, of each realization, can be @nd non-critical foN > N*. Forp — pe, N* — co and for
determined accurately by randomly removing nodes one bg_ll N one observes the critical behawor: The' crossover system
one until the system fully collapses. size,N*, can be regar(_jed as a correlaﬂo_n size analogously to
Fig. [2(@]exhibits several realizations of simulationgif .~ the correlation length in regular percolation/[31, 32].
As seen at criticality, the total time has large fluctuations. ~ Fig- [2(B) also illustrates the scaling behaviors of the stan-
Each realization has a stage of time steps (a plateau) whefird deviationstd(r). Forp = pc, we obtainstd(r) ~ N*/2,
the giant component of networkdecreases very slowly. Be- €., itincreases as the same rate as Fhe mean. However, for
fore or after this plateau stage, the cascading failureqmois P < Pe, the slope in the right tail odtd(7) in Fig. [2(B]is about
much faster. —-1/3. Thus, we assume a scaling function $tu(r):
Fig. 2(b] and Fig.[2(c] show the scaling behaviors of the
mean and the standard deviationradis a function olN and
p — pe- In our simulations, we considgr < pc, and only
those realizations that fully collapse. For each paiXa@indp

. . ~r2a/3 — 1
values, we generate a realization, attack the system apdtrep Y << 1, andg(u) ~ u=* = u™ for u>> 1.
it for many realizations (sek [30]). We wish to understanatho _ F19-[2{C]shows that the scaling behaviorsifi(r) assumed

N andp - p. affect the mean and the standard deviation of thd" Ed- 8) is supported by simulations with the best chaice
total imer. 3/2 as for(r). The slope of the right t_aﬂ in F||s indeed

It can be seen from Fig2(b) that(r) increases witiN as K&/-Jgﬁzyfﬁrm j “ gg(ﬁ?\iemg C:’gfa_l ?\Ie*q%\EIOSI—d(T) )71~
(t)y ~ N3 atp = p.. However, wherp < pe, (r) becomes hus h he | ical beh = ' Pc — P o wi
constant for large values f. Thus, we assume the following THUS: We have the non-critical behavior also consistertt wit

std(r) ~ NY3 . g(u), 3)

whereu = (pe — p) - N¥?, andg(u) satisfiesig(u) ~ const. for

scaling function, Fig.[2(b)
() ~ NY3. f(u), 1) IV. THE SPONTANEOUS SECOND ORDER
PERCOLATION TRANSITION
whereu = (pe.—p)-N¥®, andf(u) is a function which satisfies:
f(u) ~ const. for u << 1, f(u) ~ u™/3for u >> 1, and we Next we explore the mechanism behind the scaling behav-
determinex such that the best scaling occurs. iors nearp.. We show that it is due to a spontaneous second

To test Eq.[[) and identifya, we plot in Fig [2(c)(r)/N/3 order percolation transition and explain the deviatiomfithe
versusu. We find that the best choice af for obtaining a  MF theory. The failure sizeg, the number ofA-nodes that
good scaling collapse i = 3/2. In this way, we can see fail at time stept, during the plateau from the coupled net-
that the slope of each curve changes from 0 to abdu® at  works system, is a zero fraction of the network skze This
u = (pc - p) - N?2 ~ 1. Therefore, the scaling behavioraf is supported by simulations shown in Fig{a} We regard
for N < N* ~ (p. — p)~°/?is each node that fails due to dependency at the beginning of the

plateau stage as a roat, of a failure tree (see Fidl). After
that, the removal of each roat will cause the failure of sev-
(r) ~ N¥3, (2) eral otherA-nodes due to percolation. Then, sevaBalodes
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FIG. 2. (Color online)a. Dynamical process of the giant component sizef networkA in simulation atpMF (15 realizations)b. Scaling
behavior of the mean (blue) and the standard deviation (red) of the totadt tatp, (critical) or belowp, (non-critical) for each realizatiort.
The scaled version of (b). We consider for Hig. P(a) the d&se 300 000 andk = 5 with 15 realizations. For Fig§. 2{b) ahd 2(c), we have
k = 5 for the diferentN values we analyzed, 200 realizationshof 10° and order of 18realizations foN < 300, 000.

will fail due to dependency and percolation in netw@&kAt  gle network. Consider randomly removing a fraction p of

the next time step, severatnodes further fail due to depen- nodes in an ER network, which makes some other nodes non-
dency and percolation, which can be regarded as the result &iinctional due to percolation, i.e., being disconnecteanfr

the original removal of the root nod®. Notice that the fail- the giant component. Then, we randomly remove one more
ures in networkA caused by removing flerent single nodes node within the giant component, and we yggye to denote

a have very few overlaps due to the randomness and the larghe number of nodes that fail additionally due to percofatio
size ofN. Therefore, we can describe the plateau stage by thBotice thatysnge is the branching factor for the additionally-
growth of all these independent failure trees with the bihanc removed node. Fig[3(c] shows the relation betwegmand

ing factorn; = s11/s. nsinge for an ER network. Note that the branching factor di-

Fig. B(@) and Fig.[3(b) show the variation of andrn re-  verges (for infinite systems) whem — pg, and converges
spectively in a typical realization that finally reached tato to O whenp — 1. Let jj be the critical value ofp where
collapse. We observe thatincreases from below 1 to around (77snge) = 1. Then we see from Fi@(C]thatj ~ 0.35.

1 (with some fluctuations) at the plateau, and finally to above For two coupled ER networks, at each time stdp the

1 when the system starts to collapse. The valug sfsmaller  plateau stage, theftiérence between the giant components of
than 1 in the beginning of the cascading process since the imetworksA andB is small compared to the giant component
dividual networks are still well connected and a large dagnag sizes. Thus, eacA(B)-node that fails due to dependency can
leads to a smaller damage (see 8@a). As cascading pro- be approximately regarded as randomly removing one more
gresses the value @f increases since both networks becomenode from the giant component of netwofk(B). There-
more dilute and a failure leads to relatively higher damagedore, n; ~ (ngngm)Z for the plateau stage. Notice that when
(see FigB(b). In this process the spontaneous behaviof;of (nsnge) = 1, 7; also equals to 1, and the thresh@dv"0.35
generates a new phase transition. Wheapproaches 1 the is also valid for coupled ER networks. This can be seen in
system spontaneously enters a critical stage where thad:asc Fig. [3(d) which shows the evolution g in the same re-
ing trees become critical branching processes of typiogjtte  alization of Fig.[3 We can see that the interaction between
of N¥/3 as explained below. These long trees are the origin opess and(n;) is a determinate factor for the plateau stage. As
the long plateau observed in Fg{a) shown in Fig[3, whenpes s gets smaller, increases to about

The plateau stage starts when each ofrtlfgiled nodes at 1. This causes a range of time steps wrseig approximately
iterationT; leads, in average (we refer to the fluctuations ex-a constant with some random fluctuations. Here, the random
plicitly in the following), to failure of another single nedsee fluctuations ofy; will determine the end of the cascading pro-
[33]). This is a stable state, leading to the divergencefof  cess, with or without a total collapse.

N — co. In a finite system of siz&l, however, the accumu-  Based on these observations, we assume a random process
lated failures slightly reduce and the number of failures at of cascading failures starting at the beginning of the plate
each iteration gradually increases. This bias can be e®ima state att = T;. Letn = sr,, which is also the number of

by considering the percolation on single networks as fallow independent failure trees, and consider time sfepst — Tj.

At each time steq, the giant component sizg of net-  The variation of the failure sizes; are determined by both
work A can be equivalently regarded as randomly attackinghe systematic bias and the random fluctuations. Here, the
a fraction 1- p on a single ER network. This specific value random fluctuations can be described by a Gaussian random
of p, called the &ective p and denoted here byes¢, can be  walk from the value oh.

obtained th_eoretically _by solving thg equatipn: p-a(p), Assuming thatpess = P, andyr = 1 atT = 0, andyy de-
whereg(p) is the fraction of no'des in the giant component creases linearly whepy s increases neg:. 71 = 1-C-Aper.
after randomly removing a fractiomof nodes (Seé:[S]). Here,C is a positive constant, antipes ¢ is the increment of

Moreoverz; can be related to the branching factor for a sin- pes ¢ from p, which is approximately the variation of the giant
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T =1, we haves; = n-(1-CApesf) = n-(1+CR) = n+ £n2.

_ s — 4 —
component size of network. Therefore Apers = — 2. At @) : : , ®)

At T = 2, we haves, = s - (1 + %(n + s1)). After casting = 2
down small terms, we obtais, = n + 3%n2. Similarly, we 1
can obtain af: 0
0 20 40
t
T
] C, T(T+1) C, >
=n =Nt =N+ —— =N 4 10
St=n+ (Z‘ |] N Y @) A

Therefore, the order of the systematic bias of failure sizes igj’l
fromT,t0T,is % If at some iteration the number of fail- 5"’100
ures becomes zero the cascading process stops and the syst .
survives. This can happen wher- vnVT = 0, thus, 100503 04 05

Tstop ~ vn. ®) FIG. 3. (Color onlinela. The (blue) line with circles is the variation

. . . . f failure sizess, (only the plateau stage) for one realization in sim-
If it does not stop, the cascading failures continue, and fo lation. Herek = 5, p = p¥F andN = 50,000. The (green) dashed

largeT the bias will grow (faster than the fluctuations) leading yqtieq fine shows, for the MF case fok = 5, N = 50,000, and
to complete collapse. The balance between the bias and trbez 2.454/k slightly below p¥F = 2.4554/k. b. ’The (recf) Iiné with

fluctuations may continue as long as rectangles shows the variation of the average branching factor
one realization in simulation. Here= 5, p = pMF andN = 50,000.
n2T2 The (green) dashed dotted line showsf the analytic MF solution.
— ~ VnVT. (6) Herek=5,N =50,000 andp = 2.453¢k below p}'". In both (a)
N and (b), the MF values have similar behaviors as the simulation val-

Equations®) and B) yield thatn ~ T ~ NY3, which is Y€ but the MF curves are smooth and show no fluctuatorithe

f : . - STy . average branching facténg for different values op on a single
supported tl% our simulation results in Fig(b) showing 20 negtwork Hergk € ?75,'\'"9'3 250,000 for 3 000 reglizationsgA
() =T ~ N>, ’ ’ ’

. . . thresholdp'where(nsnge) = 1 can be observed @t= p ~ 0.35. d.
The above analysis also leads to the scaling law for the failthe yariation of the Bective p for one realization in the simulations.

ure size at the beginning of the plateau stage: N*°. This  pere k= 5, p = pMF = 2.4554/k andN = 50,000.
is supported by simulations shown in which exhibits

the average failure sizex) along the plateau stage near criti- 10
4

—

cality. (b)

The critical behavior at the plateau is also represented in 2 sope: 15 " 10°
the distribution of failure tree sizes obtained in simuat 0. e pope: =312
shown in Fig.[4(b} Here, we determine the beginning and 4 ,, o N%
the end of the plateau (seée[33]), and identify/slhodes that B
fail due to dependency in each of the parallel failure tréds. g 10 10 10° 10° 10

each time step, the growth of each tree is determined by the
branching factor;. On the plateau, most trees will rapidly die

out, while several trees keep growing and become large. Fiq: . .

. . L IG. 4. (Color onlinep. Scaling results of the mean and the standard
B displays the PDF Of. the tree SiBge, which is the .tOtal deviation of the average failure sizg) from T, to T,, which is also
number of nodes on a failure tree from the root to the time step, approximate number of branching processesfer p. andk =
where it terminates. We can see that the total tree size hasga Number or realizations is same as in @m)PDFCOf failure
_po_wer-IaV\_/ distribution with a slope_ of_ approxlmateiga/_z._ It tree sizesSye for the casep = pe, k = 3, N = 100 000 and 4,537
is interesting to note that such a distribution is assodiali¢h  trees in 80 realizations.

cluster size distributions in second order percolationdia

tions, see e.g/, [27, B1./32] and obtained in classical nsafel

self-organized criticality [34—38]. Notice also that themee  different from the critical scaling resut*/® found here ap,

critical exponent has been observed in real data [23—26].  of each realization. Fig[H shows the scaling behaviors of
both (r) andstd(r) at and belowp)F. As can be seen, the
mean behavior is indeed consistent with the MF predictidns o

V. RELATION BETWEEN THE CRITICAL SCALING AND [5]. We will explain in this section this seemingly discrepst

THE MEAN-FIELD CASE by analyzing the theoretical relationship between theirsgal
behaviors ap. of single realizations and at the MF prediction
Buldyrevet al. [5] found both analytically and numerically pMF.
the scaling behaviofr) ~ N¥4 at pMF, which is significantly In Fig. we observe the scaling rule @f): (r) ~

tree



a2}
(a) Slope: 1/4 HZ (b)
- 101 : 10° Wﬂ&
e ¢ Slope: /3 -
2 ’\6\ b
- 04 <
/'_\, 10 —8—mean (critical) F'Z ZI.Oi2 lope: —2
vV —A—std (critical) =
——mean (non-critical) /|_\,
_1 || —#—std (non—critical) \V 0
10 - . 10
10 10 12
N (p,~P)N

FIG. 5. (Color online)a. Scaling behaviors of the mean (blue) and
the standard deviation (red) of the total timat pMF = 2.4554/k
(critical) or belowpMF (non-critical). Here, we considér= 5, and
the number of realizations I8! = 3,000. b. Scaled version of (a).
Two more values op are included:p = 0.4908 andp = 0.491.
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FIG. 6. (Color online)a. Scaled PDF ot using the exponent/B
at p = p. for single realizations. Herd = 5, and the number of
realizations is the same as in Fig. 2(b).Scaled PDF of using the
exponent 14.

NY4. f(u), where,u = (pMF - p) - N¥?, ande = 2. Then,
we havef(u) ~ 1 foru < 1, andf(u) ~ u2 for u > 1. Fi-
nally, for N < N* ~ (pe — p)~%/2, (r) ~ N4, and forN > N*,
(1) ~ (pe—p)~Y?. Compared with the scaling results for single
realizations, Eqs[l) and @), the main diference is the expo-
nent /4 of the scaling ofr) with N. To further validate our
new scaling law{r) ~ N¥3 at p = p. of single realizations,
we also compare in Fidd the two scaling laws for the PDF
of 7 Fig. [6(@] presents the PDF af for different values of
N according to the scaling assumptior N3, whereas Fig.
[6(b) gives the PDF of according to the scaling assumption
7 ~ N¥4, As can bee seen from these figures, the assumpti
7 ~ N3 seems to better fit the scaling for single realizations
further supporting Eq2).

The origin of the MF observatiodr) ~ N*# andstd(r) ~
N3 (see Fig.[B), which deviates from Eq[Z} for single re-

alizations, can be explained by considering the fluctuation

which do not appear in the MF case.

Given(r) ~ N¥3 at p., and(r) ~ (pc — p)"¥2 whenp is
below p, the scaling behavior a* can be regarded as the
expectation ofr) below p:

e = fo (7) - D(X)dlx, %

wherex = p. — p, andD(X) is its probability density. From

0]

5

the scaling results in Fig2(c) we know that(r) ~ N3,
for p. — p < N?* and(r) ~ (pc - p) 2 for pc - p >

N-23. We also assume that the valuegffollows a Gaussian
distributionN(pMF, o2) (This is supported by the distribution
of pc in simulations, see Fidin the Appendix.) aboveMF,

whereo ~ N"Y2. Therefore,

N-2/3 2

X )dx

1
(TwE = 11+ ~f N1/3-—exp(——
MF 1 2 0 /—271_0_ 202
1
—exp

00 2
12 . X
+ fN R ( 2(rz)olx. ®)

Lety = x- VN, which finally yieldsl; ~ N¥® andl, ~ NY/4,
from which follows(r)yr = I1 + I, ~ N¥4 for largeN.

Similarly, we can also calculate the variancerofising
var(r) = (%) — (1)?, and then estimate the scaling result
for the standard deviation giMF. We can finally obtain
std(r) ~ NY4 instead ofNY/3, seen in Fig.B(@} The ex-
planation of this deviation can be understood by performing
accurate numerical integrals for the analogous Bjfqr the
standard deviation. This accurate integration shows tirat f
small values ofN, the scaling ofstd(r) with N can be ap-
proximated astd(r) ~ N3, However, for largeN, the slope
decreases tdl'/4. This might explain for the slope/3 of
std(r) at pMF observed in simulations, as shown in

VI. SUMMARY

In this paper, we found both the critical the non-critical
scaling rules of the number of time stepdor each single
realization. Compared to the scaling behavior ~ N4 at
the mean-field criticality, we foun¢r) ~ N2 at p, for each
single realization.

In this paper, we identified a spontaneous second order
percolation transition occurring during the cascadintufas
which controls the first order abrupt transition. This isreha
%cterized by the continuous dynamical process of failuass,
well as the critical exponent3/2 of the failure tree sizes dur-
ing the plateau stage. This explains the origin of the long
plateau and its scaling wit found in cascading process near
the abrupt collapse of the coupled networks system. We also
uncovered the theoretical relationship between the twmsee
ingly contradictory scaling rules by considering the ddoia
of pc in different realizations.
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FIG. 7. (Color online) PDF of the normalize®, p, for single real-

VII. APPENDIX

1. Distribution of p. around the mean-field prediction.
Fig.[@shows the PDF of the normalized valuespef p;

Pe—(Pe) i ian distributi
stdip)’ compared with a standard Gaussian distribution. Here

we can find thap, follows a Gaussian distribution around the
MF predictionpMF. This supports our assumption in the main
text thatp, follows a Gaussian distribution.

2. Effect of the randomness in network structures

In our simulations, there are two types of randomness in
each realization: the structure of ER network and the random
initial attack. We always change both the networks and the
attack order at the beginning of each realization. However,
when the network is large enough, the randomness of the net-

izations in simulations, compared with the standard Gaussian diStrWork structure is not needed for our results. In FE we

bution. Herek = 5, N = 30,000 for 6 000 realizations. We see here
that the value ofy follows quite well a Gaussian distribution.

compare the scaling behaviors of the total number of cascade
7 in two cases: varying both the networks and the attack order,
and varying only the attack order for a given realization. We
find that they have very similar behavior.
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FIG. 8. (Color online) Scaling behaviors of the mean and the stan-
dard deviation of the total time at p. for individual realizations.
Two cases are compared here: in each realization, varying both the
networks and the attack order, and only varying the attack order. We
considerk = 5 with 3,000 realizations for dierentN values.



