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In a system of interdependent networks, an initial failure of nodes invokes a cascade of iterative failures that
may lead to a total collapse of the whole system in a form of an abrupt first order transition. When the fraction
of initial failed nodes 1− p reaches criticality,p = pc, the giant component decreases slowly in a plateau form
and the number of iterations in the cascade,τ, diverges. The origin of this plateau and its increasing with the
size of the system remained unclear. Here we find that simultaneously with the abrupt first order transition a
second order percolation occurs. This shed light on the origin of the plateau and the law its length scales with
the size of the system. Understanding the critical nature of the dynamical process of cascading failures may be
useful for designing strategies for preventing and mitigating catastrophiccollapses.

I. INTRODUCTION

Interdependent network systems attract a growing inter-
est in the last years [1–21]. They represent real world sys-
tems composed of different types of interrelations, connectiv-
ity links between entities (nodes) of the same network to share
supply or information and dependency links which represent
a dependency of one node on the function of another node in
another network. Consequently, failure of nodes may lead to
two different effects: removal of other nodes from the same
network which become disconnected from the giant compo-
nent and failure of dependent nodes in other networks. The
synergy between these two effects leads to an iterative chain
cascading of failures. Buldyrevet al [5] show that, in a sys-
tem of two fully interdependent random networks, when the
fraction of failed nodes 1− p is smaller than a critical value,
p > pc, the cascading failures stop after some iterations and a
finite fraction of the system,P∞ > 0, remains functioning and
connected to the giant component. A larger initial damage,
p < pc, invokes a cascading failure that fragments the entire
system andP∞ = 0. Thus, whenp approachespc from above,
the giant component,P∞, discontinuously jumps to zero in a
form of a first order transition. The number of iterations in the
cascade,τ, diverges whenp approachespc, a behavior that
was suggested as a clear indication for the transition pointin
numerical simulations [22].

Among the main features found are the collapse of the sys-
tem with time in a plateau form (see Fig.1), and the in-
crease of the plateau length with the system size. Although
this phenomena was observed in different models and in real
data, its origin remained unclear [5]. To understand the origin
of this phenomena we focus on fully interdependent Erdős-
Rényi (ER) networks. Surprisingly, we find here that during
the abrupt collapse there appears a hidden spontaneous sec-
ond order percolation transition that controls the cascading
failures, as demonstrated in Fig.1. We show here that this
simultaneous second order phase transition is the origin ofthe
observed long plateau regime in the cascading failures and its
dependence on system size. Moreover, the second order tran-
sition sheds light on the critical behavior observed in the col-
lapse of real world systems such as the power law distribution
of blackout sizes [23–26].

We also find, as a result of this new understanding, that
even though the mean-field (MF) approximations are found to
be accurate in predictingpc andP∞, it does not represent the
dynamical process of cascading failures near criticality.This
is since, the critical dynamics is strongly affected by random
fluctuations due to the second order transition which are not
considered in the MF approach. We study the effect of these
fluctuations on the total number of iterationsτ at criticality
and find that its average and standard deviation scale asN1/3,
in contrast to the MF prediction of〈τ〉 ∼ N1/4 [5]. We present
a theory for the dynamics at criticality, which explains theori-
gin of this difference.

II. MODEL OF INTERDEPENDENT NETWORKS

In the fully interdependent networks model,A and B are
two networks of the same sizeN. EachA-nodeai depends
on exactly one randomly-chosenB-nodeb j, andb j also only
depends onai. The initial attack is removing randomly a frac-
tion 1− p of A-nodes in one network. Nodes in one network
that depend on removed nodes in the other network are also
removed, causing a cascade of failures. As nodes and edges
are removed, each network breaks up into connected compo-
nents (clusters). It is known that for single random networks,
there is at most one component (giant component) which oc-
cupies a finite fraction of allN nodes (see [27]). We assume
that only nodes belonging to the giant component connecting
a finite fraction of the network are still functional. Since the
two networks have different topological structures, the failure
will spread as a cascading process in the system [18, 28, 29].

The MF theory of this model with ER networks with av-
erage degreeskA and kB has been developed using generat-
ing functions of the degree distribution. This theory predicts
the giant component size as a function ofp, and accurately
evaluate the first order phase transition thresholdpMF

c for the
infinite-size system. In fact, each realization in the simulation
has its own critical threshold which we denote bypc. Note
that forN → ∞, pc for each realization is the same and equals
to pMF

c .
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FIG. 1. Demonstration of the simultaneous first and second order transitions in cascading failures of interdependent networks. At the critical
point pc, (a) the mutual giant component has a sudden jump to zero, while (b) thedynamical process of cascading failures is governed by
a long plateau stage. In this plateau stage, a second order percolation occurs, which is (c) characterized by a random branching process at
criticality, i.e., average branching factor is one (see Fig. 3(b)).

III. SCALING BEHAVIOR IN THE CRITICAL DYNAMICS

Here, we investigate the dynamics of the critical cascading
failures for each single realization of a pair of finite coupled
networks. For simplicity, networksA and B have the same
average degreek. The value ofpc of each realization, can be
determined accurately by randomly removing nodes one by
one until the system fully collapses.

Fig. 2(a)exhibits several realizations of simulations atpMF
c .

As seen at criticality, the total timeτ has large fluctuations.
Each realization has a stage of time steps (a plateau) where
the giant component of networkA decreases very slowly. Be-
fore or after this plateau stage, the cascading failure process is
much faster.

Fig. 2(b) and Fig. 2(c) show the scaling behaviors of the
mean and the standard deviation ofτ as a function ofN and
p − pc. In our simulations, we considerp ≤ pc, and only
those realizations that fully collapse. For each pair ofN andp
values, we generate a realization, attack the system and repeat
it for many realizations (see [30]). We wish to understand how
N andp− pc affect the mean and the standard deviation of the
total timeτ.

It can be seen from Fig.2(b) that 〈τ〉 increases withN as
〈τ〉 ∼ N1/3 at p = pc. However, whenp < pc, 〈τ〉 becomes
constant for large values ofN. Thus, we assume the following
scaling function,

〈τ〉 ∼ N1/3 · f (u), (1)

whereu = (pc−p)·N1/α, and f (u) is a function which satisfies:
f (u) ∼ const. for u << 1, f (u) ∼ u−α/3 for u >> 1, and we
determineα such that the best scaling occurs.

To test Eq. (1) and identifyα, we plot in Fig.2(c) 〈τ〉/N1/3

versusu. We find that the best choice ofα for obtaining a
good scaling collapse isα = 3/2. In this way, we can see
that the slope of each curve changes from 0 to about−1/2 at
u = (pc − p) · N2/3 ≈ 1. Therefore, the scaling behavior of〈τ〉
for N < N∗ ∼ (pc − p)−3/2 is

〈τ〉 ∼ N1/3, (2)

independent ofp (Fig. 2(b)). This means that system sizes of
N < N∗ are at criticality even thoughp < pc. For N > N∗,
〈τ〉 ∼ N1/3 · u−1/2

= (pc − p)−1/2, independent ofN (Fig. 2(b))
(non-critical behaviors). This yields the crossoverN∗ ∼ (pc −
p)−α = (pc − p)−3/2, between the critical behavior forN < N∗

and non-critical forN > N∗. For p → pc, N∗ → ∞ and for
all N one observes the critical behavior. The crossover system
size,N∗, can be regarded as a correlation size analogously to
the correlation length in regular percolation [31, 32].

Fig. 2(b) also illustrates the scaling behaviors of the stan-
dard deviation,std(τ). For p = pc, we obtainstd(τ) ∼ N1/3,
i.e., it increases as the same rate as the mean. However, for
p < pc, the slope in the right tail ofstd(τ) in Fig. 2(b) is about
−1/3. Thus, we assume a scaling function forstd(τ):

std(τ) ∼ N1/3 · g(u), (3)

whereu = (pc − p) · N1/α, andg(u) satisfies:g(u) ∼ const. for
u << 1, andg(u) ∼ u−2α/3

= u−1 for u >> 1.
Fig. 2(c)shows that the scaling behavior ofstd(τ) assumed

in Eq. (3) is supported by simulations with the best choiceα =

3/2 as for〈τ〉. The slope of the right tail in Fig.2(c) is indeed
−1. Thus, forN < N∗, we have the critical behavior:std(τ) ∼
N1/3; and forN > N∗, std(τ) ∼ N1/3 · u−1

= N−1/3(pc − p)−1.
Thus, we have the non-critical behavior also consistent with
Fig. 2(b).

IV. THE SPONTANEOUS SECOND ORDER
PERCOLATION TRANSITION

Next we explore the mechanism behind the scaling behav-
iors nearpc. We show that it is due to a spontaneous second
order percolation transition and explain the deviation from the
MF theory. The failure size,st, the number ofA-nodes that
fail at time stept, during the plateau from the coupled net-
works system, is a zero fraction of the network sizeN. This
is supported by simulations shown in Fig.4(a). We regard
each node that fails due to dependency at the beginning of the
plateau stage as a root,ai, of a failure tree (see Fig.1). After
that, the removal of each rootai will cause the failure of sev-
eral otherA-nodes due to percolation. Then, severalB-nodes



3

0 20 40
0

0.1

0.2

0.3

0.4

0.5

t

ψ
t

(a)

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

N

<
τ>

, s
td

 τ

 

 

mean (critical)
std (critical)
mean (non−critical)
std (non−critical)

Slope: 1/3
(b)

Slope: 1/3

Slope: −1/3

10
−2

10
0

10
2

10
−2

10
−1

10
0

(p
c
−p)N2/3

<
τ>

/N
1/

3 , s
td

 τ
 /N

1/
3

 

 

(c)
Slope: −1/2

Slope: −1

FIG. 2. (Color online)a. Dynamical process of the giant component sizeψt of networkA in simulation atpMF
c (15 realizations).b. Scaling

behavior of the mean (blue) and the standard deviation (red) of the total timeτ at pc (critical) or belowpc (non-critical) for each realization.c.
The scaled version of (b). We consider for Fig. 2(a) the caseN = 300, 000 andk = 5 with 15 realizations. For Figs. 2(b) and 2(c), we have
k = 5 for the differentN values we analyzed, 200 realizations ofN = 106 and order of 104 realizations forN ≤ 300, 000.

will fail due to dependency and percolation in networkB. At
the next time step, severalA-nodes further fail due to depen-
dency and percolation, which can be regarded as the result of
the original removal of the root nodeai. Notice that the fail-
ures in networkA caused by removing different single nodes
ai have very few overlaps due to the randomness and the large
size ofN. Therefore, we can describe the plateau stage by the
growth of all these independent failure trees with the branch-
ing factorηt = st+1/st.

Fig. 3(a) and Fig. 3(b) show the variation ofst andηt re-
spectively in a typical realization that finally reached a total
collapse. We observe thatηt increases from below 1 to around
1 (with some fluctuations) at the plateau, and finally to above
1 when the system starts to collapse. The value ofηt is smaller
than 1 in the beginning of the cascading process since the in-
dividual networks are still well connected and a large damage
leads to a smaller damage (see Fig.3(a)). As cascading pro-
gresses the value ofηt increases since both networks become
more dilute and a failure leads to relatively higher damage
(see Fig.3(b)). In this process the spontaneous behavior ofηt

generates a new phase transition. Whenηt approaches 1 the
system spontaneously enters a critical stage where the cascad-
ing trees become critical branching processes of typical length
of N1/3 as explained below. These long trees are the origin of
the long plateau observed in Fig.2(a).

The plateau stage starts when each of then failed nodes at
iterationT1 leads, in average (we refer to the fluctuations ex-
plicitly in the following), to failure of another single node (see
[33]). This is a stable state, leading to the divergence ofτ for
N → ∞. In a finite system of sizeN, however, the accumu-
lated failures slightly reducep and the number of failures at
each iteration gradually increases. This bias can be estimated
by considering the percolation on single networks as follow.

At each time stept, the giant component sizeψt of net-
work A can be equivalently regarded as randomly attacking
a fraction 1− p on a single ER network. This specific value
of p, called the effective p and denoted here bype f f , can be
obtained theoretically by solving the equationψt = p · g(p),
whereg(p) is the fraction of nodes in the giant component
after randomly removing a fractionp of nodes (see [5]).

Moreover,ηt can be related to the branching factor for a sin-

gle network. Consider randomly removing a fraction 1− p of
nodes in an ER network, which makes some other nodes non-
functional due to percolation, i.e., being disconnected from
the giant component. Then, we randomly remove one more
node within the giant component, and we useηsingle to denote
the number of nodes that fail additionally due to percolation.
Notice thatηsingle is the branching factor for the additionally-
removed node. Fig.3(c) shows the relation betweenp and
ηsingle for an ER network. Note that the branching factor di-
verges (for infinite systems) whenp → p+c , and converges
to 0 whenp → 1. Let p̃ be the critical value ofp where
〈ηsingle〉 = 1. Then we see from Fig.3(c) that p̃ ≈ 0.35.

For two coupled ER networks, at each time stept in the
plateau stage, the difference between the giant components of
networksA andB is small compared to the giant component
sizes. Thus, eachA(B)-node that fails due to dependency can
be approximately regarded as randomly removing one more
node from the giant component of networkA (B). There-
fore, ηt ≈ 〈ηsingle〉2 for the plateau stage. Notice that when
〈ηsingle〉 = 1, ηt also equals to 1, and the threshold ˜p ≈ 0.35
is also valid for coupled ER networks. This can be seen in
Fig. 3(d), which shows the evolution ofpe f f in the same re-
alization of Fig. 3. We can see that the interaction between
pe f f and〈ηt〉 is a determinate factor for the plateau stage. As
shown in Fig.3, whenpe f f gets smaller,ηt increases to about
1. This causes a range of time steps wherest is approximately
a constant with some random fluctuations. Here, the random
fluctuations ofηt will determine the end of the cascading pro-
cess, with or without a total collapse.

Based on these observations, we assume a random process
of cascading failures starting at the beginning of the plateau
state att = T1. Let n = sT1, which is also the number of
independent failure trees, and consider time stepsT = t − T1.
The variation of the failure sizessT are determined by both
the systematic bias and the random fluctuations. Here, the
random fluctuations can be described by a Gaussian random
walk from the value ofn.

Assuming thatpe f f = p̃, andηT = 1 atT = 0, andηT de-
creases linearly whenpe f f increases near ˜p: ηT = 1−C ·∆pe f f .
Here,C is a positive constant, and∆pe f f is the increment of
pe f f from p̃, which is approximately the variation of the giant
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component size of networkA. Therefore,∆pe f f = −
T
∑

i=0
si

N . At
T = 1, we haves1 = n · (1−C∆pe f f ) = n · (1+C n

N ) = n+ C
N n2.

At T = 2, we haves2 = s1 · (1 + C
N (n + s1)). After casting

down small terms, we obtains2 = n + 3C
N n2. Similarly, we

can obtain atT :

sT = n +















T
∑

i=1

i















· C
N

n2
= n +

T (T + 1)
2

· C
N

n2. (4)

Therefore, the order of the systematic bias of failure sizes
from T1 to T2 is n2T 2

N . If at some iteration the number of fail-
ures becomes zero the cascading process stops and the system
survives. This can happen whenn −

√
n
√

T = 0, thus,

Tstop ∼
√

n. (5)

If it does not stop, the cascading failures continue, and for
largeT the bias will grow (faster than the fluctuations) leading
to complete collapse. The balance between the bias and the
fluctuations may continue as long as

n2T 2

N
∼
√

n
√

T . (6)

Equations (5) and (6) yield that n ∼ T ∼ N1/3, which is
supported by our simulation results in Fig.2(b) showing
〈τ〉 ≡ T ∼ N1/3.

The above analysis also leads to the scaling law for the fail-
ure size at the beginning of the plateau stage:n ∼ N1/3. This
is supported by simulations shown in Fig.4(a), which exhibits
the average failure size〈st〉 along the plateau stage near criti-
cality.

The critical behavior at the plateau is also represented in
the distribution of failure tree sizes obtained in simulations
shown in Fig. 4(b). Here, we determine the beginning and
the end of the plateau (see [33]), and identify allA-nodes that
fail due to dependency in each of the parallel failure trees.At
each time step, the growth of each tree is determined by the
branching factorηt. On the plateau, most trees will rapidly die
out, while several trees keep growing and become large. Fig.
4(b) displays the PDF of the tree sizeS tree, which is the total
number of nodes on a failure tree from the root to the time step
where it terminates. We can see that the total tree size has a
power-law distribution with a slope of approximately−3/2. It
is interesting to note that such a distribution is associated with
cluster size distributions in second order percolation transi-
tions, see e.g., [27, 31, 32] and obtained in classical models of
self-organized criticality [34–38]. Notice also that the same
critical exponent has been observed in real data [23–26].

V. RELATION BETWEEN THE CRITICAL SCALING AND
THE MEAN-FIELD CASE

Buldyrevet al. [5] found both analytically and numerically
the scaling behavior〈τ〉 ∼ N1/4 at pMF

c , which is significantly
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FIG. 3. (Color online)a. The (blue) line with circles is the variation
of failure sizesst (only the plateau stage) for one realization in sim-
ulation. Here,k = 5, p = pMF

c andN = 50, 000. The (green) dashed
dotted line showsst for the MF case fork = 5, N = 50,000, and
p = 2.454/k slightly belowpMF

c = 2.4554/k. b. The (red) line with
rectangles shows the variation of the average branching factorηt for
one realization in simulation. Here,k = 5, p = pMF

c andN = 50,000.
The (green) dashed dotted line showsηt of the analytic MF solution.
Here,k = 5, N = 50,000 andp = 2.4536/k below pMF

c . In both (a)
and (b), the MF values have similar behaviors as the simulation val-
ues, but the MF curves are smooth and show no fluctuations.c. The
average branching factor〈ηsingle〉 for different values ofp on a single
ER network. Here,k = 5, N = 250,000 for 3, 000 realizations. A
threshold ˜p where〈ηsingle〉 = 1 can be observed atp = p̃ ≈ 0.35. d.
The variation of the effectivep for one realization in the simulations.
Here,k = 5, p = pMF

c = 2.4554/k andN = 50,000.
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FIG. 4. (Color online)a. Scaling results of the mean and the standard
deviation of the average failure size〈st〉 from T1 to T2, which is also
the approximate number of branching processes forp = pc andk =
5. Number or realizations is same as in Fig. 2(b).b. PDF of failure
tree sizesS tree for the casep = pc, k = 3, N = 100, 000 and 4,537
trees in 80 realizations.

different from the critical scaling resultN1/3 found here atpc

of each realization. Fig.5 shows the scaling behaviors of
both 〈τ〉 andstd(τ) at and belowpMF

c . As can be seen, the
mean behavior is indeed consistent with the MF predictions of
[5]. We will explain in this section this seemingly discrepancy
by analyzing the theoretical relationship between the scaling
behaviors atpc of single realizations and at the MF prediction
pMF

c .
In Fig. 5, we observe the scaling rule of〈τ〉: 〈τ〉 ∼
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FIG. 6. (Color online)a. Scaled PDF ofτ using the exponent 1/3
at p = pc for single realizations. Here,k = 5, and the number of
realizations is the same as in Fig. 2(b).b. Scaled PDF ofτ using the
exponent 1/4.

N1/4 · f (u), where,u = (pMF
c − p) · N1/α, andα = 2. Then,

we havef (u) ∼ 1 for u ≪ 1, and f (u) ∼ u−1/2 for u ≫ 1. Fi-
nally, for N < N∗ ∼ (pc − p)−3/2, 〈τ〉 ∼ N1/4, and forN > N∗,
〈τ〉 ∼ (pc−p)−1/2. Compared with the scaling results for single
realizations, Eqs. (1) and (2), the main difference is the expo-
nent 1/4 of the scaling of〈τ〉 with N. To further validate our
new scaling law,〈τ〉 ∼ N1/3 at p = pc of single realizations,
we also compare in Fig.6 the two scaling laws for the PDF
of τ: Fig. 6(a) presents the PDF ofτ for different values of
N according to the scaling assumptionτ ∼ N1/3, whereas Fig.
6(b) gives the PDF ofτ according to the scaling assumption
τ ∼ N1/4. As can bee seen from these figures, the assumption
τ ∼ N1/3 seems to better fit the scaling for single realizations,
further supporting Eq. (2).

The origin of the MF observation,〈τ〉 ∼ N1/4 andstd(τ) ∼
N1/3 (see Fig.5), which deviates from Eq. (2) for single re-
alizations, can be explained by considering the fluctuations
which do not appear in the MF case.

Given 〈τ〉 ∼ N1/3 at pc, and〈τ〉 ∼ (pc − p)−1/2 when p is
below pc, the scaling behavior atpMF

c can be regarded as the
expectation of〈τ〉 below pc:

〈τ〉MF =

∫ ∞

0
〈τ〉 · D(x)dx, (7)

wherex = pc − p, andD(x) is its probability density. From

the scaling results in Fig.2(c), we know that〈τ〉 ∼ N1/3,
for pc − p < N−2/3 and 〈τ〉 ∼ (pc − p)−1/2, for pc − p >

N−2/3. We also assume that the value ofpc follows a Gaussian
distributionN(pMF

c , σ2) (This is supported by the distribution
of pc in simulations, see Fig.7 in the Appendix.) abovepMF

c ,
whereσ ∼ N−1/2. Therefore,

〈τ〉MF = I1 + I2 ∼
∫ N−2/3

0
N1/3 ·

1
√

2πσ
exp

(

−
x2

2σ2

)

dx

+

∫ ∞

N−2/3
x−1/2 · 1

√
2πσ

exp

(

− x2

2σ2

)

dx. (8)

Let y = x·
√

N, which finally yieldsI1 ∼ N1/6 andI2 ∼ N1/4,
from which follows〈τ〉MF = I1 + I2 ∼ N1/4 for largeN.

Similarly, we can also calculate the variance ofτ using
var(τ) = 〈τ2〉 − 〈τ〉2, and then estimate the scaling result
for the standard deviation atpMF

c . We can finally obtain
std(τ) ∼ N1/4, instead ofN1/3, seen in Fig. 5(a). The ex-
planation of this deviation can be understood by performing
accurate numerical integrals for the analogous Eq. (8) for the
standard deviation. This accurate integration shows that for
small values ofN, the scaling ofstd(τ) with N can be ap-
proximated asstd(τ) ∼ N1/3. However, for largeN, the slope
decreases toN1/4. This might explain for the slope 1/3 of
std(τ) at pMF

c observed in simulations, as shown in Fig.5(a).

VI. SUMMARY

In this paper, we found both the critical the non-critical
scaling rules of the number of time stepsτ for each single
realization. Compared to the scaling behavior〈τ〉 ∼ N1/4 at
the mean-field criticality, we found〈τ〉 ∼ N1/3 at pc for each
single realization.

In this paper, we identified a spontaneous second order
percolation transition occurring during the cascading failures
which controls the first order abrupt transition. This is char-
acterized by the continuous dynamical process of failures,as
well as the critical exponent−3/2 of the failure tree sizes dur-
ing the plateau stage. This explains the origin of the long
plateau and its scaling withN found in cascading process near
the abrupt collapse of the coupled networks system. We also
uncovered the theoretical relationship between the two seem-
ingly contradictory scaling rules by considering the deviation
of pc in different realizations.
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FIG. 7. (Color online) PDF of the normalizedpc, p′c, for single real-
izations in simulations, compared with the standard Gaussian distri-
bution. Here,k = 5, N = 30,000 for 6,000 realizations. We see here
that the value ofpc follows quite well a Gaussian distribution.

VII. APPENDIX

1. Distribution of pc around the mean-field prediction.
Fig. 7 shows the PDF of the normalized values ofpc: p′c ≡

pc−〈pc〉
std(pc)

, compared with a standard Gaussian distribution. Here

we can find thatpc follows a Gaussian distribution around the
MF predictionpMF

c . This supports our assumption in the main
text thatpc follows a Gaussian distribution.

2. Effect of the randomness in network structures
In our simulations, there are two types of randomness in

each realization: the structure of ER network and the random
initial attack. We always change both the networks and the
attack order at the beginning of each realization. However,
when the network is large enough, the randomness of the net-
work structure is not needed for our results. In Fig.8, we
compare the scaling behaviors of the total number of cascade
τ in two cases: varying both the networks and the attack order,
and varying only the attack order for a given realization. We
find that they have very similar behavior.
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FIG. 8. (Color online) Scaling behaviors of the mean and the stan-
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networks and the attack order, and only varying the attack order. We
considerk = 5 with 3, 000 realizations for differentN values.


