
Supplementary Figures

0 10 20 30 40 50 60 70 80
t

0.0

0.1

0.2

0.3

0.4

0.5

r c
/L

α=0.01

α=0.1

α=0.175

α=0.275

α=0.375

(a) rc(t)/L for different α

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

∆
(r

c
)/
L

1e−2

H=3

H=5

H=7

H=9

H=11

(b) ∆(rc) of different initial damage sizes

Supplementary Figure 1: The average velocity of the linear regime (∆(rc)) ap-

proaches zero when α > αc in theory. Here we set L = 400. In (a), H is set to

3.
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Supplementary Figure 2: The critical tolerance varies with radius of the initial

failure in theory. (a) αc varies with the relative radius a0 of the initial failure. (b) αc

varies with the absolute radius H of the initial failure. In fact, we can also get the critical

attack size from this figure. Taking L = 200 with tolerance 1.0 as an example, we can split

the range of initial failure radius into three regions. In the first region, the initial failure

size is too small to trigger a cascade, in the middle one, there would be a cascade because

the tolerance is not enough to protect the system, while in the last region, the initial

damage is too large and the left part of the system would not be overloaded. Besides, as

can be seen in (b), the critical tolerance, αc, is almost the same for different resolutions

as the initial failure size is extremely small. When the initial failure size increases, αc of

systems with different sizes begin to show significant differences.
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Supplementary Figure 3: Results of the analytical model for large initial failure.

Here, the absolute radius of the initial failure is set to be H = 30 and the tolerance is set

to be α = 0.2. L = 2R is the system linear size. In (c) and (d), different symbols stand

for different resolutions (1/R), including 1/200 (△), 1/300 (◻), 1/400 (◯) and 1/500 (◇).

Note that in theory Fr/L2 still represents the fraction of failed nodes in each instant and

its value is calculated through Fr

πR2 instead of Fr

4R2 .
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Supplementary Figure 4: Overloads as a function of distance in the analytical

model, using Eq. 32 and Eq. 33. (a) shows how ∆L
L0

varies with bR using the theory

with resolution 1/200. Here a0 is the relative radius of the initial failure, ∆L
L0

is the ratio

between the overload and the initial load for the nodes located at distance bR from the

system center O. Note that the overload at bR is calculated only at the initial stage due

to the initial failure (t = 1). As seen, larger a0 causes more overloads and possesses larger

∆L
L0

. The maximum values of ∆L
L0

represent the values of αc, and if α > αc, no cascading

overload failures will occur. (b) shows how ∆L
L0

varies with b at the first four steps in

theory with resolution 1/200 when α = 0.2 and a0 = 0.15. At time step t, the value of b

where ∆L
L0

= α is the initial damage size for the cascade in the next step t + 1.
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Supplementary Figure 5: Overloads propagation in the weighted circular lattice.

(a) to (d) are the first four-steps of failure propagation. Here L = 100, l = 6, σ = 0.1 and

the tolerance is set to α = 0.5. Behaviors of rc(t) and Fr(t) are shown in (e) and (f).
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Supplementary Figure 6: Overloads propagation in the weighted planar graph.

(a) to (d) are the first four-steps of failure propagation. Here the network size is 10000,

we set l = 0.06, σ = 0.1 and the tolerance is set to α = 0.25. Behaviors of rc(t) and Fr(t)
are shown in (e) and (f). Note that here the system liner size is L = 1.0.
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Supplementary Figure 7: Example of circular plate network with 3 layers.
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Supplementary Figure 8: Overloads propagation in the weighted circular plate.

(a) to (d) are the first four-steps of failure propagation. Here the diameter of system is

set to L = 100 and the tolerance is α = 0.3. Behaviors of rc(t) and Fr(t) are shown in (e)

and (f).
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Supplementary Figure 9: Overloads propagation in the road network of Old-

enburg. (a) to (d) are snapshots of overloads propagation at the first four steps on

Oldenburg road network. Here we set α = 0.1, σ = 0.1. The cascading overload failures

are triggered by the initially removed 6 nodes in the central region. Green nodes stand for

the survived nodes, red nodes stand for the initially attacked ones, blue nodes stand for

the overloaded ones in the corresponding step, while yellow nodes stand for the overloaded

ones in the previous steps. (e) and (f) are plots of rc(t) and Fr(t).
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Supplementary Figure 10: Overloads propagation in the road network of Cali-

fornia. (a) to (d) are the first four-steps of failure propagation in the road network of

California. Here the initial failure is induced by removing 60 nodes in the geographical

center of the network, which is denoted by the red star. Weights with Gaussian disorder

(σ = 0.1) are imposed on the links and the tolerance is set to α = 0.025. Behaviors of rc(t)
and Fr(t) are shown in (e) and (f).
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Supplementary Figure 11: The spatial distribution of overloads in the simulation

at different time steps during the overload cascading process. For a given step,

the distribution is found to have a sharp peak close to a characteristic radius rc(t) (marked

with dashed line in the same color). The outliers are found negligible far away from this

characteristic distance. The tolerance in this figure is α = 0.25.
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Supplementary Figure 12: The effects of initial damage on the overloads propa-

gation velocity. The plots show how rc increases with t for different initial failures. In

(a) and (b), we set L = 100 and σ = 0.1. Note that l is the linear size of the initial damage.

The tolerance α is set to (a) 0.25 and (b) 0.5 in simulations, which are lower than their

critical tolerances. In (c) and (d), we set L = 400. The tolerance is also smaller than the

critical value, i.e., α = 0.15 in (c) and α = 0.2 in (d).
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Supplementary Figure 13: The effects of disorder on the overloads propagation

velocity. It is shown how rc varies with t for different disorders on (a) weighted lattice,

(b) the road network of Oldenburg and (c) the road network of California. The △ lines

represent σ = 0.1 (mean is 1.0), the ◻ lines represent σ = 20.0 (mean is 100.0) and the ◯
lines represent σ = 2000.0 (mean is 10000.0).
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Supplementary Figure 14: Modeling the extra load when r > b. The network is

embedded in a 2d circular plate centered at O with radius 1. The initial damage is

located in the center of the network with radius a ≤ 1 (red). The green ring centered at

O and between a and b (b > a) is defined as the adjacent ring. The case of r < b can be

treated in a similar way.
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Supplementary Figure 15: Modeling the initial load. Different possible cases of the

analytical model are demonstrated in (a), (b) and (c) respectively, where B is shown as a

blue plate with radius b inside the system. O is the system center and the system radius

is assumed to be 1. The radius of B is b ≤ 1.
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Supplementary Figure 16: Illustration of the basic concept for the simplified the-

ory.
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Supplementary Figure 17: Illustration of the way to calculate the overload due

to the regional attack. Similarly to the previous framework, the red plate with radius

a stands for the attacked area and the green ring with radius b is the area neighboring

to the attack, whose nodes might be overloaded in the following cascades. Starting from

a random node A with radius r1, a path can arrives at node B (with radius r2) on the

other side by passing through the ring or the attacked area. In (a), the path between A

and B can directly pass though the red plate and its length inside the green ring is li

(yellow). In (b), because of the attack, the path from A has to walk along the tangent

line of the attacked area before arriving at B, hence its length inside the green ring will

be changed to lf (yellow). Actually, increment of the path length due to the attack will

impose overload to the green ring.
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Supplementary Figure 18: Illustration of how to calculate the initial load of the

system.
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Supplementary Figure 19: Comparison between the original theory and the sim-

plified one. Here we set L = 2R = 1000, H = 30, ∆(rc) is the averaged velocity of the

linear regime in failure propagation.
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Supplementary Notes

Supplementary Note 1: Results from the analytical model

In Fig. 4 of the paper, we presented the analytical results of the model, rc(t), which show

a large range of linear slope but a slow increase at first few steps when the initial failure

is very small. In Supplementary Figure 3, we analyze the case when the absolute radius

of the initial failure is larger, e.g., H = 30, and find that the measures show a fast and

almost constant rate of growth with time already in the first few steps, in close agreement

with simulation. We also show in Supplementary Figures 3(c) and 3(d) that the scaling

with system size is valid.

Since the theoretical model is not constrained by the complexity in simulations of

finding optimal paths, it greatly simplifies the way of calculating the critical damage size

and the critical tolerance, which is denoted as αc. Specifically, if the value of tolerance

is higher than the threshold, there would be no cascading overload failures. Hence for

different initial failures with relative radius a0, we observe in Supplementary Figure 4 how

∆L
L0

decreases as b increases using Eq. 32 and Eq. 33. As can be seen in Supplementary

Figure 4(a), we find that ∆L
L0

decreases fast with increasing bR. It indicates that as b

increases, the nodes on the circle with radius b suffer declining overloads. Moreover, for

each a0, the maximum of ∆L
L0

is the critical tolerance, αc. Accordingly, in each step of the

failure propagation, as shown in Supplementary Figure 4(b), ∆L
L0

decreases as b increases.

Since the damage size for each step continues to expand when the failure spreads, the

maximum ∆L
L0

also grows with t.

We also investigate the critical tolerance as a function of the relative size (a0) and

absolute size (H) of initial damage respectively based on theory. As shown in Supplemen-

tary Figure 2, αc increases with the size of the initial damage and because of the finite size

effect, it starts to decrease when the relative linear size of the damage is approximately

half of the system size. With regard to the spreading velocity, it changes abruptly from

a finite value below αc to zero above αc for finite system sizes in the theory. As can

be seen in Supplementary Figure 1(a), αc ≈ 0.38 for L = 400 and H = 3, but the failure

can still propagate to the border of the system even for α = 0.375. Besides, as shown in

Supplementary Figure 1(b), the average velocity of the linear regime (∆(rc)) jumps to
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zero abruptly as α approaches the critical value for different sizes of initial damage, and

the larger initial damage size requires higher αc.
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Supplementary Note 2: Propagation of overloads on other model

networks

Here we also report the dynamics of failure propagation on other model networks, in-

cluding weighted circular lattice, weighted planar graph and weighted circular plate. The

local propagation behavior in these model networks is also found to have similar velocity

as in the weighted lattice and other real networks (Fig. 5(a) in the paper).

Weighted circular lattice

For a lattice without periodic boundaries, we get a circular lattice by excluding the nodes

with radius (Euclidean distance to the center of the system) larger than L/2, where

L is linear size of the lattice. The network links are allocated with Gaussian weights.

Similarly, we attack the obtained circular lattice by removing nodes in the center with

radius smaller than l/2, where l is defined as the linear scale of the attack. The results

of failure propagation are demonstrated in Supplementary Figure 5. In Supplementary

Figures 5(a)-S5(d), red dots are the initially attacked nodes, blue dots are the nodes

overloaded at the corresponding step, black dots stand for the nodes that failed in the

previous step and green dots represent the functional survivals.

Weighted planar graph

For the planar graph, we uniformly get coordinates xi and yi from (0,1) for each node

i and then the Delaunay triangularization [1] is used to connect different nodes. The

planar graph is also disordered with Gaussian weights on links, and nodes within the

central l × l region are removed to trigger the cascading failures. The dynamics of failure

propagation are demonstrated in Supplementary Figure 6. Note that in Supplementary

Figures 6(a)-S6(d), red nodes are the initially attacked ones, blue nodes are the ones

failed at the corresponding step, yellow nodes represent the previously overloaded ones

and green nodes are the functional survivals.

22



Weighted circular plate

A circular plate is also designed to test the overload propagation on network with a

different shape. The circular plate network is composed of a central node and L/2 layers,

where L is the diameter of the system. On each layer la ≥ 1, we place 6la nodes and

connect them by a loop with radius la. For links between neighboring layers, as can be

seen in Supplementary Figure 7, the central node 0 (red) will be connected to all the

nodes in layer 1, and for other layers (la ≥ 1), each node in layer la will be linked to the

nodes regularly in layer la + 1 except the backbones (lines starting from the central node,

like 0 − 1 − 7 − 19).

Similarly, we put Gaussian weight with σ = 0.1 on each link in the circular plate.

The central node, and the first layer (total 7 nodes) are removed to trigger the following

cascades. The dynamics of the failure propagation can be found in Supplementary Fig-

ure 8, and the behaviors of rc(t) and Fr(t) are also consistent with results found on other

models.
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Supplementary Note 3: Cascading failures on realistic networks

In order to test our results on real networks, we performed simulations on the realistic

road network [2] in the city of Oldenburg and California. The road network of Oldenburg

has 6105 nodes and 7029 edges, and the road network of California has 21048 nodes and

21693 edges. The velocity of overload propagation is found similar as in the simulation

on model networks (Fig. 5(a) in the paper).

As shown in Supplementary Figure 9, after the initial local attack on the network center

of road network in Oldenburg, the behavior of rc and Fr in Supplementary Figures 9(e)

and 9(f) is similar to that seen in theory and simulations.

Another example of failure propagation in the realistic road network of California is

demonstrated in Supplementary Figure 10. The cascading patterns observed in Supple-

mentary Figures 10(e) and 10(f) on this network are similar to our results on weighted

lattice and theory.

24



Supplementary Note 4: The spatial distribution of overload fail-

ures

We have studied in the simulation the spatial distribution of overload failures at each

time step, and found in Supplementary Figure 11 below, that the radius (distance to the

center of initial damage) of these overloads at each time step is distributed with a sharp

peak at a characteristic distance, with rare outlier events away from this characteristic

distance. This occurs due to the redistribution of optimal paths close to the previous

damage region, in spite of global interactions. In this redistribution, the new optimal

paths, which previously passed the damage area, need to surround the damage through

its neighboring region. Meanwhile, our findings are also supported by the statistics of

model [3] and realistic outages [4], where the probability of failures is also found decreasing

sharply from the characteristic distance.

The existence of this characteristic distance supports our definition of an average

radius rc(t), which can help to predict the collective propagation of overloads. Note that

the behavior of outliers, in spite of their rareness, is worth to study in the future, in order

to fully capture the cascading overloads.
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Supplementary Note 5: The effects of the initial damage

As seen in Supplementary Figure 4(a) the size of the initial failure does influence αc,

since more damage can yield more overloads. It seems, however, that the velocity of the

cascading overload failures is not affected by the initial damage as long as the tolerance is

lower than the critical value. As shown in Supplementary Figure 12, in both simulation

and theory, rc(t) grows linearly with t with almost same slope for different initial failure

sizes, indicating the same constant velocity for different initial damages. Moreover, this

finding is consistent with Supplementary Figure 1(b), in which the velocity curves of

different initial damage sizes overlap together when α is smaller than the corresponding

αc.

26



Supplementary Note 6: The effects of the disorder

In the simulations on weighted lattice and realistic systems, we allocate weight to each

link of the network, which is chosen from a Gaussian distribution with variance σ. Hence

except the initial damage, we also investigate the effects of the disorder by tuning σ.

However, simulations with different σ suggest that the disorder in certain range does

not significantly affect the propagation velocity of the cascading overload failures. In

Supplementary Figure 13, overlapping rc curves for different disorders are shown on both

weighted lattice and realistic networks.
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Supplementary Methods

The analytical model for cascading overloads

The propagation of overloads is caused by redistribution of load in the network, because

the initial failure can induce the increase of shortest paths that are now passing through

the remaining functional nodes. Besides, from the overload propagation simulations (Fig.

1 of the paper) on weighted lattice, we can learn that the cascading overloads show

an approximately radial diffusion from the center of the initial failure. Based on these

observations, we develop an analytical framework to model the propagation of overload

failure in spatially embedded networks.

Modeling and evaluating the extra load

The essence of the cascading overloads is that the remaining functional nodes would suffer

extra load, which might crash in the next step due to their limited tolerance. Here we

denote the extra load as ∆Lr and first discuss how to model it.

Given the radial diffusion of the overload failures, we simply assume that the network

is embedded in a 2d circular plate centered at O with radius 1, as shown in Supplementary

Figure 14 (we replot Fig. 3 of the paper here in order to better demonstrate the analytical

model). Similarly, we let the initial failure happen in the center of the network, within a

circle centered at O with radius a ≤ 1 (red circle in Supplementary Figure 14). The nodes

within the initial failure area are removed, and then the nodes nearby, in the green ring

centered at O between a and b (b > a), will suffer extra load because of the initial failure.

We call this ring the adjacent ring, and if the extra load induced exceeds the tolerance of

these nodes, then the nodes in this ring will fail in the next step, indicating the overload

failure cascades forward. Therefore, the problem of modeling extra load can be converted

to how to estimate the overload on the adjacent ring.

As can be seen in Supplementary Figure 14, we define a random node A in the network,

whose distance from O is r ≤ 1 and AF is a path starting from A to a random node F

on the border of the system. As r > b, the intersection points between AF and the circle

with radius b are B and E, respectively. It also meets the border of the failure area at C
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and D. While AJ is a tangent line to the failure area, which starts from A, ends at J and

the tangent point is G. We also define another path AI, which starts from A to a border

node I by passing through the system center O. Since the nodes within the failure area

do not function, shortest paths starting from A to destinations located in the shadow

s (the dotted area in Supplementary Figure 14) would be affected and become longer.

Specifically, the first part of these shortest paths would pass through the adjacent ring

along AG with length
√
b2 − a2 (Note that when r ≤ b, its length changes to

√
r2 − a2).

Without initial failure, these paths could pass through the failure area directly and the

length of their first parts within the adjacent ring should be BC, for example. Therefore,

the extra load that the adjacent ring suffers is reflected by the increased length of shortest

paths within the adjacent ring after the failure happens.

In order to simplify the analysis, we let AB = y, AC = x, AF = c(1), the angle between

AG and AO will be β and the angle between AC and AO is θ. Obviously, we have

β = arcsin a
r .

As r > b, A is located outside the adjacent ring and we have,

x2 + r2 − 2xr cos θ = a2,

y2 + r2 − 2yr cos θ = b2.
(1)

For x ≤ r cos θ and y < r cos θ, we get the solutions as

x = r cos θ −
√
a2 − r2 sin2 θ,

y = r cos θ −
√
b2 − r2 sin2 θ.

(2)

Similarly, we can obtain

c(1) = r cos θ +
√

1 − r2 sin2 θ. (3)

Then, we get BC, which is also the length of the first part (within the adjacent ring) of

the shortest paths from A to the failure area and the shadow area. Here we define it as

l1(θ) = x − y =
√
b2 − r2 sin2 θ −

√
a2 − r2 sin2 θ. (4)

When r < b, i.e., A is located inside the adjacent ring and similar to the above analysis,

we can obtain the length of the first part of shortest paths as

l1(θ) = r cos θ −
√
a2 − r2 sin2 θ (5)
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Note that when r = b, Eqs. 4 and 5 are equivalent, hence we can rewrite them together as

l1(θ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r cos θ −
√
a2 − r2 sin2 θ, r ≤ b

√
b2 − r2 sin2 θ −

√
a2 − r2 sin2 θ, r > b

. (6)

Note that the number of shortest paths also varies with θ, which could be easily

evaluated as

l2(θ) = c(1) − x. (7)

Thus, the average length of the first part within the adjacent ring in the absence of failures

can be written as

v(a, b, r) = ∫
β

0 l1(θ)l2(θ)dθ

∫
β

0 l2(θ)dθ
. (8)

The number of A′s destinations within the shadow can be represented by the area of

the shadow regime, which is

s(a, r) = (π − φ − ϕ)(1 − a2) + a
√

1 − a2 − ϕa2, (9)

where φ = arccos ar and ϕ = arccosa.

Therefore, after the initial failure, the extra load imposed on the adjacent ring by the

first part of the shortest paths starting from A is
√
r2 − a2s(a, r) − v(a, b, r)(s(a, r) +πa2)

for a ≤ r ≤ b and
√
b2 − a2s(a, r) − v(a, b, r)(s(a, r) + πa2) for b ≤ r ≤ 1. The second part of

the paths could be included by moving A around the circle centered at O with radius r.

Thus, the integration from r = a to r = 1 yields all the overloads induced on the adjacent

ring after the initial failure,

∆Lr(a, b) = ∫
b

a
[
√
r2 − a2s(a, r) − v(a, b, r)(s(a, r) + πa2)]2πrdr+

∫
1

b
[
√
b2 − a2s(a, r) − v(a, b, r)(s(a, r) + πa2)]2πrdr. (10)

Note that ∆Lr is a function of a and b.

Modeling and evaluating the initial load

In the above section we presented a method to estimate the extra load induced on the adja-

cent ring due to the initial failure within a circle of radius a. Following a similar approach,

an estimation of the initial load is presented in this section. As seen in Supplementary
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Figure 15, we assume a circular plate B (the blue area of radius b in Supplementary Fig-

ure 15) inside the network and model its load by calculating the amount of flow through

it. We define a random node A in the network and its distance to the center O is r ≤ 1.

Then, the shortest paths starting from A to other nodes of the system could be divided

into three cases:

• out− out (oo): b < r ≤ 1, A is located outside B and its destinations are also located

outside B. The shortest paths passing through B are shown in Supplementary

Figure 15(a).

• out − in (oi): b < r ≤ 1, A is located outside B, while its destinations are located

inside B, and their shortest paths start from A and end at a random node in B

(e.g., C), as shown in Supplementary Figure 15(b).

• in − in (ii): r ≤ b, A is located inside B and its destinations are also located inside

B, which means the shortest paths are located inside B, as shown in Supplementary

Figure 15(c).

The case out − out. In order to simplify the analysis, as can be seen in Supplementary

Figure 15(a), we let AB = x, AC = c(b) and AD = c(1). AE is the tangent path starting

from A through the circle B, the angle between AE and AO is β = arcsin b
r and the angle

between AB and AO is θ. As shown in Supplementary Figure 15(a), the length of the

parts within B of the shortest paths starting from A to the shadow s of B is BC. We

have

x2 + r2 − 2xr cos θ = b2,

c(b)2 + r2 − 2c(b)r cos θ = b2.
(11)

And since x ≤ r cos θ and c(b) ≥ r cos θ, we get the solutions as

x = r cos θ −
√
b2 − r2 sin2 θ,

c(b) = r cos θ +
√
b2 − r2 sin2 θ.

(12)

Similarly we have

c(1) = r cos θ +
√

1 − r2 sin2 θ. (13)

Therefore, the length within B is

loo1 (θ) = c(b) − x = 2
√
b2 − r2 sin2 θ, (14)
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while the number of the shortest paths can be written as

loo2 (θ) = c(1) − c(b) =
√

1 − r2 sin2 θ −
√
b2 − r2 sin2 θ. (15)

Hence the average length of the shortest paths within B is

voo(b, r) = ∫
β

0 loo1 (θ)loo2 (θ)dθ

∫
β

0 loo2 (θ)dθ
. (16)

The number of A′s destinations can be evaluated by the area of the shadow s (the dashed

area in Supplementary Figure 15(a)),

s(b, r) = (π − φ − ϕ)(1 − b2) + b
√

1 − b2 − ϕb2, (17)

where φ = arccos b
r and ϕ = arccos b. According to Eq. 10, we can get the flux produced

by the shortest paths between the pairs of nodes outside B as

Looini = ∫
1

b
πrvoo(b, r)s(b, r)dr. (18)

The case out− in. As shown in Supplementary Figure 15(b), we let AF = y and BD be

an arc with center A and radius p, where r − b < p < r + b. Then AC is the shortest path

from A to nodes inside B (C is on BD) and the length of the part within B is FC. As

p increases, BD would eventually cover all the nodes inside B and we can then get the

flux from A to them. We denote the angle between AB and AO as β, which is a function

of p, b and r,

β = arccos
p2 + r2 − b2

2pr
. (19)

Let the angle between AF and AO be θ, then similarly to Eq. 12 we have

y = r cos θ −
√
b2 − r2 sin2 θ. (20)

Therefore, the average length of the parts within B for the shortest paths from A to nodes

on BD can be written as

loi1 (p) = ∫
β

0 (p − y)dθ
β

= p − ∫
β

o ydθ

β
. (21)

And the number of paths is

loi2 (p) = 2β

2π
2πp = 2βp. (22)

Then the average length of the shortest paths within B is

voi(b, r) = ∫
r+b
r−b l

oi
1 (p)loi2 (p)dp

∫
r+b
r−b l

oi
2 (p)dp

. (23)
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Here the number of A′s destinations is exactly the area of B, which is πb2. The total flux

imposed on B by the shortest paths between A and the nodes inside B is

Loiini = ∫
1

b
2πrπb2voi(b, r)dr. (24)

The case in − in. As shown in Supplementary Figure 15(c), A and its destinations in

this case are all located inside B. Let A be a center of a circle of radius p > 0 inside B.

Then the shortest paths from A to the nodes on the circle or arc would impose flux to

B and their length is p. Different from the previous cases, here we need to discuss two

situations. First, as p ≤ b− r, the circle centered at A is completely located within B and

the number of shortest paths is 2πp. Second, as b − r < p ≤ b + r, the circle centered at A

intersects with B at points C and D, and the number of shortest paths is

2β

2π
2πp = 2βp, (25)

where β is the angle between AC and AO,

β = arccos
p2 + r2 − b2

2pr
. (26)

Hence the length of the shortest path is simply

lii1 (p) = p, (27)

while the number of shortest paths can be written as

lii2 (p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2πp, 0 < p ≤ b − r

2βp, b − r < p ≤ b + r
. (28)

Therefore, the average length of the shortest paths within B is

vii(b, r) = ∫
b+r

0 lii1 (p)lii2 (p)dp

∫
b+r

0 lii2 (p)dp
. (29)

The number of destinations for A is still the area of B, then the total flux generated by

the shortest paths starting from A to nodes within B is

Liiini = ∫
b

0
πrvii(b, r)πb2dr. (30)

Finally, by adding all the three cases together, we can obtain the total load imposed

on B

Lini(b) = Looini +Loiini +Liiini, (31)

which is a function of b.
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Numerical solution of the analytical model

From the above theoretical model, a node on a circle centered at O with radius b would

suffer the extra load

∆L = 1

2πb

∂

∂b
∆Lr(a, b) (32)

due to the failure within a radius a < b. While its initial load can be written as

L0 =
1

2πb

∂

∂b
Lini(b). (33)

Then, based on the limited capacity, assuming a tolerance α, the critical condition for a

node to fail in the next step is

(1 + α)L0 = L0 +∆L

α = ∆L

L0

.
(34)

When α ≥ ∆L
L0

, nodes on the circle of radius b will not be overloaded and the failure will

be stopped; however, if α < ∆L
L0

, all the nodes on this circle would crash and the failures

will spread further.

In contrast to the heavy computations needed in the simulations, numerical solutions

of the analytical model are not limited by the network size. Therefore, it is possible

in the theory to disclose the patterns of cascading overloads on much larger systems

compared to simulations. Furthermore, the analytical model also provides a convenient

way to explore the interplay between the critical tolerance, the initial damage size and

the linear size of the network. The details of the numerical solutions are as follows. First,

we assume that the initial failure is within a radius a(t = 0) = a0 and the system tolerance

is α. Besides, the resolution of the analytical model, denoted as 1/R, is also a parameter,

which determines the system size. Next, we start from analyzing Eq. 10 and Eq. 31 for

b = a(t) + 1/R to calculate the overloads in b at the next step, t+ 1. For a certain value of

b, if α < ∆L
L0

, then the nodes within the adjacent ring would fail. Hence we let b = b + 1/R
and continue the search until we reach b∗ where α ≥ ∆L

L0
. It means that we have arrived

the border of the failure in step t and the initial failure for step t + 1 is updated by b∗ to

reiterate the load redistribution. We repeat these iterations and stop when a(t) = 1. If

no b∗ is found, it means that the given α is large enough to protect the network against

the initial failure. Note that from the definition of the resolution, we consider the system
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linear size as L = 2R, which is the diameter of the circle. The total number of nodes is

πR2 and the absolute radius of the initial failure is defined as H = a0R. The radius of the

overloads at step t is actually rc(t) = a(t)R and similarly we have the failures at step t to

be Fr(t) = π(a2(t) − a2(t − 1))R2.
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The simplified theory

Methodology

A simplified theory is presented in this section and its basic concept is shown in Supple-

mentary Figure 16. As can be seen, the load of the gray plate inside the system can be

calculated by the product of length and number of paths passing through it. Assuming

that nodes inside a extremely small area ds1 (with radius r1) share the same optimal

path to the nodes locating in another small region ds2 (with radius r2) and the length

inside the gray plate is l (red), the load imposed by those paths can be written as lds1ds2,

where ds1 = r1dθ1dr1 and ds2 = r2dθ2dr2. We denote the possible origin area as S1 and

the possible destination area as S2, and then the integration over both of the area will

represent the total load Lt imposed on the gray plate, which can be written as

Lt =∬
S2S1

lds1ds2. (35)

Next, based on this methodology, we will calculate the overload of the survival nodes

due to the attack, and the initial load of the network. Note that without loss of generality,

we set θ2 = 0 in the following illustrations to ease the elucidation and ∫ dθ2 = 2π.

Modeling the overload

Before attack, when r2 > b, as can be seen in Supplementary Figure 17(a), the path length

inside the ring can be written as li =
√
b2 − h2 −

√
a2 − h2, h is the distance from the

center to the path and it can be written as r1r2 sin θ1√
r21+r22−2r1r2 cos θ1

. When r2 ≤ b, li becomes
√
r2

2 − h2 −
√
a2 − h2 and we can simply denote

li = min (
√
b2 − h2 −

√
a2 − h2,

√
r2

2 − h2 −
√
a2 − h2) (36)

for both cases. The possible area that A may locate can be represented by the union of

the shadow area Sr (dashed) and the attack area Sa, i.e., Sr ∪ Sa, and the half of this

area can be further denoted as S1 = {(r1, θ1) ∶ a < r1 ≤ 1, cos−1 ( ar1 ) + cos−1 ( ar2 ) ≤ θ1 ≤
π} ∪ {(r1, θ1) ∶ 0 ≤ r1 ≤ a,0 ≤ θ1 ≤ π}. The possible area that B can locate is denoted as

S2 = {(r2, θ2) ∶ a < r2 ≤ 1,0 ≤ θ2 ≤ 2π}. The initial load of the green ring can be written as

Li = 2∬
S2S1

lids1ds2, (37)
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where factor 2 is multiplied to count the another half possible area of A for a given B.

Note that here we take only one side of paths because the other side will be counted in

the integral when B and A are replaced by each other.

After the attack, when r2 > b, as shown in Supplementary Figure 17(b), the first part

of path length inside the ring can be written as lf =
√
b2 − a2. When r2 ≤ b, lf becomes

√
r2

2 − a2. We can obtain lf = min (
√
b2 − a2,

√
r2

2 − a2) for both cases. The half of the

possible area that A locates can be written as S1 = {(r1, θ1) ∶ a < r1 ≤ 1, cos−1 ( ar1 ) +
cos−1 ( ar2 ) ≤ θ1 ≤ π}. And the possible area that B can locate can be written as S2 =
{(r2, θ2) ∶ a < r2 ≤ 1,0 ≤ θ2 ≤ 2π}. Then similarly, the load of the ring after the attack can

be written as

Lf = 2∬
S2S1

lfds1ds2, (38)

where factor 2 is multiplied to count the another half possible area for A.

Based on the above analysis, the increment of the load on the ring due to the attack

can be easily written as

∆Lring = Lf −Li, (39)

and the load increment of each node with radius b can be written as

∆Lnode =
1

2πb

∂

∂b
∆Lring. (40)

Modeling the initial load

Similar to the previous theory, in the simplified method, we still divide the way of calcu-

lating the initial load of the gray plate with radius b into three cases, including in − in
that both ends of the path locate inside the plate, out − in with only one end inside the

plate and out − out that both ends locate outside the plate.

For the case of in− in, as can be seen in Supplementary Figure 18(a), the path length

inside the plate (yellow) can be easily written as lii =
√
r2

1 + r2
2 − 2r1r2 cos θ1. The possible

area that A and B locate can be written as S1 = {(r1, θ1) ∶ 0 ≤ r1 ≤ b,0 ≤ θ1 ≤ 2π} and

S2 = {(r2, θ2) ∶ 0 ≤ r2 ≤ b,0 ≤ θ2 ≤ 2π}, respectively. Then the initial load from the case of

in − in is

Lii0 = 1

2∬
S2S1

liids1ds2, (41)
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where the factor 1
2 is to diminish the effect of counting twice.

For the case of out − in, as can be seen in Supplementary Figure 18(b), the path

length inside the plate (yellow) can be obtained as loi =
√
r2

1 − h2 +
√
b2 − h2, where h is

the distance from the center to the path and it can be written as r1r2 sin θ1√
r21+r22−2r1r2 cos θ1

. For

A, the possible area S1 = {(r1, θ1) ∶ 0 ≤ r1 ≤ b,0 ≤ θ1 ≤ 2π}. For B, the possible area

S2 = {(r2, θ2) ∶ b < r2 ≤ 1,0 ≤ θ2 ≤ 2π}. Then the initial load from the case of out − in can

be written as

Loi0 =∬
S2S1

loids1ds2. (42)

For the case of out−out, as can be seen in Supplementary Figure 18(c), the path length

inside the plate (yellow) can be written as loo = 2
√
b2 − h2, where h is the distance from

the center to the path and it can be written as r1r2 sin θ1√
r21+r22−2r1r2 cos θ1

. The half of the possible

area that A locates can be written as S1 = {(r1, θ1) ∶ b < r1 ≤ 1, cos−1 b
r1
+ cos−1 b

r2
≤ θ1 ≤ π}.

And the possible area for B can be easily written as S2 = {(r2, θ2) ∶ b < r2 ≤ 1,0 ≤ θ2 ≤ 2π}.

Then the initial load comes from the case of out − out is

Loo0 = 1

2
× 2 ∬

S2S1

loods1ds2, (43)

where factor 2 is multiplied to count the another half of the possible area of A, and factor

1
2 is to diminish the effect of counting twice when A and B are replaced by each other in

the integral.

Finally, the initial load of the plate can be written as

L0 = Lii0 +Loi0 +Loo0 , (44)

and the load of each node with radius b is

Lnode0 = 1

2πb

∂

∂b
L0. (45)

Overload analysis

From the above approach, we can get the overload for each node with radius b as ∆Lnode

Lnode
0

and for a given tolerance α, we can get the radius of the next-step failure by searching

where the condition ∆Lnode

Lnode
0

≤ α begins to be satisfied.
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Comparison with the previous theory

The results of this simplified theory are also tested and found in excellent agreement with

the original theory, as can be seen in Supplementary Figure 19, where the two theories

get exactly the same velocity for different tolerances. It is worth noting that because of

counting each possible path between two regions, the simplified theory may need heavier

computation than the original theory, which only calculates the average path length.
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