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Different from the direct contact in epidemics spread, overload failures propagate 

through hidden functional dependencies. Many studies focused on the critical 

conditions and catastrophic consequences of cascading failures. However, to 

understand the network vulnerability and mitigate the cascading overload failures, 

the knowledge of how the failures propagate in time and space is essential but still 

missing. Here we study the spatio-temporal propagation behavior of cascading 

overload failures analytically and numerically on spatially embedded networks. 

The cascading overload failures are found to spread radially from the center of 

the initial failure with an approximately constant velocity. The propagation 

velocity decreases with increasing tolerance, and can be well predicted by our 

theoretical framework with one single correction for all the tolerance values. This 

propagation velocity is found similar in various model networks and real network 

structures. Our findings may help to predict the dynamics of cascading overload 

failures in realistic systems.  



Resilience of individual components in networks is determined not only by their own 

intrinsic properties, but also by their functional interactions with other components. For 

example, a failure of one component in a network may lead to overloads and failures 

of other components. Starting with a localized failure, such interactions between 

components can ignite a domino-like cascading failure, which may result in 

catastrophes such as those observed in many realistic networks [1-5]. The devastating 

consequences of these cascading failures have stimulated extensive studies [6-9].  

Many studies provided deep insight on the conditions and outcome of cascading failures 

[10-17], which may help to evaluate the system resilience. However, to predict and 

mitigate the failure spreading in a network, understanding their spatio-temporal 

propagation properties is essential but still missing. Different from structural cascading 

failures caused by direct causal dependencies [18-20], overload failures [21-25] usually 

propagate through invisible paths as a result of cooperative interactions in the system. 

Actually, a fundamental question has rarely been posed: how overload failures 

propagate with time in space during the cascading process? Indeed, predicting the 

spatio-temporal propagation of cascading failures could determine the timing and 

resource allocation of an effective mitigation strategy in corresponding self-healing 

technologies.  

In this paper, we aim to understand the spatio-temporal propagation of the cascading 

overload failures in spatially embedded systems. We define two basic quantities to 

describe the spatio-temporal propagation properties of cascading failures. The first 

quantity, rc(t), is the average Euclidean distance of the failures appearing at cascading 

step t from the center of the initial failure. The second quantity, Fr(t), is the number of 

node failures that occur at cascading step t. While rc can help system regulators to set a 

‘firewall’ at suitable locations before the failure arrives, Fr can suggest the ‘height’ of 

the firewall. In our current study, the propagation of cascading overloads is found to 

follow an approximately constant velocity. This propagation velocity decreases as the 

system tolerance increases, which can be well predicted by our theoretical analysis. 

This propagation velocity is found similar in various model networks and real network 

structures. 

Results 

Propagation properties of cascading overload failures - Cascading overloads on 

networks are usually studied based on the concept of betweenness [21-22]. In this study, 

we focus on the cascading overloads on spatial networks caused by localized attacks, 

which are common in natural disaster and malicious attacks [25-27]. In Fig. 1 we show 

snapshots of the simulated cascading failures, where the failures spread almost radially 

from the initial attack region and finally spread over the whole system. As can be seen 

from Fig. 1, the nodes with spatial location closer to the initial failure begin to fail first 



and form approximately a ‘ring of failures’. The ring begins to grow and expand with 

time until it reaches the system’s boundary.  

Considering the ring shape of the cascading overload failures (originating from the 

initial location), it is reasonable to quantify rc(t) and Fr(t) at cascading step t. Figure 2a 

shows that the propagation radius of cascading failures is increasing almost linearly 

with time for different system sizes. This means that the failures spread during the 

cascade process with an almost constant speed (slope of rc(t)). It can be seen that as the 

system linear size L increases, the propagation velocity of overload failures increases. 

The propagation radius of failures is increasing with time and becomes saturated near 

the boundary. The propagation size of failure Fr (number of new failures at each instant) 

increases until a certain time step and then decreases (Fig. 2b). The behavior at large t 

is due to the finite size of the system, when rc(t) reaches the order of L the amount of 

damage can only decrease. Note that for different system sizes, the propagation size of 

failure Fr reaches the maximum at similar instants, which results from the higher 

velocity in larger system sizes.  

To further understand the effect of system size and tolerance α on failure propagation 

rc(t), we rescale it in Fig. 2c by the system linear size L. We find that the curves of 

rescaled rc collapse into a single curve for different system sizes at a given tolerance α, 

suggesting that failures spread in the same relative velocities for different system sizes. 

When the size of failures, Fr(t), is rescaled by the system size, L×L, the different curves 

of Fr(t)/L
2 also collapse into a single curve. It can be seen that the spreading time needed 

to reach the maximum Fr(t)/L
2 is determined by the tolerance α, which implies that large 

tolerance can postpone the collapse of the system. As seen in Supplementary Figure 1 

(see Supplementary Note 1 of the SI for more details), there exists a critical value of α, 

αc, above which no spreading occurs. Moreover, in the next section we find the 

theoretical relation (shown in Supplementary Figure 2 in the SI) between the system 

tolerance and the critical initial failure size, above which the overload failures will 

spread out. As seen, for a larger α, the system can sustain a larger size of initial failure.  

In contrast to the dynamics such as epidemics [28] that propagate due to nearest-

neighboring interactions such as contact infection, cascading overloads propagate as a 

result of the global interaction between all the flows contributed by the whole system. 

Surprisingly, although the interactions are global, the propagation dynamics in the 

model network and realistic networks (see Supplementary Notes 2 and 3 of the SI for 

more examples) are found rather local. Here the local propagation means that there is a 

finite characteristic distance ( Δ (rc)) between the successive overloads. This 

characteristic distance is the value of propagation velocity (see Fig. 5a), which increases 

non-linearly with decreasing tolerance. The nearest-neighbor propagation of overloads 

usually assumed in some complex network models only corresponds to the limiting 

case of this local propagation (Δ(rc) = 1).  



Propagation results from theoretical analysis –To further explore these propagation 

behaviors of cascading failures found in simulations and their relations with tolerance, 

we develop the theory to describe the cascading overloads. 

As can be seen in Fig. 4, our theoretical analysis reproduces well the spatio-temporal 

propagation features of cascading overloads found in the simulations (Fig. 2). 

Specifically, as shown in Figs. 4a and 4c, the velocity of the failure propagation is 

almost constant in most of the time t, and decreases with increasing tolerance or 

decreasing system size. As shown in Figs. 4b and 4d, the number of failures increases 

with time and then begins to drop after reaching the peak, which is reduced by 

increasing the tolerance α. The instant for the maximal failure size is independent of 

the system size, but increases with the system tolerance. Moreover, similar to 

simulation results, both the radius and size of failures in the cascades can also be 

rescaled with system size (L and L2 respectively) as seen in Figs. 4c and 4d, where the 

different curves for different system sizes collapse into a single curve at a given α. Note 

that both rc(t) and Fr(t) demonstrate a small slope in the few initial steps, which is 

caused by the extremely small initial failure considered in the theory. As shown in 

Supplementary Figure 3 of the SI, if the initial size of attack is large, both quantities 

show a higher slope also in the few initial cascading steps. 

Comparison between simulation and theory - To test our theory, we perform a 

quantitative comparison between the simulation and the theoretical model. As shown 

in Fig. 5a, the propagation velocity in different model networks and real networks can 

be well predicted by the theory with the same constant correction for all the values of 

tolerances. This constant correction, close to 2π, is a result of the anisotropic 

propagation of overloads in the simulation, which is assumed isotropic in the theory. 

These good agreements between theory and simulations support the validity of our 

proposed theoretical framework for cascading overloads.  

The local propagation found in the simulation and theory is due to the mechanism of 

overload redistribution. In the simulation of the Motter-Lai model in Fig. 5b, the 

overloads propagate rather locally (within a characteristic distance) after an initial 

damage due to the redistribution of optimal paths between existing pairs of nodes. The 

optimal paths that passed through the previous damaged area will now mainly be 

redistributed close to this area, leading to the local overloads in spite of global 

interactions. Similar to our findings in the Motter-Lai model, the overloads in the theory 

(as shown in Fig. 5b) are found here mainly distributed close to the previous damage 

area, which causes the local propagation of failures (also as shown in Supplementary 

Figure 11 of the SI). Note the agreement in Fig. 5b between theory and simulations 

(with the same constant correction of 2π, due to the anisotropic nature of the failure 

spreading, which is assumed isotropic in the theory). The excellent agreement between 

simulations and theory of the overload (in Fig. 5b) as a function of distance from the 



original failure also supports our theoretical approach.   

It is worth noting that the analysis of our theoretical framework is not limited by the 

computational complexity of calculating optimal paths. This is in contrast to 

simulations based on betweenness (number of optimal paths passing through a node), 

which require heavy computations and therefore are limited to relatively small systems. 

Our theoretical framework thus provides an efficient way to explore and understand the 

cascading behavior of failures for any system size. 

Universality of propagation velocity - To explore the possibility of universal feature 

in overload propagation, here we analyze the propagation of cascading overload failures 

on different network models and realistic networks. Besides the model networks 

including lattice, circular lattice, planar graph and circular plate, we also study the 

overload propagation on the realistic road networks [29]. We initiate a local attack in 

the geographical center of these spatially embedded networks and analyze the spatio-

temporal evolution of rc and Fr. As shown in Fig. 5 (see Supplementary Notes 2 and 3 

of the SI for more examples), we find that propagation velocity of overloads is similar 

in various model and real network structures, which can be well predicted by our theory. 

The propagation velocity is independent of detailed network structures, which makes 

our findings more applicable. This universal propagation of overloads can be attributed 

to the common mechanism of overload redistribution in different networks, 

independent of structure difference between these networks. Furthermore, both theory 

and simulations suggest that for a given system size and a given tolerance, the size of 

initial failure does not influence the spreading velocity (see Supplementary Figure 12 

in the SI).  

Discussion 

Cascading failures represent the manifestation of nonlinear butterfly effect in 

infrastructure networks, which can cause catastrophic damages due to a small local 

disturbance. The Motter-Lai-type overload cascade models are an important class of 

cascading failure dynamics, characterized by the nonlocal---in contrast to epidemic 

spreading-type local cascade models---interactions, and have been studied extensively 

for the last decade. Given the inherent global interactions in the mechanism of overload 

formation, it is of interest that the overloads spread rather locally from the initial attack 

region, at velocity that increases non-linearly with decreasing tolerance. Here the local 

propagation means that there is a finite characteristic distance between the successive 

overloads, which is the value of propagation velocity. The nearest-neighboring 

propagation of overloads usually assumed in some complex network models only 

corresponds to the limiting case of this local propagation (characteristic distance is 1).  

For different model and realistic networks, our results suggest the existence of universal 

propagation features of cascading overloads, which are characterized by a finite linear 



propagation velocity. This velocity can be predicted by our theory with the same 

constant correction for all the values of tolerances. This constant correction, close to 

2T, is a result of the anisotropic propagation of overloads in the simulation, which is 

assumed isotropic in the theory. This universal behavior comes from the common 

global mechanisms of overload redistributions in different networks. When certain 

extreme heterogeneous networks like embedded scale free networks are considered, a 

revision of the theoretical framework may be needed. While the focus of this 

manuscript is on the spatio-temporal propagation of the cascading overload failures in 

spatially embedded systems, the overloads may spread very fast in general non-

spatially-embedded sparse network due to its small diameter. 

The present study may help to bridge the longstanding gap between the overload model 

[16, 22] and the model of dependency links proposed by Buldyrev et al. [13] and 

Parshani et al. [18], in particular the lattice version of the model [19-20] where 

dependency links can have a characteristic length r. Indeed, as can be seen in Figs. 2 

and 4, overload failures propagate in a nearly constant speed, which suggests a 

characteristic dependency distance, between successive overload failures. Furthermore, 

this speed or characteristic distance is found to increase with decreasing tolerance. This 

suggests a possible mapping between systems with overload failures and networks with 

dependency links, where networks with different characteristic length of dependency 

links can serve as a suitable model to describe cascading overload failures. This 

mapping can be useful since overload models usually require heavy computations and 

are therefore limited to small systems, while dependency models require significantly 

less computations, and large systems can be easily analyzed. 

When a disturbance is detected in networks, the knowledge of spatio-temporal 

propagation properties of cascading failures is essential for predicting and mitigating 

the cascading failures. Meanwhile, realistic cascading failures are usually the result of 

the collective interactions between different processes including overloads and other 

system operation procedures [30-32]. The universal features of overload propagation 

found here across different networks may help to better mitigate realistic cascading 

failure, if combined with the detailed knowledge of other processes including system 

operations and planning procedures. 

Methods 

 

Simulation of Model - In order to study the propagation properties of cascading 

overload failures, we model the spatially embedded network as a randomly weighted L 

× L lattice with periodic boundaries, where L is the linear length of the lattice. The 

weight of each link is taken from a Gaussian distribution N(μ, σ2) with mean weight μ 

and the disorder is represented by the standard deviation σ. In this model, the load on a 

node i, Li, represents the number of optimal paths between all pairs of nodes passing 

through this node. A node i will fail when its load Li is more than (1+α) times its original 



load, where α represents the system tolerance to overloads. A randomly localized region 

of the system is initially removed to trigger the cascading overloads. This kind of initial 

failure is motivated by the fact that natural disasters (like earthquake or floods) or 

malicious attacks (like WMD) usually occur in specific geographical locations and 

destroy initially localized regions of the network. The initial failure is located in a 

randomly selected square of l × l nodes (𝑙 ≪ 𝐿), which are removed initially. In addition 

to being realistic, since failures are usually localized, this configuration can also help 

us to follow and analyze the spatio-temporal propagation pathway of the cascading 

failures. This local failure may trigger failures of other nodes if their load value exceeds 

the tolerance threshold due to the load redistribution across the entire network. Given 

the periodic boundary conditions, we can position the initial attack region at the center 

of the lattice. 

Theoretical analysis - Cascading overload failures due to an initial local failure are 

produced by the redistribution of loads in the network. From the observations of 

simulations on weighted network, we find (see Fig. 1) that failures spread in a ring 

shape from the center of the initial damage. This inspires us to assume in our theory 

that the network is embedded in a two dimensional circular plate (see Fig. 3), the initial 

failure is within a (red) circle of radius a, and the main overload due to traffic from a 

given node A around the initial failure is located in the (green) ring adjacent to the initial 

failure (see the green ring in Fig. 3), whose size will be determined by the theory. The 

overload is reflected by the increase of the number and lengths of shortest paths passing 

through this ring. If the overload exceeds the capacity tolerance of a node ((1+α) times 

its original load) within the adjacent ring, the node will fail in the next step, causing the 

cascading failure to propagate forward. Due to the initial failed area, shortest paths from 

a given node A to destinations located in the shadow area s (the dotted area in Fig. 3) 

would be affected and become longer, since they now have to surround the failed area. 

Specifically, the shortest paths from A to nodes in s (e.g., AF) across the failed area can 

be separated into two parts in the adjacent ring (e.g., BC and DE). For the first part, its 

length within the ring changes from BC to KG. As for the second part, its overload on 

the ring can be calculated from symmetry by switching A and F (source and target). 

Finally, the integration from r = a to r = 1 covers all the overloads added to the adjacent 

ring (green) due to the initial failure, can be written as   

             ∆𝐿r(𝑎, 𝑏) = ∫ [√𝑟2 − 𝑎2𝑠(𝑎, 𝑟) − 𝑣(𝑎, 𝑏, 𝑟)(𝑠(𝑎, 𝑟) + 𝜋𝑎2)]2𝜋𝑟𝑑𝑟 +
𝑏

𝑎

                                       ∫ [√𝑏2 − 𝑎2𝑠(𝑎, 𝑟) − 𝑣(𝑎, 𝑏, 𝑟)(𝑠(𝑎, 𝑟) + 𝜋𝑎2)]2𝜋𝑟𝑑𝑟
1

𝑏
,     (1) 

where the length of KG is √𝑏2 − 𝑎2 for r>b and √𝑟2 − 𝑎2 for r≤b, s(a, r) is the area 

of s, i.e., the number of A’s destinations in the shadow and v(a, b, r) is the average 

length of the first part of shortest paths (within the adjacent ring) before the failure. 

Similarly, we can obtain the initial load of nodes located within the circle centered at O 

with radius b as Lini(b) (see Supplementary Methods in the SI). Then, for a node on the 

circle centered O with radius b, the overload produced by the failure is  



                              ∆𝐿 =
1

2𝜋𝑏

𝜕

𝜕𝑏
∆𝐿r(𝑎, 𝑏),                   (2) 

and its initial load is  

                        𝐿0 =
1

2𝜋𝑏

𝜕

𝜕𝑏
𝐿ini(𝑏).                     (3) 

For each functional node in the network, the critical condition for failure can be written 

as α=ΔL/L0. Specifically, if α≥ΔL/L0, it survives otherwise it fails. More details for the 

solution of the theoretical model can be found in Supplementary Methods of the SI. 
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Figure 1: The propagation of the overload failures in the network. We demonstrate the 

step 1, 3, 5 and 7 of the cascading failures on a 200×200 lattice with periodic boundary 

conditions and a Gaussian distribution of weights. The disorder is σ=0.01, the initial attack 

size (in red) is 6×6, and the tolerance of system is set to α=0.5. In each figure, the deep 

blue dots stands for the overloaded nodes in the current step, while the black ones are the 

nodes failed in the previous steps. The cyan dots are the functional nodes that did not fail.  

  



 

Figure 2: Spatio-temporal propagation of cascading overload failures in simulations. 

(a) and (b) are the spreading radius rc(t) of failures and amount of failures at each step, 

Fr(t), as a function of time for α=0.25, σ=0.1 and l=6. (c) and (d) are the results of rc and 

Fr scaled by the system size, including L=70 (triangle), L=80 (square), L=90 (circle) and 

L=100 (diamond), respectively. Note that simulations are limited by the computational 

complexity of the most efficient algorithm for calculating node betweenness, which is 

O(NM+N2logN) for weighted networks, where N is the system size and M is the number 

of edges (NM is the order of N2 for sparse network). 

  



 

Figure 3:  Theory for overload propagation. The network is embedded in a 2d circular 

plate centered at O with a radius of 1 unit and the initial failure is located at the center of 

the network within a circle of radius a≪1. The ring centered at O and between a and b 

(b>a) is defined as the adjacent ring. A is a random node in the network, whose distance 

to O is r≤1 (here we assume r>b, the case of r≤b can be found in Supplementary Methods 

of the SI). AF is the original path starting from A to a random node F on the system border. 

Since r>b, the intersection points between AF and the circle with radius b are B and E. AF 

also intersects the border of the failure area at C and D. AJ is a straight line tangent to the 

failure area and the tangent point is G. We also define another path AI, which starts from A 

to a border node I by passing through the plate center O. Note that a realistic road network 

is embedded behind the circular plate for demonstration. 

  



 

Figure 4: Theoretical results of overloads propagation. In (a) and (b), the results from 

theory with unit distance resolution 1/R (L=2R is the system linear size) are reported for 

(a) rc and (b) Fr, where α=0.01. In (c) and (d), different symbols stand for different 

resolutions, including 1/200 (triangle), 1/300 (square), 1/400 (circle) and 1/500 (diamond), 

respectively. Here the absolute radius of the initial damage is set to 3 units. As can be seen 

from the figure, our theory can predict well the propagation behaviors of cascading 

overloads in the model simulation. Meanwhile, the numerical calculation of our theory is 

much less expensive than the simulation, which can be applied in the prediction of 

cascading overloads in large spatially embedded systems. 

  



 
 

Figure 5: Comparison between theory and simulation. (a) Relative velocity as a function 

of tolerance in the theory, models as well as in real structures. The relative velocity is 

calculated in the linear regime of rc(t), Δ(rc)/L, which decreases with α. The velocity in 

the theory is multiplied by a constant 2π. We find that the velocity is similar in different 

model networks (lattice, circular lattice, planar graph and circular plate) and real networks 

(road network in Oldenburg or California). (b) The average overload as a function of 

relative distance from the initial attack. The overload in the weighted lattice (circle symbol) 

and theory (dashed line) after the initial damage is shown. The results are both shifted by 

the linear size of the initial damage (𝑟c
min), which makes two results comparable from the 

initial attack. We also multiplied the x axis of theory by 2π, which is consistent with the 

velocity difference shown in (a). 


