Eyal Kaplan
Contact Info
Building 216 (Math)
Department of Mathematics
Bar Ilan University
Ramat Gan, 5290002
Email: kaplaney at
gmail.com
I am an Associate Professor at Bar
Ilan University. My
current research interests include Automorphic Forms, Representation Theory,
Metaplectic Groups and Rankin-Selberg Integrals.
Publications
*
E. Kaplan, Doubling Constructions and Tensor
Product L-Functions: coverings of the symplectic
group, to appear in Forum of Mathematics, Sigma.
*
Y. Cai, S. Friedberg, and E. Kaplan, Doubling
constructions: Global functoriality for non-generic cuspidal representations,
to appear in the Ann. of Math.
*
E. Kaplan, E. Lapid and J. Zou, Classification
of irreducible representations of metaplectic covers of the general linear
group over a non-archimedean local field, Represent.
Theory 27 (2023), 1041-1087.
*
E. Kaplan and D. Szpruch,
A note on the representation theory of central extensions of reductive p-adic groups, Comm. Algebra 51 (2023), no. 10, 4363-4371.
*
E. Kaplan, J. F. Lau and B. Liu, Local descent
to quasi-split even general spin groups, Math. Z. 303 (2023), no. 3.
*
Y. Cai, S. Friedberg, D. Gourevitch
and E. Kaplan, The generalized doubling method: (k, c) models, Proc. Amer.
Math. Soc. 151 (2023), no. 7, 2831-2845.
*
Y. Cai, S. Friedberg and E. Kaplan, The
generalized doubling method: Local theory, Geom. Funct.
Anal. (GAFA), 32 (2022), no. 6, 1233-1333.
*
E. Kaplan, Rankin-Selberg integrals
and L-functions for covering groups of general linear groups, Internat. Math. Res. Notices 2023 (2023), no. 15,
13332-13386.
*
D. Gourevitch and E.
Kaplan, Multiplicity one theorems for the generalized doubling method (with an
appendix by A. Aizenbud and D. Gourevitch),
J. Eur. Math. Soc. (JEMS) 25 (2023), no. 8, 3007-3092.
*
M. Adrian and E. Kaplan, On the Langlands parameter
of a simple supercuspidal representation: orthogonal
groups, Israel J. Math., 246 (2021), 459-485.
*
Y. Cai, S. Friedberg, D. Ginzburg, and E.
Kaplan, Doubling constructions and tensor product
L-functions: the linear case, Invent. Math., 217 (2019), no. 3, 985-1068.
*
M. Adrian and E. Kaplan, The Langlands
parameter of a simple supercuspidal representation: Symplectic groups, Ramanujan J., 50 (2019), 589-619.
*
J. Frahm and E. Kaplan, A Godement-Jacquet
type integral and the metaplectic Shalika model, Amer. J. Math., 141 (2019),
no. 1, 219-282.
*
E. Kaplan, The characterization of
theta-distinguished representations of GL(n), Israel J. Math., 222 (2017),
551-598.
*
E. Kaplan and S. Yamana,
Twisted symmetric square L-functions and invariant trilinear forms, Math. Z., 285 (2017), 739-793.
*
E. Kaplan, The double cover of odd general spin
groups, small representations and applications, J. Inst. Math. Jussieu, 16 (2017), no. 3, 609-671.
*
E. Kaplan, Theta distinguished representations,
inflation and the symmetric square L-function, Math. Z. 283 (2016), no. 3,
909-936.
*
E. Kaplan, Representations distinguished by
pairs of exceptional representations and a conjecture of Savin, Internat. Math. Res. Notices 2016 (2016), no. 2, 604-643.
*
E. Kaplan, The Theta Period of a Cuspidal
Automorphic Representation of GL(n), Internat. Math.
Res. Notices 2015 (2015) no. 8, 2168-2209.
*
E. Kaplan, Complementary results on the
Rankin-Selberg gamma factors of classical groups, J. Number Theory 146 (2015),
390-447 (Special Issue In Honor of Steve Rallis).
*
E. Kaplan, On the gcd
of local Rankin-Selberg integrals for even orthogonal groups, Compositio Math. 149 (2013), 587-636.
*
E. Kaplan, Multiplicativity of the gamma
factors of Rankin-Selberg integrals for SO(2l)xGL(n), Manuscripta Math.
142 (2013), 307-346.
*
E. Kaplan, The unramified computation of
Rankin-Selberg integrals for SO(2l)xGL(n),
Israel J. Math. 191 (2012), no. 1, 137-184.
*
E. Kaplan, An invariant theory approach for the
unramified computation of Rankin-Selberg integrals for quasi-split SO(2n)xGL(n), J. Number Theory
130 (2010), 1801-1817.
*
E. Kaplan, M. Naor and O. Reingold,
Derandomized Constructions of k-Wise (Almost) Independent Permutations, Algorithmica 55 (2009), no. 1, 113-133, preliminary version
RANDOM 2005.
Preprints
*
E. Kaplan, Doubling Constructions: the complete
L-function for coverings of the symplectic group. 2001.08186
My PhD Thesis (prepared under the
supervision of Professor David Soudry at Tel Aviv
University, 2013).