__Eyal Kaplan__

Contact Info

Building 216 (Math)

Department of Mathematics

Bar Ilan University

Ramat Gan, 5290002

Email: kaplaney at
gmail.com

I am an Associate Professor at Bar
Ilan University. My
current research interests include Automorphic Forms, Representation Theory,
Metaplectic Groups and Rankin-Selberg Integrals.

Publications

*
E. Kaplan, E. Lapid and
J. Zou, Classification of irreducible representations of metaplectic covers of
the general linear group over a non-archimedean local
field, to appear in Represent. Theory.

*
E. Kaplan and D. Szpruch,
A note on the representation theory of central extensions of reductive p-adic groups, to appear in Comm. Algebra.

*
E. Kaplan, J. F. Lau and B. Liu, Local descent
to quasi-split even general spin groups, to appear in Math. Z.

*
Y. Cai, S. Friedberg, D. Gourevitch
and E. Kaplan, The generalized doubling method: Local
theory, to appear in Proceedings of the AMS.

*
Y. Cai, S. Friedberg and E. Kaplan, The generalized doubling method: Local theory, to appear in
Geom. Funct. Anal. (GAFA).

*
E. Kaplan, Rankin-Selberg
integrals and L-functions for covering groups of
general linear groups, to appear in Internat. Math.
Res. Notices.

*
D. Gourevitch and E.
Kaplan, Multiplicity one theorems for the generalized doubling method (with an
appendix by A. Aizenbud and D. Gourevitch).

To appear in
the J. Eur. Math. Soc.

*
M. Adrian and E. Kaplan, On the Langlands parameter of a simple supercuspidal
representation: orthogonal groups, Israel J. Math., 246 (2021), 459-485.

*
Y. Cai, S. Friedberg, D. Ginzburg, and E.
Kaplan, Doubling constructions and tensor product
L-functions: the linear case, Invent. Math., 217 (2019), no. 3, 985-1068.

*
M. Adrian and E. Kaplan, The Langlands parameter of a simple supercuspidal
representation: Symplectic groups, Ramanujan J., 50
(2019), 589-619.

*
J. Frahm and E. Kaplan, A Godement-Jacquet
type integral and the metaplectic Shalika model, Amer. J. Math., 141 (2019),
no. 1, 219-282.

*
E. Kaplan, The characterization of
theta-distinguished representations of GL(n), Israel J. Math., 222 (2017),
551-598.

*
E. Kaplan and S. Yamana,
Twisted symmetric square L-functions and invariant trilinear forms*, *Math. Z., 285 (2017), 739-793.

*
E. Kaplan, The double cover of odd general spin
groups, small representations and applications, J. Inst. Math. Jussieu, 16 (2017), no. 3, 609-671.

*
E. Kaplan, Theta distinguished representations,
inflation and the symmetric square L-function, Math. Z. 283 (2016), no. 3,
909-936.

*
E. Kaplan, Representations distinguished by
pairs of exceptional representations and a conjecture of Savin, Internat. Math. Res. Notices 2016 (2016), no. 2, 604-643.

*
E. Kaplan, The Theta Period of a Cuspidal
Automorphic Representation of GL(n), Internat. Math.
Res. Notices 2015 (2015) no. 8, 2168-2209.

*
E. Kaplan, Complementary results on the Rankin-Selberg gamma factors of classical groups, J. Number Theory
146 (2015), 390-447 (Special Issue In Honor of Steve
Rallis).

*
E. Kaplan, On the gcd
of local Rankin-Selberg integrals for even orthogonal
groups, Compositio Math. 149 (2013), 587-636.

*
E. Kaplan, Multiplicativity of the gamma
factors of Rankin-Selberg integrals for SO(2l)xGL(n), Manuscripta
Math. 142 (2013), 307-346.

*
E. Kaplan, The unramified computation of
Rankin-Selberg integrals for SO(2l)xGL(n), Israel J. Math. 191 (2012), no. 1, 137-184.

*
E. Kaplan, An invariant theory approach for the
unramified computation of Rankin-Selberg integrals
for quasi-split SO(2n)xGL(n),
J. Number Theory 130 (2010), 1801-1817.

*
E. Kaplan, M. Naor
and O. Reingold, Derandomized Constructions of k-Wise
(Almost) Independent Permutations, Algorithmica 55
(2009), no. 1, 113-133, preliminary version RANDOM 2005.

Preprints

*
E. Kaplan, Doubling Constructions: the complete
L-function for coverings of the symplectic group. 2001.08186

*
E. Kaplan, Doubling constructions
and tensor product L-functions: coverings of the symplectic
group. 1902.00880

*
Y. Cai, S. Friedberg, and E. Kaplan Doubling
constructions: local and global theory, with an application to global
functoriality for non-generic cuspidal representations.1802.02637

My PhD Thesis (prepared under the
supervision of Professor David Soudry at Tel Aviv
University, 2013).