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Abstract

This is a survey of several approaches to the framework for working
with infinitesimals and infinite numbers, originally developed by Abra-
ham Robinson in the 1960s, and their constructive engagement with the
Cantor–Dedekind postulate and the Intended Interpretation hypothesis.
We highlight some applications including (1) Loeb’s approach to the
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Lebesgue measure, (2) a radically elementary approach to the vibrating
string, (3) true infinitesimal differential geometry. We explore the re-
lation of Robinson’s and related frameworks to the multiverse view as
developed by Hamkins.
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1 Of sets and automobiles: a parable

The last third of the 19th century saw (at least) two dynamic innovations: set
theory and the automobile. Consider the following parable.

A silvery family sedan is speeding down the highway. It enters heavy
traffic. Every epsilon of the road requires a new delta of patience on the part
of the passengers. The driver’s inquisitive daughter Sarah,1 sitting in the front
passenger seat, discovers a mysterious switch in the glove compartment. With
a click, the sedan spreads wings and lifts off above the highway congestion in
an infinitesimal instant. Soon it is a mere silvery speck in an infinite expanse
of the sky. A short while later it lands safely on the front lawn of the family’s
home.

1For the literary career of this character see Kanovei–Katz–Schaps [86].
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Sarah’s cousin Georg2 refuses to believe the story: true Sarah’s father is an
NSA man, but everybody knows that Karl Benz’s 1886 Patent-Motorwagen
had no wing option!

At a less parabolic level, some mathematicians feel that, on the one hand,
“It is quite easy to make mistakes with infinitesimals, etc.” (Quinn [137, p. 31])
while, as if by contrast, “Modern definitions are completely selfcontained, and
the only properties that can be ascribed to an object are those that can be
rigorously deduced from the definition. . . Definitions that are modern in this
sense were developed in the late 1800s.” (ibid., p. 32).

We will have opportunity to return to Sarah, cousin Georg, switches, and
the heroic “late 1800s” in the sequel; see in particular Section 7.4.

2 Introduction

The framework created by Abraham Robinson in the 1960s and called by him
“nonstandard analysis” is an active research area featuring many applications
in other fields,3 its own journal (Journal of Logic and Analysis),4 and high-
profile advocates like Terry Tao;5 see e.g., Tao [160], Tao–Vu [161]. The time
may be ripe for a survey of some of the approaches to the field.

2.1 Audience

The text presupposes some curiosity about infinitesimals in general and Robin-
son’s framework in particular. While the text is addressed to a somewhat
informed audience not limited to specialists in the field, an elementary intro-
duction is provided in Section 3.

2This character similarly made a (cameo) appearance in the final section of Kanovei–
Katz–Schaps [86, pp. 17–18].

3See Section 6 and Stroyan–Luxemburg [157], Henle–Kleinberg [68], Arkeryd [4], Lutz–
Goze [120], Keisler [106], Albeverio et al. [1], Wallet [168], van den Berg [163], Callot [29],
Rubio [146], Diener–Diener [36], Henson [69], Ross [145], Jin [83], Kanovei–Shelah [93],
Kanovei–Lyubetskii [89], Goldbring [52], van den Dries–Goldbring [165], Nowik–Katz [129],
Pražák–Slav́ık [135]; this list of applications is by no means comprehensive.

4See http://www.logicandanalysis.org
5The field has also had its share of high-profile detractors like Errett Bishop [22] and

Alain Connes [32]. Their critiques were analyzed in Katz–Katz [95], Katz–Leichtnam [98],
Kanovei–Katz–Mormann [88], and Sanders [150]; see also material in Section 5.10 around
note 30. For further details on Connes and the taming of differential geometry see note 38.
Additional criticisms were voiced by J. Earman [40], K. Easwaran [41], H. M. Edwards [42],
G. Ferraro [45], J. Grabiner [56], J. Gray [57], P. Halmos [60], H. Ishiguro [82], K. Schubring
[151], Y. Sergeyev [152], and D. Spalt [156]. These were dealt with respectively in Katz–
Sherry [102], Bascelli et al. [15], Kanovei–Katz–Sherry [87], Bair et al. [7], Borovik–Katz
[28], B laszczyk et al. [25], B laszczyk et al. [23], Bascelli et al. [16], B laszczyk et al. [26],
Gutman et al. [58], Katz–Katz [94].
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Professional mathematicians and logicians curious about Robinson’s frame-
work, as well as mathematically informed philosophers are one possible (proper)
subset of the intended audience, as are physicists, engineers, and economists
who seem to have few inhibitions about using terms like infinitesimal and
infinite number.6

2.2 The CD+II mindset

A survey of this sort necessarily enters into a relationship of constructive (if
not subversive) engagement with a pair of assumptions commonly held among
mathematicians, namely

1. the Cantor–Dedekind postulate (CD) identifying the line in physical
space with the real number line (see Ehrlich [43] and Katz–Katz [96]),
and

2. the Intended Interpretation hypothesis (II), entailing an identification of
a standard N in its set-theoretic context, on the one hand, with ordinary
intuitive counting numbers, on the other.

We will deal with the II in more detail in Section 7.1. How the engagement
with the CD+II mindset plays itself out should become clearer in the sequel.

2.3 Summary of perspectives

This article was inspired in part by the posting of Joel Hamkins at Math Over-
flow [65]. Hamkins wrote: “There are at least three distinct perspectives one
can naturally take on when undertaking work in nonstandard analysis. In ad-
dition, each of these perspectives can be varied in two other dimensions, inde-
pendently. Those dimensions are, first, the order of nonstandardness (whether
one wants nonstandardness only for objects, or also for functions and predi-
cates, or also for sets of functions and sets of those and so on); and second,
how many levels of standardness and nonstandardness one desires.”

We shall describe the three perspectives and discuss their similarities and
differences in Sections 3 through 5. The breakdown into three main perspec-
tives parallels that in Bair–Henry [9]. Sections 6 through 8 explore additional
aspects of Robinson’s framework. The survey Benci–Forti–Di Nasso [19] was
an earlier effort in this general direction.

6See e.g., a quotation in Delfini–Lobry [35] from Berkeley Physics Course, Crawford [33]
and Section 6.2.
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3 Construction perspective

Hamkins wrote:7 “In this perspective, one thinks of the nonstandard universe
as the result of an explicit construction. In the most basic instance, one starts
with the familiar ordered field of real numbers ⟨R,+,×, <, 0, 1⟩ and extends
it to a larger ordered field.”

The larger field then necessarily contains infinitesimals and infinitely large
numbers. Constructing such an extension by itself is easy,8 but not just any
extension will do. In order for it to serve as a tool for analysis, one needs
at least to be able to extend every function f of interest defined on R to a
function ∗f defined on the larger field so that ∗f⇂R = f . This extension is
expected to preserve the important properties of f (see Section 3.3 for an in-
troductory discussion of the Transfer Principle). We will sketch an ultrapower
construction of such a hyperreal extension R ↪→ ∗R.

3.1 Ideal points in projective geometry

As a motivational comment, it may be helpful to compare extending the field R
to adding ideal points at infinity in projective geometry.9 In projective geom-
etry, an affine plane defined by the equation ax+ by + cz = d is outfitted with
an assortment of ideal points at infinity, one for each pencil of parallel lines
in the plane. The new points are viewed as satisfying the “same” equation
once one introduces homogeneous coordinates ax1 + bx2 + cx3 = dx4. In ad-
dition to ideal points being added to the ambient space, each substructure,
namely each line, is similarly enriched by the addition of one of these points.
This is analogous to a hyperreal extension presented below where not only the
extension ∗R itself has additional points, but every object, such as subset, or
function, is similarly enriched.

At the beginning of the 17th century Johannes Kepler invoked a principle of
continuity to justify (at least) two distinct procedures: a continuous sweep of
all conics aided by ideal points at infinity (a prototype of the modern theorem
that all conics are projectively equivalent), and a view of a circle (or more
general curves) as an infinite-sided polygon. The latter view found an avid

7The quotations in this section have been slightly edited.
8The simplest example of such an extension is the field of rational functions (quotients of

polynomials with real coefficients), linearly ordered by defining f < g if and only if f(x) <
g(x) for all sufficiently large x. Then real numbers are embedded in it as constant functions,
the function f(x) = 1

x
represents an infinitesimal, and the function g(x) = x represents an

infinitely large number. More advanced examples are provided by Levi-Civita fields; see
Lightstone–Robinson [112].

9Such an analogy is meaningful in the context of ordered fields, whereas the addition of
points at infinity in projective geometry makes sense for an arbitrary field.
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adherent in the person of Gottfried Leibniz, whose law of continuity postulated
that the rules valid in the finite realm remain valid in the infinite realm; see
Section 7.5 and Katz–Sherry [102] for additional details.

3.2 The ultrapower construction

Let RN denote the ring of infinite sequences of real numbers, with arithmetic
operations defined termwise. Then we have a totally ordered field

∗R = RN/MAX (3.1)

where “MAX” is a suitable maximal ideal. To produce such a maximal ideal,
one can exploit a finitely additive measure ξ,

ξ : P(N) → {0, 1}

(thus ξ takes only two values, 0 and 1) taking the value 1 on each cofinite set,
where P(N) is the set of subsets of N. For each pair of complementary subsets
of N, such a measure ξ “decides” in a coherent way which one is “negligible”
(i.e., of measure 0) and which is “dominant” (measure 1).

The ideal MAX consists of all “negligible” sequences ⟨un⟩, i.e., sequences
which vanish for a set of indices of measure 1, namely,

ξ
(
{n ∈ N : un = 0}

)
= 1.

The subset Uξ ⊆ P(N) whose members are sets of measure 1 is called a free
(or nonprincipal) ultrafilter.

Note the formal analogy between (3.1) and the construction of the real
numbers as equivalence classes of Cauchy sequences of rational numbers. In
both cases, the subfield is embedded in the superfield by means of the constant
sequences, and the ring of sequences is factored by a maximal ideal.

Elements of ∗R are called hyperreal numbers. The field R is embedded
into ∗R via a mapping that assigns to each r ∈ R the hyperreal ∗r, namely,
the equivalence class of the constant sequence with value r; we shall identify r
and ∗r. The equivalence classes of sequences with terms from N form the
set ∗N of hypernatural numbers. The equivalence class of the sequence ⟨n : n ∈
N⟩ (respectively, ⟨ 1n : n ∈ N⟩) is an infinitely large integer (respectively, an
infinitesimal).

The order ∗< on ∗R is defined by setting

[⟨un⟩] ∗< [⟨vn⟩] if and only if ξ({n ∈ N : un < vn}) = 1.
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This order extends the ordering < of R as follows: for r, s ∈ R, we have r <
s if and only if r ∗< s (that is, ∗r ∗< ∗s). Hence we can drop the asterisk on <
with no risk of confusion.

Addition ∗+ on ∗R is defined by

[⟨un⟩] ∗+ [⟨vn⟩] = [⟨un + vn⟩]

and similarly for multiplication. These operations extend the corresponding
operations on R, and hence the asterisks can and shall be dropped. More-
over, ∗R, with these operations and ordering, is an ordered field extending R.

The equivalence classes of sequences with rational terms form the sub-
field ∗Q consisting of hyperrational numbers.

A hyperreal number x is finite (or limited) if −r < x < r for some r ∈ R,
and infinitesimal if −r < x < r for all r ∈ R, r > 0. Every finite hyperreal
number x rounds off to the nearest real number, called its shadow (or standard
part) and denoted sh(x); here the difference x− sh(x) is infinitesimal.

Similarly, the ultrapower construction allows one to extend arbitrary func-
tions and relations from R to ∗R. Every function f : R → R has a natural ex-
tension ∗f : ∗R → ∗R acting componentwise: ∗f([⟨un⟩]) = [⟨f(un)⟩]. If S ⊆ R,
then the natural extension of S, denoted ∗S, is defined by

[⟨un⟩] ∈ ∗S if and only if ξ
(
{n ∈ N : un ∈ S}

)
= 1;

similarly for relations on R. The asterisks are habitually dropped when there
is no risk of confusion; typically they are dropped for functions and operations,
but not for sets.

One of the first treatments of an ultrapower-type construction appeared in
Hewitt [71].

3.3 Transfer Principle

The Transfer Principle is a type of theorem that, depending on the context,
asserts that rules, laws or procedures valid for a certain number system, still
apply (i.e., are “transfered”) to an extended number system. Thus, the fa-
miliar extension Q ↪→ R preserves the property of being an ordered field. To
give a negative example, the extension R ↪→ R∪{±∞} of the real numbers to
the so-called extended reals does not preserve the field properties. the exten-
sion R ↪→ C preserves the field axioms, but does not preserve the property of
not having a square root of −1.

The hyperreal extension R ↪→ ∗R preserves all first-order properties. The
result in essence goes back to  Loś [119].



Approaches to analysis with infinitesimals 201

For example, the identity sin2 x + cos2 x = 1 remains valid for all hyper-
real x, including infinitesimal and infinite inputs x ∈ ∗R. Another example of
a transferable property is the property that

for all positive x, y, if x < y then
1

y
<

1

x
.

The Transfer Principle applies to formulas like that characterizing the conti-
nuity of a function f : R → R at a point c ∈ R:

(∀ε > 0)(∃δ > 0)(∀x)
[
|x− c| < δ ⇒ |f(x) − f(c)| < ε

]
;

namely, formulas that quantify over elements of R. See Lindstrøm [113], Gold-
blatt [51], and Gordon–Kusraev–Kutateladze [55] for additional details.

3.4 Elementary applications

Let H be an infinite hypernatural number (more formally, H ∈ ∗N\N) and z ∈
C. We retrieve formulas of the sort that already appeared in Euler; see Bair
et al. [7]. In the following we will exploit hypercomplex numbers ∗C = ∗R +√
−1 ∗R. For example we obtain

ez ≈
(
1 + z

H

)H
where ≈ is the relation of infinite proximity.10 In particular, the identity eiπ =
−1 takes the form (

1 + iπ
H

)H ≈ −1. (3.2)

Since the principal branch of z 7→ H H
√
z is Lipschitz near z = −1, it preserves

the relation of infinite proximity there.11 Therefore the relation (3.2) implies

H H
√
−1 ≈ H + iπ

yielding the following formula for π:

π ≈ H H
√
−1 −H√
−1

.

10Here z ≈ w if and only if |z − w| is infinitesimal.
11Here we use the principal branch of the root. The point is that the Lipschitz constant for

the internal function in question can be chosen finite, since the Lipschitz constant does not
depend on the index assuming that we work in a small neighborhood of −1. Therefore the
Lipschitz property with the same constant holds by the Transfer Principle (see Section 3.3)
for all infinite H, as well.

Alternatively, we have the primitive root H
√
−1 = cos π

H
+ i sin π

H
, hence HH

√
−1 =

H cos π
H

+ iH sin π
H

≃ H + iπ since cos π
H

≃ 1 and H
π

sin π
H

≃ 1.
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This expression for π can be interpreted as the derivative of (−1)x at x = − 1
2 .12

To mention another elementary application, the heuristic principle that the
period of small oscillations of the pendulum is independent of their amplitude
finds precise mathematical implementation for oscillations with infinitesimal
amplitude Kanovei–Katz–Nowik [85]. A transparent treatment of the Jordan
curve theorem exploiting Robinson’s framework appears in Kanovei–Reeken
[91]. For additional applications see Section 6.13

3.5 Compactness, saturation

We have described the ultrapower construction with respect to a fixed free
ultrafilter U on the natural numbers. Another way to implement these ideas
is to use the compactness theorem of first-order logic, as Robinson originally
did in [141].

In some applications of nonstandard analysis one may wish to employ
stronger saturation properties (see below) than those satisfied by (3.1); this
can usually be accomplished by using special ultrafilters on larger index sets.

The property of saturation of a hyperreal field is analogous to compactness
in classical analysis, and can be expressed as follows.

Definition 3.1. A hyperreal field ∗R is countably saturated if every nested
infinite sequence of nonempty internal sets (see Sections 4.1 and 4.2) has a
common element.

More generally, a structure is called κ-saturated if for every collection of
properties (expressible in the language of the structure) of cardinality strictly
less than κ, each finite subcollection of which is satisfied by some element
of the structure, there is an element of the structure that satisfies all of the
properties simultaneously. Note that (3.1) is always countably saturated.14

The existence of a common point for a decreasing nested sequence of com-
pact sets ⟨Kn : n ∈ N⟩ can be seen as a special case of the saturation property.
Indeed, the decreasing nested sequence of internal sets, ⟨∗Kn : n ∈ N⟩, has a
common point x by saturation. But for a compact set Kn, every point of ∗Kn is
nearstandard (i.e., infinitely close to a point of Kn). In particular, sh(x) ∈ Kn

for all n, as required.

12The derivative is computed from the definition, using the infinitesimal 1
H

. The deriva-

tive of (−1)x is (ln(−1))(−1)x. We substitute x = − 1
2

to obtain π since ln(−1) = πi

and (−1)−1/2 = −i.
13See also the references provided in note 3.
14Traditionally, countable saturation is the same as ℵ1-saturation, because a collection

of cardinality strictly less than ℵ1 is the same as a countable (including finite, which is a
trivial case anyway) collection.
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Hamkins wrote in [65]: “To give a sample consequence of saturation, we
observe that every infinite graph, no matter how large, arises as an induced
subgraph of a hyperfinite graph in any sufficiently saturated model of non-
standard analysis. This often allows one to undertake finitary constructions
with infinite graphs, modulo the move to a nonstandard context.”

“The ultrapower construction can be extended to the power set of R and
its higher iterates.15 In the end, one realizes that one might as well take the
ultrapower of the entire set-theoretic universe V . One then has a copy of
the standard universe V inside the nonstandard realm ∗V , which one analyzes
and understands by means of the ultrapower construction itself.16 A few
applications of nonstandard analysis exploit not just a single ultrapower, but
an ultrapower construction repeated along some linear order. Such iterated
ultrapower constructions give rise to many levels of nonstandardness, a useful
feature. Ultimately one is led to adopt all of model theory as one’s toolkit.”
[65]

4 Superstructure perspective

As Hamkins points out, before long, one wishes nonstandard analogues of the
power set P(R) and its higher iterates. We will now implement this idea.

4.1 Ultrapower of the power set of R

Elements of the ultrapower of P(R) are the equivalence classes of sequences ⟨An : n ∈
N⟩ of subsets An ⊆ R where sequences ⟨An⟩ and ⟨Bn⟩ are defined to be equiv-
alent if and only if we have {n ∈ N : An = Bn} ∈ Uξ.

The relation ∗∈ between x = [⟨xn⟩] in ∗R and [⟨An⟩] in the ultrapower
of P(R) is defined by setting

x ∗∈ [⟨An⟩] if and only if {n ∈ N : xn ∈ An} ∈ Uξ.

In this construction, the sets in the ultrapower of P(R) are not subsets
of ∗R (they are equivalence classes of sequences), and the membership rela-
tion ∗∈ is not the usual membership relation ∈. Both of these problems are
solved by the following stratagem. With each equivalence class [⟨An : n ∈ N⟩]
in the ultrapower of P(R) we associate a subset A of ∗R as follows:

x ∈ A if and only if x ∗∈ [⟨An⟩].
15See Section 4.
16However, this idea runs into technical issues. The standard universe V is not a set, and

the ultrapower of the membership relation in V is not well-founded. We discuss the ways
in which nonstandard analysis deals with these issues in Section 5.
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The subsets of ∗R associated with the members of the ultrapower of P(R) in
this way are called internal sets. The collection of all internal subsets of ∗R
is denoted ∗P(R). We have ∗P(R) ⫋ P(∗R). The inclusion is strict because
there are subsets of ∗R that are not internal; for example, the subset R ⊆ ∗R
is not internal.

In the special case when An = S ⊆ R for all n ∈ N, the associated internal
set is the natural extension of S introduced earlier and denoted ∗S. We shall
also refer to ∗S as the standard copy of S.

Definition 4.1. A hyperfinite set X is an internal set associated with the
equivalence class of a sequence ⟨An : n ∈ N⟩ where each An is finite.

Such a set admits an internal enumeration by a hypernatural number,
denoted |X|. In more detail, the hypernatural number |X| is the coset of the
sequence of integers |An| where |An| is the ordinary number of elements in the
finite set An.

It can be shown that every subset of ∗R definable in ∗R ∪ ∗P(R) from in-
ternal parameters is internal, a fact known as the internal definition principle.
Thus, if one defines a new object by a formula exploiting only internal objects,
the new object is necessarily internal, as well. For instance, if one defines T
to be the set of integers between 1 and an infinite hyperinteger H, then T is
necessarily internal. Thus one needn’t specify a presentation of the internal
set T with respect to the ultrapower construction.

The Transfer Principle now applies to formulas that quantify over both
elements and sets of elements of R. Such statements transfer into statements
true about all internal sets, but not necessarily about all sets. Thus for exam-
ple every nonempty internal set of hyperreals bounded above has a supremum
in ∗R, but not every set of hyperreals does.17

This construction can easily be extended to the second and higher iterates
of the power set operation. But the few examples already given indicate that,
for the practice of analysis, it suffices to know that an extension of the standard
structure exists, with suitable properties, such as the Transfer Principle; the
actual construction is of secondary importance.

The superstructure framework enables one to step back from the details of
the actual (ultrapower) construction.18 It is still the most popular vehicle for

17The subset R ⊆ ∗R is a counterexample: it is bounded above by every positive infinitely
large number L, but it does not have a least upper bound: if L is an upper bound for R,
then L− 1 is similarly an upper bound.

18Such a perspective is comparable to the way a mathematician thinks of real numbers.
He certainly wishes to know that real numbers can be conceived as equivalence classes of
Cauchy sequences of rationals. However, he also wishes to be able to ignore the actual
construction of R entirely in his everyday work, and to consider real numbers as individuals
(atomic entities) and R simply as a complete ordered field.



Approaches to analysis with infinitesimals 205

the practice of nonstandard analysis; see for example Robinson–Zakon [144],
Chang–Keisler [30], Albeverio et al. [1]. We describe it in the next subsection.

4.2 The superstructure framework

For any set of individuals X, the superstructure over X is obtained from X
by taking the power set countably many times. In more detail, one defines
the superstructure recursively by setting V0(X) = X, Vn+1(X) = Vn(X) ∪
P(Vn(X)) for n ∈ ω, and Vω(X) =

∪
n<ω Vn(X).

The superstructure framework for nonstandard analysis consists of two
superstructures, Vω(X) and Vω(Y ) where X ⫋ Y are infinite sets, and a
mapping ∗ : Vω(X) → Vω(Y ) such that ∗a = a for all a ∈ X, ∗X = Y ,
and A ∈ B implies ∗A ∈ ∗B for A,B ∈ Vω(X). From now on, we take X = R.
This facilitates comparison with the construction perspective; meanwhile the
discussion in this section applies fully to the general situation. Note that Vω(R)
contains all objects of interest to classical analysis, such as the fields of real
and complex numbers, the higher-dimensional spaces Rn and Cn, functions on
these, collections of functions, Hilbert spaces ℓ2 and L2, functionals, etc.

We shall refer to Vω(R) as the standard universe and to Vω(∗R) as the
nonstandard universe. Thus, every set S in the standard universe Vω(R) has
a standard copy ∗S in the nonstandard universe (cf. Sections 3.2 and 4.1).
The sets contained in Vω(∗R) that are elements of some ∗S for S ∈ Vω(R) are
called internal, and ∗Vω(R) denotes the collection containing the elements of ∗R
together with all internal sets; we refer to it as the internal universe. Note
that ∗Vω(R) =

∪
n<ω

∗Vn(R). We have a proper inclusion ∗Vω(R) ⫋ Vω(∗R);
for example, R ⊆ ∗R is not an internal set. Obviously, Vω(R) ⊆ Vω(∗R),
but all sets in Vω(R), except for the hereditarily finite ones, are external (not
internal).

The main principle that connects the two superstructures is the Trans-
fer Principle, which posits that any property expressible in the language of
the superstructures by a bounded quantifier formula19 holds in the standard
universe Vω(R) about some objects if and only if it holds for the standard
copies of those objects in the internal universe ∗Vω(R) or, equivalently, in the
nonstandard universe Vω(∗R).

By the Transfer Principle, ⟨∗R, ∗+, ∗×, ∗<, 0, 1⟩ is a field of hyperreals with
the properties as in Section 3.2. In particular, ∗R contains nonstandard
numbers, such as infinitesimals and infinitely large numbers.

Many arguments in nonstandard analysis rely on a saturation principle (see

19A bounded quantifier formula is a formula where all quantifiers have the form (∃x ∈ y)
or (∀x ∈ y).
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Definition 3.1). Two useful forms of saturation available in the superstructure
framework are the following:

1. If A1 ⊇ A2 ⊇ . . . are nonempty internal sets, then
∩
n<ω

An ̸= ∅.

2. If {Ai : i ∈ I} is a collection of sets in Vω(R) possessing the finite inter-

section property, then
∩
i∈I

∗Ai ̸= ∅.

We shall not give any details of the construction of superstructure frame-
works. The advantage of this approach lies precisely in the fact that there
is no need to do so. One can accept the framework and proceed to use it in
any area of mathematics, while leaving its construction to specialists. Such
constructions proceed along the lines of Section 4.1; see [30]. The internal
universe ∗Vω(R) is isomorphic to the union of the ultrapowers of Vn(R) for
all n ∈ ω;20 the nonstandard universe Vω(∗R) contains additional, external
sets.

4.3 An application: Loeb’s construction of Lebesgue measure

As an example of the interplay between the various kinds of sets in the super-
structure, we describe a nonstandard construction of the Lebesgue measure
on [0, 1] due to P. Loeb [117] (with an improvement that seems to have ap-
peared first in Hrbacek [75]).

We fix an infinite integer N ∈ ∗N. Let ti = i
N for i = 0, . . . , N . The

hyperfinite set T = {t0, t1, . . . , tN} (see the sentence following Definition 4.1)
is referred to as “hyperfinite time line” in Albeverio et al. [1]. Let µ be the
counting measure on T , i.e., µ(X) = |X|/|T | for each internal set X ⊆ T ;
then µ itself is also internal. For every A ⊆ [0, 1], the set

sh−1[A] = {z ∈ ∗[0, 1] : sh(z) ∈ A}

is the, generally external, set of all z ∈ ∗[0, 1] such that z ≈ x for some x ∈ A.
Finally, we define

mL(A) = inf
{
sh(µ(X)) : X ⊆ T is internal and sh−1[A] ∩ T ⊆ X

}
.

The collection in braces is a (nonempty, bounded below) subset of R, so the
infimum exists. It can be shown (see [1] for some details) that mL is the
Lebesgue outer measure on [0, 1]; in particular, a set A ⊆ [0, 1] is Lebesgue
measurable if and only if one has mL(A) + mL([0, 1] ∖ A) = 1, and in this
case mL(A) is precisely the Lebesgue measure of A.

20More precisely, to the bounded ultrapower of Vω(R).



Approaches to analysis with infinitesimals 207

4.4 Axiomatizing

It is often thought worthwhile (for example, for pedagogical reasons; see [99])
to develop the subject purely from general principles that make the nonstan-
dard arguments succeed. This approach is similar to, say, deriving results from
the axioms for algebraically closed fields rather than arguing about these math-
ematical structures directly. As an example of such an exposition, Keisler’s
calculus textbook is based on five simple axioms A through E that hold in
every superstructure framework; see Keisler [107] and [105].

The next step would be to take the entire universe of sets, V , as a “su-
perstructure.” We already indicated that this move gives rise to some issues,
both technical and fundamental.21 It is considered in the next section.

5 Axiomatic perspective

5.1 Nonstandard set theories

As mentioned above, taking an ultrapower of the entire set-theoretic uni-
verse V is an attractive idea. Since V is not a set in ZFC, the best way
to handle this construction is axiomatic. The earliest axiomatizations of ul-
trapowers of V were proposed by Petr Vopěnka in [167] as part of his project
of axiomatizing the method of forcing. The first nonstandard set theories that
extend ZFC and can serve as a framework for the practice of nonstandard
analysis were developed independently by Hrbacek [74] and Nelson [127].22

We refer to Kanovei–Reeken [92] for a comprehensive survey of the field.
Nonstandard set theories typically possess the set membership predicate ∈

and a unary predicate of standardness st; here st(x) reads “x is standard.”
The analog of st(x) in the superstructure framework is “x is a standard copy.”

A helpful classification tool is a distinction between internal and external
set theories.

Internal set theories axiomatize only the standard and internal sets. Ed-
ward Nelson’s IST is the best known example. The theory IST postulates all

21While the ultrapower of Vn(R) for n ∈ ω is well-founded, and hence isomorphic to a
transitive set, by the Mostowski collapse lemma, when one takes the ultrapower of Vω(R),
or even of the entire V , the membership relation ∗∈ is non-well-founded, and therefore the
ultrapower is not isomorphic to a transitive set or class in the framework of ZFC. This
situation calls for an ontological commitment beyond what is required by ZFC, and is best
handled axiomatically.

22Vopěnka also developed a nonstandard set theory that enables infinitesimal methods.
His Alternative Set Theory (AST) is incompatible with ZFC and is not considered here. See
Sochor [155] and Vopěnka [166].
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the axioms of ZFC in the pure ∈-language, together with three extra axioms
(more precisely, axiom schemata) of Idealization, Standardization, and Trans-
fer, which govern the relations between standard and nonstandard sets. The
theory is particularly attractive because of its simplicity. Kanovei [84] mod-
ified IST by limiting its universe to bounded sets.23 The resulting internal
theory BST24 provides the same mathematical tools as IST, but it has better
metamathematical behavior; see Section 5.5.

5.2 The axioms of BST

We shall now formulate the axioms of BST. The notation (∃stx) . . . and (∀stx) . . .
abbreviates respectively the formulas (∃x)(st(x)∧ . . .) and (∀x)(st(x) ⇒ . . .).
The notation (∀stfina) . . . is shorthand for the formula

(∀a)
(
(st(a) ∧ (a is finite)) ⇒ . . .

)
.

The axioms of BST include those of ZFC (with Separation and Replacement
only for formulas in the ∈-language) together with the following four addi-
tional principles.

Boundedness

(∀x)(∃sty)(x ∈ y).
This means that every set is an element of some standard set. This is the

main difference between BST and IST. In IST there is a set that contains all
standard sets as elements.

Bounded Idealization

(∀stA)
[
(∀stfina ⊆ A)(∃y)(∀x ∈ a)Φ(x, y) ≡ (∃y)(∀stx ∈ A)Φ(x, y)

]
where Φ(x, y) is any formula in the ∈-language, possibly with parameters.

This axiom is a version of saturation or compactness; see Definition 3.1.
Loosely speaking, if a collection of properties Φ(x, y), x ∈ A is finitely sat-
isfiable, that is, for every standard finite set a = {x1, . . . , xn} of elements
of A there is some y such that Φ(x1, y) ∧ . . . ∧ Φ(xn, y) holds, then there is

23A set is bounded if it is an element of a standard set.
24BST was explicitly formulated in [84]. Implicitly it is equivalent to the theory of internal

sets in some of the theories developed in Hrbacek [74]; see Section 5.4.
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some y that satisfies Φ(x, y) simultaneously for all standard x ∈ A. As a basic
example, consider the property

(i, j ∈ N) ∧ (i < j).

For every standard finite set a = {i1, . . . , in} ⊆ N there is j ∈ N such
that (i1 < j) ∧ . . . ∧ (in < j) (namely, take j = max{i1, . . . , in} + 1). Hence
by Bounded Idealization there exists an element j ∈ N such that i < j for all
standard i; i.e., j is an infinitely large natural number.

Transfer

(∃x)Φ(x) ≡ (∃stx)Φ(x)
where Φ(x) is any formula in the ∈-language, with standard parameters.

An equivalent version of Transfer is that any statement Φ(a1, . . . , an) (in
the ∈-language) about standard sets a1, . . . , an is true when interpreted in the
standard universe if and only if it is true when interpreted in the internal uni-
verse. This is a modern version of Leibniz’s Law of Continuity ; see Section 3.1.

Standardization

For each formula Φ(z) in the (st,∈)-language, possibly with parameters, we
have the following:
(∀stX)(∃stY )(∀stz)(z ∈ Y ≡ z ∈ X ∧ Φ(z))

No axiom of Separation for arbitrary formulas in the (st,∈)-language is
imposed by BST; for example, the collection {n ∈ N : st(n)} is not a set.25

In its place one has the Standardization principle, to the effect that for any
property Φ(x) expressible in the (st,∈)-language and any standard set X there
is a standard set Y that contains exactly those standard elements of X that

25More precisely, BST (as well as IST) proves that there is no set x equal to N′ = {n ∈
N : st(n)}. Entities like N′, that is, those defined as {x ∈ X : Φ(x)}, where X is a true set
and Φ is a formula in the (∈, st)-language, are called external sets (or sometimes semisets),
and typically they are non-sets in BST and IST, unless st can be eliminated in some fashion.

Yet BST allows for an implicit introduction of external sets by means of a certain coding
defined in [90]. This coding system involves not only external sets of internal elements like
the collection of all standard integers N′ above, but also external sets of external sets, etc.
This results in the construction of a universe of Hrbacek’s external set theory HST, which
extends the given BST universe in the same way that the complex numbers extend the real
line by means of representation of a number a + bi as a pair ⟨a, b⟩ of real numbers a, b. See
[90] or [92, Chapter 5].
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have the property Φ. (But Y and Φ do not have to agree on nonstandard
elements of X.) Two simple but important consequences of the BST axioms,
especially of Standardization, are the following:

1. If k, n ∈ N, n is standard, and k < n, then k is also standard; and

2. If x is a finite real number (i.e., |x| < n for some standard n ∈ N), then
there is a (unique) standard real number r such that r ≃ x (such an r is
called the standard part of x or the shadow of x).

We first prove (2). Assume |x| < n for some standard n ∈ N. By Stan-
dardization, there is a standard set Y such that

(∀stz)(z ∈ Y ≡ z ∈ R ∧ z < x).

Note that Y ̸= ∅ (since −n ∈ Y ) and Y is bounded above by n. By complete-
ness of R, Y has a supremum r, and by Transfer, r is standard.

We now show that x ≃ r, so r is the standard part of x. If not, then |r−x| >
s > 0 for some standard s. This means that either x > r + s or x < r − s. In
the first case, r + s ∈ Y , contradicting r = supY . In the second case, r − s
is an upper bound on Y , again contradicting r = supY .

Now we show that (1) follows from (2). Since k is assumed to be finite,
it has a standard part r. Then k is the unique integer in the standard inter-
val [r − 0.5, r + 0.5), so k is standard by Transfer.

We note that Boundedness is a single axiom while Bounded Idealization,
Standardization, and Transfer are axiom schemata, that is, they apply to an
arbitrary formula Φ (of a certain type); in this they resemble the schemata of
Separation and Replacement of ZFC.

The schemata of Standardization and Transfer are common with IST. The
schema of Bounded Idealization is weaker than the full Idealization of IST,
but the Boundedness axiom makes up for it, adding a more comprehensive
control over the interactions between standard and internal sets in the BST
set universe than it is possible in IST.

5.3 Connection with ultrafilters

Let us clarify the connection of these axioms with ultrafilters. Working in
BST and given an internal set x and a standard ultrafilter U , we say that

x is in the monad of U if x ∈ A for all standard A ∈ U .
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Note that, for x in the monad of U , x is nonstandard if and only if U is
nonprincipal.

From Boundedness and Standardization it follows that for every x there is
a standard ultrafilter U such that x is in the monad of U .

From Bounded Idealization it follows that for every standard ultrafilter U
there is an x such that x is in the monad of U . This is a version of saturation.

In fact, for somewhat stronger versions of these statements (the Back and
Forth properties, Hrbacek [79, Section 5]), the implications can be replaced by
equivalences.

As a consequence, the axiom schemata of BST can actually be replaced
by single axioms. Thus BST is finitely axiomatizable over ZFC; see Kanovei–
Reeken [92, Section 3.2].

The connection goes deeper. Assuming that x is in the monad of U ,
where U is a standard ultrafilter on a standard set I, we have a mapping that
assigns to (the equivalence class modulo U of) each standard function f on I
the internal set f(x). This mapping is an isomorphism between the standard
ultrapower of V modulo U , with the ∗∈-relation, and the class {f(x) : f is standard }
of internal sets, with the ∈-relation [92, Section 6.1].

5.4 External theories

Two theories proposed in Hrbacek [74] and assigned acronyms HST and NST
in Kanovei–Reeken [92] are external set theories. They are formulated in
the (int, st,∈)-language, where int is a unary predicate of internality (here int(x)
reads “x is internal”). The internal part of these theories satisfies BST, but
they admit also external sets. This makes them more powerful, but also more
complex.

The two theories differ in the properties of the universe of all (internal
and external) sets. It turns out that this universe cannot satisfy all the ax-
ioms of ZFC. Thus, HST allows Replacement (and even its stronger version,
Collection), while NST makes available Power Set and Choice.

The theory KST proposed in Kawai [103] extends IST by external sets. An-
dreev and Gordon developed the nonstandard class theory NCT [3]. Roughly
speaking, NCT is to BST what the von Neumann–Gödel–Bernays set theory
is to ZFC; in particular, NCT has standard, internal and external classes.

The work of Nelson and his followers demonstrated that a lot of nonstan-
dard mathematics can be carried out by internal means alone; see Section 6.2.
External sets are necessary for some more advanced constructions, such as
Loeb measures.

There are also nonstandard set theories that do not fit into our two-way
classification of axiomatic approaches that well; we mention only the α-theory
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proposed in Benci–Di Nasso [18] and the framework for nostandard analysis
developed in ZFC with the axiom of Foundation replaced by the axiom of
Superuniversality, by Ballard and Hrbacek [11].

5.5 Consistency, conservativity and intuitive interpretation

Each of these theories is known to be an equiconsistent and conservative ex-
tension of ZFC. Here conservativity means that any ∈-sentence provable in the
nonstandard theory is already provable in ZFC; the converse is clearly true as
well.

Therefore one might expect that each model of ZFC can be embedded,
as the class of all standard sets, into a model of the nonstandard theory.
However, this is false for IST; see Kanovei–Reeken [92, 4.5]. In fact ZFC has
to be strengthened, for instance by adding the global choice axiom and the
truth predicate for ∈-formulas, in order to be able to embed its model, as
the class of standard sets, into a model of IST; see [92, 4.6]. For NST this
expectation is also false, but it is true for BST as well as for HST.

We pointed out already that an ultrapower of V is non-well-founded, and
hence in ZFC there is no mapping of the ultrapower of V onto some transitive
class that would convert the membership relation ∗∈ in the ultrapower into a
true ∈-relation. Briefly, the membership relation in the ultrapower is not the
actual membership relation ∈, and cannot be converted to it in the framework
of ZFC. Since nonstandard set theories axiomatize ultrapowers or iterated
ultrapowers, they transcend ZFC; an intuitive picture of the universe of such
a theory properly extends the familiar ZFC universe V .

A question then arises to determine what the place of V is in this larger
picture. In a discussion of this issue, we have to distinguish between two
meanings of the word standard. On one hand, there is the technical meaning;
standard objects are the objects in the scope of the predicate st. On the other
hand, the expression standard objects is sometimes used to refer to the objects
that cousin Georg and many traditional mathematicians are familiar with as
the objects from the ZFC universe V . These two meanings do not necessarily
coincide; in order to perform a disambiguation, we will refer to the standard
objects in this second sense as the familiar objects.

5.6 The three pictures

At this point, there are several choices. One can identify the internal numbers
and sets with the familiar numbers and sets. Standard reals and sets (i.e., those
in the scope of st) are on this view only some of the mathematical entities
with which we are familiar, singled out for special attention. One can call this
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view the internal picture. It is the view adopted in Nelson [127]. We discuss
it in detail in Section 7.2.

However, one can equally well regard the standard numbers and sets as
the familiar numbers and sets, with the understanding that standard sets may
contain also (what are referred today as) nonstandard elements, or (as Leibniz
might have called them) ideal elements or useful fictions; see Section 7.5. One
can call this view the standard picture. It is proposed in Hrbacek [75]. In the
superstructure framework, it would correspond to viewing the standard copies
as the familiar objects. Analogously, in projective geometry an affine plane is
outfitted with an assortment of ideal points at infinity; see Section 3.1.

External set theories admit yet another picture, the external picture. In
these theories one can single out the class of well-founded sets.26 These are
generally external. There is a one-one ∈-preserving mapping ∗ of the well-
founded sets onto the standard sets. One then has the option of regarding
the well-founded sets as the intuitively familiar objects, and everything else
as ideal. In this view, mathematics can be developed in a way similar to the
superstructure framework, with the universe of all well-founded sets in place
of Vω(R). This picture was outlined in an appendix to Hrbacek [75] and is
fully implemented in Kanovei–Reeken [92].

5.7 The Protozoa metaphor

The following analogy may be helpful in interpreting the three pictures of
Section 5.6. Here we are thinking of each real number as an individual (as one
does in the superstructure approach). Let us assume we are familiar with the
class of animals, and then someone invents the microscope and we discover the
protozoa; are we to count them as animals? There are three possible answers.

1. (External picture) Protozoa are not animals because they fall outside
what we previously meant by the word ‘animal’, but we can invent a
new word, ‘hyperanimal,’ to include animals and protozoa.

2. (Standard picture) Protozoa are animals and were so all along; there
is no change in the meaning of ‘animal’. The familiar class of animals
contains unfamiliar species like protozoa in addition to the familiar ones.
The microscope allows us to see new animals (animals that are new to
us, that is).

26A set A is transitive if any x ∈ A satisfies x ⊆ A. A set X is well-founded if there is a
transitive set A such that X ⊆ A and the restriction of the ∈-relation to A is well-founded.
In ZFC all sets are well-founded, but external nonstandard set theories necessarily have also
ill-founded sets.
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3. (Internal picture) Protozoa are animals, and they were familiar all along,
even though we weren’t aware of them specifically. What is new is our
ability to distinguish between microscopic and macroscopic animals: this
is what the microscope provides.27

5.8 The intuitive interpretation

The following three points need to be kept in mind.
1. The choice of the nonstandard set theory does not commit one to a

particular picture. Nelson used the internal picture, and hence this picture is
usually considered an intrinsic part of IST, but IST is equally compatible with
the standard picture. The theory and the picture are two separate things. The
choice of the picture is not a mathematical issue, since one will get exactly
the same mathematical results regardless of the picture, but rather a matter
of personal preference.

2. Cousin Georg would likely object to both the internal and the standard
picture, on the grounds that numbers and sets as developed around 1872 not
long before the 1886 Patent-Motorwagen (see Section 1), i.e., the entities he
feels comfortable with, do not fit either in his opinion.

In the case of the internal picture the issue is that, intuitively, every
nonempty collection of natural numbers has a least element. Now in a nonstan-
dard set theory like IST there is no set of all nonstandard natural numbers.
This may run counter to cousin Georg’s expectations concerning the properties
of the familiar numbers along the lines of the CD+II mindset (see Section 2.2),
where every definite property of natural numbers should necessarily determine
a set. Note that st is treated as a definite property in nonstandard set theory:
for each x, either st(x) or ¬st(x).

In intuitive terms, we can consider st to be an indefinite, vague property
like heap in the paradox of sorites. This indefiniteness is reflected in the formal
theory by the nonexistence of the corresponding set. The resistance to this
idea is due to an inherent tendency to abstract (form collections).

Cousin Georg’s objection to the standard picture is that the familiar set N
just does not contain any ideal elements. A counter-argument is that one can
think as if it did. The problems connected with collections of ideal natural
numbers without the least element are also perhaps less pressing in this picture.
(A personal anecdote: The recent book Hrbacek–Lessman–O’Donovan [81] was
first written in the internal picture, which was strongly objected to by some
of the referees–perhaps cousin Georg among them. Eventually a switch to the
standard picture was implemented, and the book was accepted immediately

27The allusion to Keisler’s microscope Keisler [107] is of course intentional.
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afterward.)
3. The external picture seems to be the least objectionable from the point

of view of cousin Georg (in fact, there seems to be no obvious reason why it
should be objectionable at all), but the necessity to work with external sets
(in addition to the standard and internal ones) complicates the framework.

A discussion of these various pictures can be found in Hrbacek [77].

5.9 Relative standardness

Arguably, there is not much current mathematical work in nonstandard anal-
ysis that actually uses more than one level of standardness. In the superstruc-
ture framework, we know only of an early paper Molchanov [126], employing
two levels. Perhaps one reason for this paucity is that the model-theoretic
framework with more than one level of standardness quickly becomes unman-
ageable because it naturally involves complex combinations of ultrapowers to
take care of all the details.

As for the axiomatic framework, there are two distinct approaches.
The first approach is to define different levels or degrees of standardness

within a given nonstandard universe of discourse, e.g., a universe satisfying
Nelson’s internal set theory IST or its BST (bounded set theory) version; see
Section 5.1 and Section 5.2.

There are several meaningful approaches to defining relative standardness
in this setting. Among them are the following three:

1. (most natural but not most useful) A set y is standard with respect to x
if there is a standard map f such that x ∈ domf and y = f(x); see e.g.,
Gordon [53].

2. (following [53]) A set y is standard with respect to x if there is a standard
map f such that x ∈ domf , all values of f are finite sets28 and y ∈ f(x).

3. (following Kanovei [84, Section 3], based on earlier ideas of Luxem-
burg [121] and Hrbacek). If κ is a standard cardinal then one defines
sets of order κ as those belonging to standard sets of cardinality κ or
less.

These and similar definitions lead to the internal subuniverses as discussed in
Kanovei–Reeken [92], that is, classes I of internal sets satisfying the following:
if x1, . . . , xn ∈ I, where n is a standard number, f is a standard function, and
the string ⟨x1, . . . , xn⟩ belongs to domf then f(x1, . . . , xn) ∈ I. Each such

28Finiteness in IST corresponds to hyperfiniteness in the model-theoretic approach.
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an internal subuniverse I can be considered as a new degree of standardness,
that is, the class of all sets standard in the new sense.

Chapter 6 in [92] is devoted to these notions and contains several results
related to properties of these generalized notions of standardness.

The second approach to relative standardness is to introduce this complex
notion axiomatically, rather than explicitly defining it in a given nonstandard
universe. The advantage of this approach is that all the axioms of BST can
be relativized to each level of standardness.

The idea to treat levels of standardness axiomatically was proposed by
Wallet (see Péraire and Wallet [134]) and fully developed by Péraire [132].
Péraire’s axiomatic theory RIST is an extension of IST to many levels of
standardness. Besides ∈, its language contains a binary relative standardness
predicate ⊑; one can read x ⊑ y as “x is standard relative to y.” Thus the
class {x : x ⊑ y} is the level of standardness determined by y. The number
0 (or any other object definable without parameters) determines the coarsest
level of standardness, which can be identified with the standard sets of IST.

In RIST one can have a finite sequence of numbers, for example η0, η1, η2,
where η0 is infinitesimal and each of the other terms is infinitesimal relative
to the level of standardness determined by the preceding one. Tao writes:

Having this hierarchy of infinitesimals, each one of which is guaran-
teed to be infinitesimally small compared to any quantity formed
from the preceding ones, is quite useful: it lets one avoid having
to explicitly write a lot of epsilon-management phrases such as
“Let η2 be a small number (depending on η0 and η1) to be chosen
later” and “. . . assuming η2 was chosen sufficiently small depending
on η0 and η1”, which are very frequent in hard analysis literature,
particularly for complex arguments which involve more than one
very small or very large quantity. Tao [158, p. 55]

While it is straightforward to iterate levels of standardness countably many
times, or even along any a priori given linear ordering, it is harder to produce
satisfactory frameworks that have sequences of levels of standardness of ar-
bitrary hyperfinite length. This is done in Hrbacek [76] and [79]. In such a
framework (the theory GRIST) one can have a hyperfinite sequence of nat-
ural numbers where each term is nonstandard relative to the previous one.
Tao speculated that this feature might be useful in the proof of Szemerédi’s
theorem, but the only use of it thus far seems to be a characterization of
higher-order differentiability in Hrbacek [78]. See also [161] for a use of the
language of nonstandard analysis in order to avoid a large number of iterative
arguments to manage a large hierarchy of parameters.
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The axiomatic framework is used in several papers of Péraire (see e.g.,
[133]), as well as Gordon [54], the more recent work of Di Nasso [39], and in
[81] (these works use infinitely many levels of standardness).29 The axiomatic
framework hugely simplifies the presentation.

While RIST and GRIST are internal theories, there are also external the-
ories with many levels such as SNST by Fletcher [46] and EST by Ballard
[10].

5.10 Constructive aspects of Robinson’s framework

The discussion in some of the earlier sections may have given an impression
that nonstandard analysis depends on ultraproducts or some similar model-
theoretic techniques, and therefore is essentially non-effective. Errett Bishop
and Alain Connes30 have both claimed that nonstandard analysis is somehow
fundamentally non-constructive and non-effective. These claims are funda-
mentally flawed and have been debunked as follows.

5.10.1 Abstract analysis

Methods of nonstandard analysis are often applied in areas that are inher-
ently non-constructive, such as general topology, the theory of Banach spaces,
or Loeb measures; we refer to them here as abstract analysis. The nonstandard
settings that one needs for abstract analysis are of course also non-constructive,
and do imply the existence of ultrafilters. For example, in IST−, a theory ob-
tained from IST by deleting the Axiom of Choice, one can prove the Boolean
Prime Ideal Theorem (Every filter can be extended to an ultrafilter).31 How-
ever, the approach not involving nonstandard analysis (if it exists) is equally
non-constructive. A detailed example of this phenomenon in the work of
Connes may be found in [88].

29In the simplest case one has a nested chain of classes Nst0 ⊆ Nst1 ⊆ Nst2 ⊆ · · · ⊆ N,
where Nst0 = Nst can be identified with the standard natural numbers and N is the set
of all natural numbers. Thus the higher the n, the less standard the integers of Nstn are.
In fact the ordering of the levels of standardness does not have to be of type ω. It can be
more complicated, have infinite descending chains, even be dense, but it has to have a least
element Nst0 .

30See the references in note 5.
31It may be interesting to note that one cannot prove the full Axiom of Choice; so even

the nonstandard abstract analysis, to the extent it is supported by IST−, is actually more
“constructive” than the standard abstract analysis carried out in ZFC. See Hrbacek [80]
and Albeverio et al. [1, p. 31] for a related discussion.
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5.10.2 Nonstandard Peano Arithmetic theories

Classical mathematical results generally do not require the full power of set
theory, whether standard or nonstandard. Let PA be (the axiomatic theory
of) the Peano arithmetic, which naturally axiomatizes the natural numbers N,
and, for each n, let PAn be the n-th Peano arithmetic, a theory which naturally
axiomatizes the structure which contains the set of natural numbers N along
with its consecutive power sets P(N), P2(N) = P(P(N)), . . . , Pn−1(N), so
that PA itself is PA1.

The ideas similar to those described for ZFC, can also be applied to define
a nonstandard version ∗PAn of each PAn. The relations among these theories
(between standard and nonstandard versions for the identical and different
values of n) were thoroughfully studied in Henson–Keisler [70] and some re-
lated papers. In particular, it was established that each ∗PAn is comparable
in terms of its strength rather with the standard theory PAn+1 than with its
direct standard base PAn.

5.10.3 Constructive nonstandard mathematics

There is extensive work by Palmgren, Avigad [6], Martin-Löf [125], van den
Berg et al. [162], on constructive nonstandard mathematics; see Palmgren [131]
for a bibliography of the early contributions. These references introduce both
syntactic and semantic approaches to nonstandard analysis which are con-
structive in the sense of Bishop’s constructive analysis and Martin-Löf’s con-
structive type theory, i.e., based on intuitionistic logic.

5.10.4 Effective content and reverse mathematics

Classical nonstandard analysis actually contains a lot of easily accessible effec-
tive content as follows. Sanders [149] establishes that one can algorithmically
convert a proof of a theorem in “pure” nonstandard analysis (i.e., formulated
solely with nonstandard axioms and nonstandard definitions of continuity,
compactness, differentiability, etc.) into a proof of the constructive/effective
version of the associated classical theorem.

This work is done in an axiomatic framework (some fragment of full non-
standard set theory) and always produces effective (and even constructive)
results when Transfer and Standardization are not used.

The use of the former gives rise to relative computability results in the spirit
of Reverse Mathematics, while the use of the latter (or saturation) translates
into results computable modulo bar recursion [109]. Osswald and Sanders
discuss the constructive content of nonstandard analysis at length in [130],
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and Sanders [150] discusses how these results undermine the Bishop–Connes
critique.

5.10.5 Tennenbaum’s theorem

At first glance, even fragments of Robinson’s framework based on arithmetic
may seem fundamentally non-constructive from the viewpoint of Tennenbaum’s
theorem. The theorem literally states that any nonstandard model of Peano
Arithmetic is not computable. What this means is that for a nonstandard
model M of Peano Arithmetic, the operations +M and ×M cannot be com-
putably defined in terms of the operations +N and ×N of an intended model N
of Peano Arithmetic. Similar results exist for fragments; see Kaye [104, § 11.8].

Now, while certain nonstandard models do require non-constructive tools
to build, models are not part of Nelson’s axiomatic approach IST or its vari-
ant BST (see Section 5.2). Furthermore, IST and BST specifically disallow
the formation of external sets like “the operation + restricted to the standard
numbers.” Nelson called attention to this rule on the first page of [127] intro-
ducing IST: “We may not use external predicates to define subsets. We call
the violation of this rule illegal set formation” (emphasis in original).

Thus, one of the fundamental components of Tennenbaum’s theorem, namely
the external set “+ restricted to the standard naturals” is missing from the
internal set theories IST and BST, as the latter exclusively deal with internal
sets. Arguably, therefore, Tennenbaum’s theorem is merely an artifice of the
model-theoretic approach to nonstandard analysis.

The critique by Connes of Robinson’s framework is based on similarly
flawed assumptions, namely that the models generally used in Robinson’s
framework are fundamentally non-constructive and therefore so is nonstandard
analysis. It is worth pondering the fact that non-constructive mathematics is
routinely used in physics (see e.g., the discussions of the Hawking–Penrose sin-
gularity theorem and the Calabi–Yau manifolds in [95], undecidability of the
spectral gap [34]), without scholars jumping to the conclusion that physical
reality is somehow non-constructive.

6 Physics: Radically elementary modeling

6.1 Tao on intricate results

Tao wrote in Compactness and contradiction as follows:

The non-standard proofs require a fair amount of general machin-
ery to set up, but conversely, once all the machinery is up and
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running, the proofs become slightly shorter, and can exploit tools
from (standard) infinitary analysis, such as orthogonal projections
in Hilbert spaces, or the continuous-pure point decomposition of
measures. Tao [159, p. 168]

Here Tao is referring to the fact that if one works from the construction
perspective (as he does), then the entire ultrapower construction counts as
part of the general machinery. Meanwhile,

. . . for particularly intricate and deep results it can happen that
non-standard proofs end up being simpler overall than their stan-
dard analogues, particularly if the non-standard proof is able to
tap the power of some existing mature body of infinitary mathe-
matics (e.g., ergodic theory, measure theory, Hilbert space theory,
or topological group theory) which is difficult to directly access in
the standard formulation of the argument. [159, p. 169]

Edward Nelson would have likely subscribed to Tao’s view as expressed above,
but may have added that there is another side of the coin which is what we
shall refer to as Radically Elementary Modeling. This term alludes to Nelson’s
book Radically Elementary Probability Theory [128].

6.2 The physicist’s vibrating string

We are interested in developing a mathematical model of a vibrating string.
First we will illusrate the viewpoint of a physicist by providing some quo-
tations. In the celebrated Berkeley Physics Course (vol. 3), Frank Crawford
writes:

(Sec. 2.1) If a system contains a very large number of moving parts,
and if these parts are distributed within a limited region of space,
the average distance between neighboring moving parts become
very small. As an approximation, one may wish to think of the
number of parts as becoming infinite and the distance between
neighboring parts as going to zero. One then says that the system
behaves as if it were “continuous”. Implicit in this point of view
is the assumption that the motion of near neighbors is nearly the
same. Crawford [33, p. 48]

The next quotation deals with a uniform beaded string having N beads and
with fixed ends:
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(Sec. 2.2) We now consider the case where N is huge, say N =
1, 000, 000 or so. Then for the lowest modes (say the first few
thousand), there are very large number of beads between each
node. Thus the displacement varies slowly from one bead to the
next [We shall not consider here the highest modes, since they
approach the “zigzag limit”, where a description using a continuous
function is not possible.] (ibid., p. 51)

Furthermore,

(Sec. 2.4) In sec. 2.2 we considered a continuous string. . . In this
section we will find the exact solutions for the modes of a uniform
beaded string having N beads and with fixed ends. In the limit that
we take the numbers of beads N to to be infinite (and maintain the
finite length L), we shall find the standing waves that we studied
in Sec. 2.2. Our purpose is not merely that, however. Rather,
we shall find that, in going to the limit of a continuous string,
we discarded some extremely interesting behavior of the system.
(ibid., p. 72)

These comments would be considered by traditionally trained mathematicians
as an “informal discourse of a physicist.” But for a mathematician trained in
nonstandard analysis, they can be easily translated into a perfectly formalized
mathematical text.

6.3 The hyperfinite vibrating string

We will now formalize Crawford’s approach in Nelson’s IST. Let ΣN be the
following system of differential equations:

ΣN


dxj

dt = yj(t), j = 1, . . . , N − 1
dyj

dt = K2

h2 (xj−1(t) − 2xj(t) + xj+1(t)), j = 1, . . . , N − 1

x0(t) = xN (t) = 0

(6.1)

where N · h = 1.

Assuming K = 1, from elementary calculus we know that the solutions are
given by the following equations:

xj(t) = ΣN−1
n=1 un cos(ωnt) +

vn
ωn

sin(nπjh), (6.2)
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where

ωn =
2

h
sin

(nπh
2

)
un = 2hΣN−1

k=1 xn(0) sin(kπnh)

vn = 2hΣN−1
k=1 yn(0) sin(kπnh)

(6.3)

In classical mathematics one considers the continuous wave equation:

Σ


∂2X

∂t2
(z, t) =

∂2X

∂z2
(z, t)

X(0, t) = X(1, t) = 0

(6.4)

to be “the model” and proves the existence of solutions (t, z) 7→ X(t, z), con-
tinuous with respect to t and z which satisfy (6.4); if one is interested in
computer simulations it can be proved that suitable solutions of the discrete
(6.1) converge in some sense to a solution of (6.4) when N tends to infinity.
By the way, in classical mathematics, the system (6.1) is usually viewed as an
approximation of (6.4).

But in nonstandard analysis we can consider (6.1) to be “the model” pro-
vided that N is nonstandard (infinite). Explicit formulas (6.2) still stand.
Typically a physicist is less interested in the existence of solutions than in
their properties. For instance he might be interested in the “shape” of the
string at time t, namely, in the aspect of the “dotted line” in [0, 1] × R:{

(ndz, un(t)) : n = 0, 1, . . . , N
}

(6.5)

with dz = h. An important question is whether the “dotted line” seems
continuous. (The physicist asks “whether the displacement varies slowly from
one bead to the next”). The mathematical formalization is the following.

Definition 6.1. The “dotted line” (6.5) is said to be S-continuous if:

k dz ≈ 0 =⇒ un+k(t) ≈ un(t).

The S-continuity of the initial condition xn(0); n = 0, 1, ···, N is insufficient
to imply the S-continuity of the solution. What is required in addition is that
the initial energy

E(0) =
1

2

N−1∑
k=1

(
xn+1(0) − xn(0)

h

)2

h +
N−1∑
k=1

yn(0)

be limited. In fact consider an initial condition such that xn(0) = 0; if an
unlimited energy at time t = 0 is contained in the unlimited modes λn it turns
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out that after some duration all this energy will concentrate at some point
and “break” the solution; for details see Delfini–Lobry [35]. It is one of the
interesting aspects of the behavior of the system that we can observe when we
do not discard high modes. Notice that in the preceding lines one uses only
the Idealization axiom of IST.

If one wishes to make the connection with the continuous model, one uses
the shadow of the “dotted line” whose definition uses the full strength of the
Standardization axiom. Then it can be proved under suitable asumptions on
the initial conditions (including limited energy) that the shadow of the “dotted
line” is the graph of a differentiable function φ(t, z) which is a solution of (6.4).

We acknowledge that our example is very simple and that physicists did
not await Robinson to understand all the information contained in formulas
(6.2) and (6.3).

6.4 Hyperfinite Brownian motion

This point of view was advocated in Nelson [128] (a less elementary approach
using Loeb measures was pioneered in Anderson [2]), where Nelson defined
the Brownian motion as a discrete random walk of infinitesimal step size at
times 0, dt, 2dt, . . . , kdt, . . . , Ndt = 1, with dt infinitesimal. Namely, we set

ξ0 = 0; ξt+dt = ξt + zt
√
dt

where zt is a sequence of independent random variables taking the values +1
or −1 with probability 1

2 . The probability space for such a process is just
the (hyper)finite set Ω = {−1,+1}N with its σ-algebra equal to P (Ω). A
trajectory of this Brownian motion is defined as the mapping t 7→ xt with
domain in what Nelson refers to as the near-interval, namely the hyperfinite
set {0, dt, 2dt, . . . , kdt, . . . , Ndt = 1}. The important point here is that despite
its discrete definition, which fits well with the intuition that “at each instant
one chooses at random” (notice that in the limit dt → 0 this concrete meaning
is lost), the notion of continuity is perfectly defined by S-continuity (see above).
Then Nelson proves the following:

Almost surely, a trajectory of the Brownian motion is S-continuous.

Here almost surely means that for every standard ε > 0 the (external) set of
trajectories that are not S-continuous is contained in a (true) set of probability
less than ε. This result is obtained within a very light subsystem of IST (just
Idealization is needed). The title of Radically Elementary Probability The-
ory delivers on its promise. In fewer than 80 pages, starting from the early
beginnings including nonstandard analysis and some basics of probability the-
ory, the mathematical model for the physical Brownian motion is constructed.
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Moreover the last chapter called The de Moivre–Laplace–Lindeberg–Feller–
Wiener–Lévy–Doob–Erdos–Kac–Donsker–Prokhorov theorem provides a large
amount of modern results on stochastic processes. It is the decision not to re-
place clear nonstandard statements by wordier conventional paraphrases that
makes things elementary. Let us quote Nelson’s Preface, paragraphs 2 and 3:

This work is an attempt to lay new foundations for probability
theory, using a tiny bit of nonstandard analysis. The mathemati-
cal background required is little more than which is taught in high
school, and it is my hope that it will make deep results from the
modern theory of stochastic processes readily available to anyone
who can add, multiply and reason.
What makes this possible is the decision to leave the results in non-
standard form. Nonstandard analysts have a new way of thinking
about mathematics, and if it is not translated back into conven-
tional terms then it is seen to be remarkably elementary. Nelson
[128, p. vii] (emphasis ours)

At the next stage, in order to connect elementary results to classical ones, the
full IST system is used to prove the (formal) mathematical equivalence of the
hyperfinite model with the classical Wiener process. Let us quote again from
Nelson:

The purpose of this appendix is to demonstrate that theorems of
the conventional theory of stochastic processes can be derived from
their elementary analogues by arguments of the type usually de-
scribed as generalized nonsense; there is no probabilistic reasoning
in this appendix. This shows that the elementary nonstandard
theory of stochastic processes can be used to derive conventional
results. . . [128, p. 80]

Nelson goes on to make the following additional point:

. . . on the other hand, it shows that neither the elaborate machin-
ery of the conventional theory nor the devices from the full theory
of nonstandard analysis, needed to prove the equivalence of the
elementary results with their conventional forms, add anything of
significance: the elementary theory has the same scientific content
as the conventional theory. This is intended as a self destructing
appendix.32 Nelson [128]

32Nelson’s cryptic comment calls for a clarification. What Nelson is apparently referring
to is the fact that the conventional formalism for random walks in particular and stochastic
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This view regarding stochastic processes was extended to diffusion:

ξ0 = 0; ξt+dt = ξt + f(ξt)dt + zt
√
dt

in Benôıt [20], to stochastic analysis as applied to finance in van den Berg
[164], and to complex physical particle systems in Weisshaupt [170], [171].
In a similar vein, Lobry [115], Lobry–Sari [116] advocate viewing ODEs with
discontinuous right hand side on the basis of a simple Euler scheme with in-
finitesimal step. The path of Radically Elementary Modeling was also pursued
in Diener–Lobry [37], Harthong [66], Fliess [47] and other works.

7 More on Nelson

Bien que tous les mathématiciens
ne le reconnaissent pas, il existe
une “réalité mathématique
archäıque”. Comme la réalité du
monde extérieur, celle-ci est a
priori non organisée, mais résiste
à l’exploration et révèle une
cohérence. Non matérielle, elle se
situe hors de l’espace-temps.
A. Connes [31]

The idea that there is a pure
world of mathematical objects
(and perhaps other ideal objects)
totally divorced from our
experience, which somehow exists
by itself is obviously inherent
nonsense. M. Atiyah [5, p. 38]

We first give a more detailed discussion of the II hypothesis outlined in
Section 2.2.

analysis in general, as developed by Kolmogorov and others, relied on elaborate machin-
ery based on measure theory. Nelson viewed the replacement of elaborate machinery by
radically elementary considerations as a positive scientific development, which however has
self-destructing aspects as far as the work of the traditional practitioners themselves is
concerned.
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7.1 Kleene, Wang, Putnam, and others on the II

Many set theorists think of the semantics of set theory as given in terms of
an intended model or intended interpretation, in accordance with a realist
philosophy of mathematics; for details see Maddy [122]. Intended interpreta-
tions concern not merely the natural numbers but, more generally, purported
entities in something described as “a mathematical practitioner’s universe,”
“primordial mathematical reality” (a term coined by A. Connes), or the like.
Concerning such II hypotheses, Kleene wrote:

Since a formal system (usually) results in formalizing portions of
existing informal or semiformal mathematics, its symbols, formu-
las, etc. will have meaning or interpretations in terms of that
informal or semiformal mathematics. These meanings together we
call the (intended or usual or standard) interpretation or interpre-
tations of the formal system. Kleene [108, p. 200]

In a similar vein, Hao Wang writes:

The originally intended, or standard, interpretation takes the or-
dinary nonnegative integers {0, 1, 2, . . .} as the domain, the sym-
bols 0 and 1 as denoting zero and one, and the symbols + and ·
as standing for ordinary addition and multiplication (see section
“Truth definition of the given language” in Wang [169]).

An intended model could be defined as one that “reflects our intuitions
[about natural numbers] adequately” Quinon–Zdanowski [138, p. 313] (em-
phasis added). Haim Gaifman writes:

Intended interpretations are closely related to realistic conceptions
of mathematical theories. By subscribing to the standard model
of natural numbers, we are committing ourselves to the objective
truth or falsity of number-theoretic statements. . . . Realism and
intended interpretations are thus intimately related; often they are
treated as the same problem. Gaifman [48, p. 15]

Thus the II hypothesis entails that N obtains a detailed reference in the ordi-
nary counting numbers. Meanwhile, Robinson wrote: “mathematical theories
which, allegedly, deal with infinite totalities do not have any detailed . . . ref-
erence.”33 [142, p. 42]

Weber claimed to quote34 Leopold Kronecker as positing an allegedly im-
mutable status of the integers “whereas everything else is the work of man.”

33A related point was made by Salanskis; see note 37.
34The adage Weber reports in Kronecker’s name is known not to appear in any of Kro-

necker’s writings; see Ewald [44, p. 942, note a].
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Weber’s quote is often misattributed to Kronecker himself. However, Kro-
necker specifically wrote, on the contrary, that numbers were a creation of the
human mind, and contrasted numbers that are human artefacts, with space
and time which he felt were outside the mind (possibly following the traditional
pre-Einsteinian philosophers):

The principal difference between geometry and mechanics on one
hand, and the other mathematical disciplines we comprehend un-
der the name of arithmetic, consists according to Gauss in this: the
object of the latter, number, is a pure product of our mind, while
space as well as time has reality also outside of our mind which we
cannot fully prescribe a priori. Kronecker [110, p. 339]

See also Gauthier [49, p. 163]. Hilary Putnam doubted our ability to fix an
intended interpretation and seemed to treat the II as a throwback to Kantian
noumena [136, p. 482].35 For responses to Putnam see e.g., Horsten [73],
Gaifman [48].

7.2 Predicate on the familiar real line

In the internal view of IST, rather than thinking of the standard sets as being
the familiar ones, embedded in a larger nonstandard world, one essentially
thinks of the nonstandard universe as the familiar world (in the terminology
of Section 5.5), with standard structures being picked out of it by means of a
suitable predicate.

On this view, one has the real numbers including both infinite and in-
finitesimal reals, and one can say when two finite real numbers have the same
standard part, etc. In this picture, we think of the familiar real line as what in
the other picture would be the nonstandard one, and then we have a predicate
on that, which corresponds to the range of the star map in the other approach.
So some real numbers are standard, and some functions are standard and so
on.

Hamkins wrote: “One sometimes sees this kind of perspective used in
arguments of finite combinatorics, where one casually considers the case of
an infinite integer or an infinitesimal rational.” That kind of talk may seem
alien to cousin Georg (see Section 1), but for those who adopt the picture it is

35Putnam’s comment there about “noumenal waifs” indicates an impatience with the typ-
ical post-Dedekind mathematician’s assumption that N finds a detailed reference in the ordi-
nary intuitive counting numbers. Putnam seems to view the latter as inaccessible noumena,
the mathematician’s identification of N with these noumena as an unwarranted assumption,
and the search for the intended interpretation as a futile search for parenthood for the said
waiflike noumena. See further in note 37.
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useful. In a sense, one goes the whole nine yards into the nonstandard realm
until it turns familiar.

There are several characterisations of Nelson’s framework. Each character-
isation employs a slightly different philosophical starting point. Peter Loeb’s
position as expressed in [118, p. vii] is that (1) Nelson is working exclusively
in the nonstandard universe, and (2) there is no standard world in this set-
ting. This second point is of course mathematically correct to the extent that
the predicate st violates the axiom of separation. As far as the first point is
concerned, it involves a bit of an equivocation on the meaning of the word
standard :

(a) its technical meaning in the context of Robinson/Nelson, and

(b) the meaning of ordinary/usual.

The equivocation is disambiguated in Section 5.5. In line with the CD+II
mindset (see Section 2.2), cousin Georg (see Section 1) would bridle at the idea
that the ordinary/usual real line should contain infinitesimals in any sense, and
so Loeb is correct in this sense, as well. Other experts in nonstandard analysis
point out a complementary mathematical point that is also valid, namely the
following.

Nelson demonstrated that infinitesimals can be found within the ordinary
real line itself in the following sense. Infinitesimals are found in the real line by
means of enriching the language through the introduction of a unary predicate
st and postulating an axiom schema (of Idealization), one of most immediate
instances of which implies the existence of infinitely large integers and hence
nonzero infinitesimals, as in his 1977 article; see Katz–Kutateladze [97] for a
related discussion. Recall that Nelson’s framework Internal Set Theory (IST)
is a conservative extension of ZFC. In other words, the entire package goes
over, including each article published in the Annals of Mathematics so long as
it makes no use of Sarah’s switch (see Section 1) st.

To put it more colorfully, infinitesimals were there all along, but cousin
Georg hasn’t noticed them.

7.3 Multiverse

Hamkins [61], [62] proposes a view of the foundations of mathematics where
there are many distinct concepts of set, each instantiated in the corresponding
set-theoretic universe These works formulate a number of principles that the
multiverse should satisfy. An interesting observation for our purposes is that
the following principle is compatible with Hamkins’s multiverse.
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Principle B: For every ZFC universe V in the multiverse there is
a class S ⊆ V such that all the axioms of the theory BST hold
in (V,∈, S).

In other words, given any universe V and a class S as above, the predi-
cate st = stV,S defined by

st(x) if and only if x ∈ S

distinguishes some elements of V as standard, in a way that makes BST hold,
without adding any new elements to V . Thus Nelson’s claim that the in-
finitesimals have been there all along without being noticed (see Section 7.2)
is literally true in this framework, though in the context of BST rather than
Nelson’s original theory IST. For the benefit of readers familiar with model
theory and BST, we give some technical underpinnings of these claims. Vic-
toria Gitman and Hamkins construct a “toy” model of the multiverse axioms
in ZFC; see [50]. We show that Principle B holds in this model.

Theorem 7.1. The Gitman–Hamkins model satisfies the Principle B.

Outline of proof. One can start with the fact that a standard core inter-
pretation for BST is definable in ZFC (Kanovei–Reeken [92, Theorems 4.1.10(i)
and 4.3.13]), where the expression “standard core” indicates that the uni-
verse V of ZFC is isomorphic to the universe of standard sets in the interpre-
tation.

An immediate corollary [92, Corollary 4.3.14] is that for every model
(M,∈M ) of ZFC there is a corresponding model (N,∈N , SN ) of BST, in which
the class of standard sets SN is isomorphic to M .

The multiverse of Gitman and Hamkins consists of all countable com-
putably saturated models of ZFC. It is easy to see that if (M,∈M ) is count-
able and computably saturated, then also the corresponding (N,∈N , SN ) is
countable computably saturated. Furthermore, (N,∈N ) and (M,∈M ) have
the same theory and the same standard system. Hence they are isomor-
phic [50, Key Lemma 6]. If S is the image of SN under such an isomor-
phism, then (N,∈N , SN ) and (M,∈M , S) are also isomorphic. In particu-
lar, (M,∈M , S) satisfies BST.

It is not known whether BST can be replaced by Nelson’s IST in this
argument; see the related discussion in Section 5.5. Essentially the same
argument works for the theory GRIST (see Section 5.9) starting with the fact
that a standard core interpretation for GRIST is definable in ZFC, Hrbacek
[80].
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Theorem 7.2. One can consistently assume that every universe of ZFC in
the multiverse can be stratified into many levels of relative standardness by a
binary relation ⊑ in such a way that all the axioms of GRIST hold in (V,∈,⊑).

7.4 Switches

Hamkins [63], [64] discusses the concept of switches, exemplified by the con-
tinuum hypothesis (CH). Here the terminology of switch implies that it can
be turned on or off at will. Similarly, using modern techniques of forcing, one
can pass from a model of ZFC that satisfies CH to one that satisfies ¬CH and
vice versa.

The availability of the predicate st in the language is also a type of switch.
Namely, all models of ZFC can be built up into models of BST, turning the
switch on as it were. Meanwhile, the forgetful functor (just forget about the
switch in the glove compartment) takes you from BST back to ZFC.

The analogy with switches is that one model has infinitesimals, while the
other doesn’t. This is analogous to one model possessing a set of intermediate
cardinality between N and NN, and the other not. Both switches arguably
challenge the II hypothesis; see Section 2.2.

Now st is a different type of switch, but whatever the situation may be for
the ontology and epistemology of switches, Sarah’s switch implies (not merely
that one can fly faster than drive but) that the discovery of the switch leaves
all theorems in place, so that Nelson’s real numbers can be viewed as the
familiar ones, and the infinitesimals have been there all along without being
noticed–even though the familiar model from the last third of the 19th century
apparently didn’t have them.

7.5 Historical antecedents

The view that numbers come in more than one flavor is closely parallel to the
dichotomy of assignable vs inassignable quantities (the latter being viewed as
useful fictions) in Leibnizian calculus; see Bair et al. [8] and Bascelli et al. [16]
for more details. Even earlier, Fermat’s technique of adequality exploited
procedures using E in a striking anticipation of later infinitesimal techniques;
see [100]. Meanwhile L. Carnot spoke of quantités désignées and quantités
auxiliaires in 1797; see Barreau [12, p. 46, 53].

Stolz, du Bois-Reymond, and others were working on infinitesimals at the
end of the 19th century, and had they joined forces with Frege or Peano to con-
ceive an axiomatisation that would actually incorporate Leibniz’s assignable vs
inassignable distinction, 20th century mathematics may have looked different.
This viewpoint involves being able to conceive of the history of mathematics
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as something other than inevitable march toward Weierstrassian epsilontics
and Cantor–Dedekind reals. In more precise philosophical terms, it involves
envisioning the history of mathematics in terms of the Latin model rather than
the butterfly model, to borrow the terminology from Ian Hacking [59].

To comment on Hacking’s distinction between the butterfly model and the
Latin model, we note the contrast between a model of a deterministic biological
development of animals like butterflies, as opposed to a model of a contingent
historical evolution of languages like Latin.

Hacking’s dichotomy applies to the development of the field of mathematics
as a whole. Some scholars view the development of mathematics as a type of
organic process predetermined genetically from the start, even though the
evolution of the field may undergo apparently sudden and dramatic changes,
like the development of a butterfly which passes via a cocoon stage which is
entirely unlike what it is pre-destined to produce.

The Latin model acknowledges contingent factors in the development of an
exact science (mathematics included), and envisions the possibility of other
paths of development that may have been followed. For example, had an
axiomatic formalisation of infinitesimals been proposed earlier, it might have
been incorporated into the early formalisations of set theory, and spared us the
inanity of the Cantor–Russell anti-infinitesimal vitriol, reflecting the state of
affairs in mathematical foundations during the second half of the 19th century;
for additional details see [102].

Hacking’s perspective is at odds with some of the received history of math-
ematical analysis. A related point is made by P. Mancosu in the following
terms:

the literature on infinity is replete with such ‘Whig’ history. Praise
and blame are passed depending on whether or not an author might
have anticipated Cantor and naturally this leads to a completely
anachronistic reading of many of the medieval and later contribu-
tions. Mancosu [123, p. 626]

In his critique of intuitionism, Bernays introduced a distinction related to
assignable/inassignable in terms of accessible vs inaccessible:

Brouwer appeals to intuition, but one can doubt that the evidence
for it really is intuitive. Isn’t this rather an application of the
general method of analogy, consisting in extending to inaccessible
numbers the relations which we can concretely verify for accessible
numbers? As a matter of fact, the reason for applying this analogy
is strengthened by the fact that there is no precise boundary be-
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tween the numbers which are accessible and those which are not.
Bernays [21] (translation by Charles Parsons)

Thus, we obtain infinitesimals as soon as we assume that

(1) there are assignable/standard real numbers, that obey the same rules
as all the real numbers, and

(2) there are real numbers that are not assignable.

Of course, neither Leibniz nor Carnot employed any set-theoretic notions to
specify an ontology of their infinitesimals, but their procedures find better
proxies in modern infinitesimal frameworks than in modern Weierstrassian
ones.36 In more technical terms, one considers the ordinary ZFC formulated
in first order logic, and adds to it the unary predicate st and the axiom
schemata.

Robinson’s framework has enabled a reappraisal of the procedures of the
pioneers of infinitesimal analysis. For a broad outline of such a program see
the studies [8] (2013), [27] (2013), [15] (2014), [25] (2017). Specific scholars
studied include

• Stevin in [96] (2012);

• Gregory in [17];

• Fermat in [100] (2013);

• Leibniz in [101] (2012), [102] (2013), [153] (2014), [16] (2016), [24] (2017);

• Euler in [87] (2015), [7] (2017);

• Cauchy in (Laugwitz [111]) and in [94] (2011), [28] (2012).

8 Reeb, naive integers, and ClaimQ

Georges Reeb’s position regarding the use of infinitesimals was developed in his
essay entitled La mathématique non standard vieille de soixante ans? There
are two distinct versions of the essay, [139] (1979) and [140] (1981). The 1979
version of the essay was reprinted in Salanskis [148]. The book gives an ac-
count of the constructivist view of Reeb. Reeb was closely associated with

36The procedures vs ontology distinction is dealt with in greater detail in the articles
Borovik–Katz [28], Bair et al. [7], Bascelli et al. [16], B laszczyk et al. [24], B laszczyk et
al. [25].
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J. Harthong in his philosophy of mathematics. They published the article In-
tuitionnisme 84 [67] in the book Barreau–Harthong [14]. One can distinguish
at least three distinct approaches to the problem of motivating a non-naive
integer in Reeb, as detailed in the next three sections. See also Lobry [114],
Diener–Diener [36, p. 4].

8.1 Nonformalizable intuitions

Reeb’s position concerning naive integers can perhaps be described as fol-
lows. The naive integers are those integers that all members of humanity
share before they understand any advanced mathematics. Such naive inte-
gers are already present in any formal language since language is necessarily
a succession of symbols, rather than an unordered collection of symbols.

If one accepts a formal language (e.g., that of ZF) with respect to which N
is defined, one must accept also that one understands the following informal
reasoning:

• We recognize “1” of N as the naive one;

• We recognize “2” of N as the naive two;

• etc.

• If we recognize “n” of N as the naive n then we recognize “n + 1” of N
as the naive n plus one.

Reeb then argues that an assertion to the effect that every element of N is
naive is not supported by any formal mathematics, and arrives at his

“Claim Q”: The naive integers don’t fill up N.37

Thus claim Q is at tension with the CD+II mindset (see Section 2.2).
To anyone familiar with model theory, Reeb’s “claim Q” could easily be

interpreted in terms of the existence of nonstandard models of the natural
numbers, whether in PA or ZF, first constructed in Skolem [154]. However,
Reeb [139] takes a more “fundamental” attitude and seems to argue for his
“claim Q” somehow from first principles, the naive integers being taken to be
available before a commitment to formal mathematics. Reeb comments that
being naive is not a mathematical concept, hence not formalizable; hence they
cannot be said to fill up N.

37Reeb’s term in the original French was Constat Q which we loosely translate as Claim Q
fully aware of the inadequacies of such a translation. The difficulty of the term was analyzed
by Salanskis, who noted: “Le problème du remplissement de N par les naifs est totalement
dénué de sens si l’on ne joue pas le jeu de rêver que les formalismes suscitent des référents.”
Salanskis [147] (translation: “The problem of filling N by the naive integers is totally mean-
ingless if one is not playing the game of dreaming that formalisms generate referents.”)
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8.2 Ideal intruders

In [140], Reeb takes a different tack, and argues that any infinitary construc-
tion in mathematics, as recognized at least since Hilbert [72], necessarily in-
troduces ideal elements not intended by initial naive intuitions:

D. Hilbert - pour nous en tenir à un seul nom - a montré claire-
ment, dans son célèbre article sur l’infini, comment la formalisation
(par exemple N,R, . . .) de notions concrètes (les entiers de tout le
monde, les points du continu intuitifs) introduit nécessairement,
en quelque sorte contre la vigilance du formalisateur d’abondants
objets idéaux, non désirés. Reeb [140, p. 149]

Reeb goes on to refer to such elements as “des intrus idéaux inévitables lors
de la formalisation.”

8.3 Link between intuitionism and nonstandard analysis

In the book Diener–Reeb [38, Chapter 9], Reeb provides yet another account
of a non-naive integer in an intuitionistic setting, in terms of the size of a
hypothetical solution to xn + yn = zn (this was before A. Wiles; of course
Fermat’s last theorem can be replaced by a conjecture that is still open).

Surprising as it may seem to the uninitiated, the French school of nonstan-
dard analysis draws a direct connection between Brouwer’s intuitionism and
nonstandard analysis. We refer to Diener–Reeb [38, Chapter 9] and Harthong–
Reeb [67] for a detailed discussion, while we sketch the motivation for this
connection as follows.

L. E. J. Brouwer was the founder of intuitionism, the first school of con-
structive mathematics; the latter aims to provide a computational foundation
for mathematics based on the Brouwer–Heyting–Kolmogorov (BHK) interpre-
tation of logic.

To identify a part of classical mathematics as not-acceptable in intuitionis-
tic mathematics, Brouwer introduced a technique which would later be called
“Brouwerian counterexamples;” see Mandelkern [124] for an overview.

Such counterexamples come in strong and weak flavors and are meant to
cast doubt on the constructive/intuitionistic acceptability of a given theorem
or axiom. A weak Brouwerian counterexample against the law of excluded
middle (LEM) is as follows:

A∨¬A is not acceptable (under the BHK interpretation) because
there is no algorithm to decide whether A = ‘Goldbach’s conjec-
ture’ is false or not (or any as-yet unproved conjecture).
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However, Goldbach’s conjecture has been verified using computers up to
very large numbers. Thus, there is the possibility, discussed at length in [67],
that Goldbach’s conjecture is false, but that the counterexample cannot be
constructed (in principle and/or in practice). Hence, Goldbach’s conjecture
would be “true in the real world,” but false in principle. Here, the real world
could be either “the physical world” or the world of constructive mathematics,
according to [67].

In other words, all the natural numbers one can construct (in principle or in
practice) do satisfy Goldbach’s conjecture, but “there are out there” numbers
which do not. Following [67], one could refer to the former (constructive)
numbers as naive integers (satisfying Goldbach’s conjecture) and to the others
as non-naive. Now, Goldbach’s conjecture is just one example, and there
will always be unsolved conjectures, so the previous idea is persistent in that
sense. The above reasoning is how one could interpret the adage by Reeb and
Harthong that “the naive integers do not fill up N” based on Brouwer’s weak
counterexamples to LEM.

Meanwhile, the observation that “the naive integers do not fill up N” is
the basic motivation for having nonstandard numbers in [67], and we observe
how Brouwer’s intuitionism motivates the existence of nonstandard numbers,
especially in the sense of Nelson’s IST.

8.4 Nelson-style motivations

There are Nelson-style motivations for such a claim Q but they don’t seem to
be the same as Reeb’s. There are various motivations for why naive integers
shouldn’t exhaust N. One of them is in terms of a multitude that’s too vast
to be expressed by even a computer the size of the universe running the entire
time allotted to our civilisation and exploiting the fastest growing functions in
our logical arsenal including superbusy beavers. Such a number could function
as infinite for all practical purposes at the naive level. This indicates a useful
lack of homogeneity of N and a promise of a richer structure which is better
captured in terms of an enriched syntax as in Nelson’s system, which singles
out standard (or assignable) elements out of N by means of a single-place
predicate violating the separation axiom.

8.5 Quantum intuitions

The breakdown of infinite divisibility at quantum scales poses an undeniable
challenge to the CD+II mentality (see Section 2.2). It makes physically irrele-
vant a literal reading of the mathematical definition of the derivative in terms
of limits as ∆x tends to zero, since attempting to calculate the derivative for
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increments below the Planck scale would yield physically meaningless results.
Rather, quotients like ∆y

∆x need to be taken in a certain range, or at a suitable
level. Attempts to formalize Planck’s ℏ as an infinitesimal go back at least to
Harthong [66], Werner–Wolff [172]. The article Nowik–Katz [129]38 developed
a general framework for differential geometry at level λ. In the technical im-
plementation λ is an infinitesimal but the formalism is a better mathematical
proxy for a situation where infinite divisibility fails for physical reasons, and
a scale for calculations needs to be fixed accordingly.

If one accepts Reeb’s “Claim Q,” then any non-naive integer can be de-
scribed as infinite in the sense that it is greater than any naive integer. Once
one forms the field of fractions, the inverse of such an infinite integer in this
sense becomes an infinitesimal.

9 Conclusion

While mathematicians may not always think of set theory as being dynamic,
such a switch in foundational thinking is helpful in appreciating the advantages
of the framework developed by Robinson, Nelson, and others.

Just as the automobiles have gotten better over the past 130 years, so also
there is room for improvement as far as the 1870 set-theoretic foundations are
concerned. The automobile industry is dynamic and flexible willy-nilly (if you
don’t innovate, your competitors will) but the received, and outdated, views
on set theory seem to have cornered the market like an intended monopoly,
alluded to in Section 7.1. Automobiles today have numerous options, from fuel
injection, 4-wheel drive, convertible, and GPS to more futuristic ones like lift-
off abilities to various degrees, with broad agreement as to the general utility
of such options some of which have become part of the standard package.
We argue in favor of inclusion of the infinitesimal option as part of the core
package of set-theoretic foundations.

A natural place to start would be in education, so as to restore infinitesi-
mals to the calculus curriculum, as in Cauchy’s classroom at the Ecole Poly-
technique. Accordingly, over the past few years we have trained over 400 fresh-
men using Keisler’s infinitesimal calculus textbook [107], and summarized the
results in the study Katz–Polev [99]. At the high school level infinitesimal
calculus has been taught in Geneva for the past twelve years, based on the
approach developed in [81].

38In his technical report for the CNRS in 1985, Alain Connes wrote: “La séduction de
l’analyse non standard est due en grande partie à la création d’un vocabulaire suggestif; la
géométrie différentielle s’est bien gardée de céder à cette tentation, etc.” (cited in Barreau
[13, p. 35]). Had we been aware of Alain Connes’s seductive comment at the time we might
have subtitled our article [129] “Differential geometry reduced at last.”
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In addition to serving as a fruitful tool for what Leibniz called the Ars
inveniendi, Robinson’s framework has occasioned a deepened reflection on
mathematical foundations in general and the meaning of number in particular.
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based on von Neumann–Bernays–Gödel theory, J. Symbolic Logic, 66
(2001), 1321–1341.

[4] L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann
equation, Arch. Ration. Mech. Anal., 77(1) (1981), 11–21.

[5] M. Atiyah, The Interface between Mathematics and Physics: A Panel
Discussion sponsored by the DIT & the RIA, Irish Math. Soc. Bull., 58
(2006), 33–54.

[6] J. Avigad, Weak theories of nonstandard arithmetic and analysis, Re-
verse mathematics 2001, Lect. Notes Log., 21, Assoc. Symbol. Logic, La
Jolla, CA, 2005, 19–46.

[7] J. Bair, P. B laszczyk, R. Ely, V. Henry, V. Kanovei, K. Katz, M. Katz,
S. Kutateladze, T. McGaffey, P. Reeder, D. Schaps, D. Sherry and
S. Shnider, Interpreting the infinitesimal mathematics of Leibniz and
Euler, J. Gen. Philos. Sci., 48(1) (2017). See http://dx.doi.org/10.

1007/s10838-016-9334-z and http://arxiv.org/abs/1605.00455



238 Fletcher, Hrbacek, Kanovei, Katz, Lobry, and Sanders

[8] J. Bair, P. B laszczyk, R. Ely, V. Henry, V. Kanovei, K. Katz, M. Katz,
S. Kutateladze, T. McGaffey, D. Schaps, D. Sherry, and S. Shnider, Is
mathematical history written by the victors? Notices Amer. Math. Soc.,
60(7) (2013), 886–904. See http://www.ams.org/notices/201307/

rnoti-p886.pdf and http://arxiv.org/abs/1306.5973

[9] J. Bair and V. Henry, Analyse infinitésimale, Le calculus redécouvert.
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Hermann, 2004.

[117] P. Loeb, Conversion from nonstandard to standard measure spaces and
applications in probability theory, Trans. Amer. Math. Soc., 211 (1075),
113–122.

[118] P. Loeb and M. Wolff (Eds.), Nonstandard Analysis for the Working
Mathematician, Second Edition, Springer, Dordrecht, 2015.
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