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AND OTHER APPLICATIONS OF
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Abstract

Like his colleagues de Prony, Petit, and Poisson at the Ecole Poly-
technique, Cauchy used infinitesimals in the Leibniz–Euler tradition
both in his research and teaching. Cauchy applied infinitesimals in an
1826 work in differential geometry where infinitesimals are used neither
as variable quantities nor as sequences but rather as numbers. He also
applied infinitesimals in an 1832 article on integral geometry, similarly
as numbers. We explore these and other applications of Cauchy’s in-
finitesimals as used in his textbooks and research articles.

An attentive reading of Cauchy’s work challenges received views on
Cauchy’s role in the history of analysis and geometry. We demonstrate
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the viability of Cauchy’s infinitesimal techniques in fields as diverse as
geometric probability, differential geometry, elasticity, Dirac delta func-
tions, continuity and convergence.
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1 Introduction

Cauchy was one of the founders of rigorous analysis. However, the meaning
of rigor to Cauchy is subject to debate among scholars. Cauchy used the
term infiniment petit (infinitely small) both as an adjective and as a noun,
but the meaning of Cauchy’s term is similarly subject to debate. While Ju-
dith Grabiner and some other historians feel that a Cauchyan infinitesimal is
a sequence tending to zero (see e.g., [25], 1981), others argue that there is a
difference between null sequences and infinitesimals in Cauchy; see e.g., Laug-
witz ([32], 1987), Katz–Katz ([29], 2011), Borovik–Katz ([9], 2012), Smoryński
([38], 2012, pp. 361–373 and [39], 2017, pp. 56, 61), Bair et al. ([2], 2017 and
[4], 2019).

Cauchy used infinitesimals in the Leibniz–Euler tradition both in his re-
search and teaching, like his colleagues de Prony, Petit, and Poisson (see Sec-
tion 7). In the present text we will examine several applications Cauchy makes
of infinitesimals, and argue that he uses them as atomic entities (i.e., entities
not analyzable into simpler constituents) rather than sequences. We explore
Cauchy’s use of infinitesimals in areas ranging from Dirac delta to integral
geometry.

2 Dirac delta, summation of series

We consider Cauchy’s treatment of (what will be called later) a Dirac delta
function. Cauchy explicitly uses a unit-impulse, infinitely tall, infinitely nar-
row delta function, as an integral kernel. Thus, in 1827, Cauchy used infinites-
imals in his definition of a Dirac delta function:

Moreover one finds, denoting by α, ε two infinitely small numbers,1

1

2

∫ a+ε

a−ε
F (µ)

α dµ

α2 + (µ− a)2
=
π

2
F (a) (2.1)

(Cauchy [14], 1827, p. 289; counter (2.1) added)

A formula equivalent to (2.1) was proposed by Dirac a century later.2 The
expression

α

α2 + (µ− a)2
(2.2)

1As discussed in (Laugwitz [33], 1989), a further condition needs to be imposed on α
and ε in modern mathematics to ensure the correctness of the formula.

2The key property of the Dirac delta “function” δ(x) is exemplified by the defining
formula

∫∞
−∞ f(x)δ(x) = f(0), where f(x) is any continuous function of x (Dirac [20],

1930/1958, p. 59).
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occurring in Cauchy’s formula is known as the Cauchy distribution in proba-
bility theory. Here Cauchy specifies a function which meets the criteria as set
forth by Dirac a century later. Cauchy integrates the function F against the
kernel (2.2) as in formula (2.1) so as to extract the value of F at the point a,
exploiting the characteristic property of a delta function.

From a modern viewpoint, formula (2.1) holds up to an infinitesimal error.
For obvious reasons, Cauchy was unfamiliar with modern set-theoretic founda-
tional ontology of analysis (with or without infinitesimals), but his procedures
find better proxies in modern infinitesimal frameworks than Weierstrassian
ones.3 From the modern viewpoint, the right hand side of (2.1), which does
not contain infinitesimals, is the standard part (see Section 8) of the left hand
side, which does contain infinitesimals. Thus, a Cauchy distribution with an
infinitesimal scale parameter α produces an entity with Dirac-delta behavior,
exploited by Cauchy already in 1827; see Katz–Tall ([31], 2013) for details.

Similarly, in his article (Cauchy [18], 1853) on the convergence of series
of functions, infinitesimals are handled as atomic inputs to functions. Here
Cauchy studies the series

u0 + . . .+ un + . . .

Cauchy proceeds to choose “une valeur infiniment grande” (an infinitely large
value) for the index n in [18, p. 456]. He then states his convergence theorem
modulo a hypothesis that the sum un + un+1 + . . .+ un′−1 should be

toujours infiniment petite pour des valeurs infiniment grandes des
nombres entiers n et n′ > n . . . 4 (Cauchy [18], 1853, p. 457;
emphasis added).

Cauchy’s proof of the continuity of the sum exploits the condition that the
sum un + un+1 + . . . + un′−1 should be infinitesimal for atomic infinitesimal
inputs. Cauchy writes down such an input in the form x = 1

n ; see e.g., [18,
p. 457]. For further details on [18] see Section 6.3; see also Bascelli et al. ([6],
2018).

3 Differentials, infinitesimals, and derivatives

In his work in analysis, Cauchy carefully distinguishes between differentials ds, dt
which to Cauchy are noninfinitesimal variables, on the one hand, and infinites-
imal increments ∆s,∆t, on the other:

3On the procedures/ontology distinction see B laszczyk et al. ([8], 2017).
4Translation: “always infinitely small for infinitely large values of whole numbers n

and n′ > n.”
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[S]oit s une variable distincte de la variable primitive t. En vertu
des définitions adoptées, le rapport entre les différentielles ds, dt,
sera la limite du rapport entre les accroissements infiniment pe-
tits ∆s, ∆t.5 (Cauchy [16], 1844, p. 11; emphasis added)

Cauchy goes on to express such a relation by means of a formula in terms of
the infinitesimals ∆s and ∆t:

On aura donc6

ds

dt
= lim.

∆s

∆t
(3.1)

(ibid., equation (1); significantly, the period after lim as in “lim.”
is in the original; counter (3.1) added)

In modern infinitesimal frameworks, the passage from the ratio of infinitesimals
such as ∆s

∆t to the value of the derivative is carried out by the standard part
function; see equations (8.3) and (8.5) in Section 8. Paraphrazing Cauchy’s
definition of the derivative as in (3.1) in Archimedean terms would necessarily
involve elements that are inexplicit in the original definition. Thus Cauchy’s
“lim.” finds a closer proxy in the notion of standard part, as in formula (8.7),
than in any notion of limit in the context of an Archimedean continuum; see
also Bascelli et al. ([5], 2014).

4 Integral geometry

An illuminating use of infinitesimals occurs in Cauchy’s article in a field today
called integral geometry (also known as geometric probability); see Hykšová et
al. ([28], 2012, pp. 3–4) for a discussion.

4.1 Decomposition into infinitesimal segments

Cauchy proved a formula known today as the Cauchy–Crofton formula (or the
Crofton formula; see e.g., Tabachnikov ([40], 2005, p. 37)) in his article ([17],
1850; originally presented as [15], 1832). Here Cauchy exploits a decomposition
of a curve into infinitesimal length elements (respectively, of a surface into
infinitesimal area elements) in an essential way in proving a formula for the

5Let s be a variable distinct from the primitive variable t. By virtue of the definitions
chosen, the ratio between the differentials ds, dt will be the limit of the ratio between the
infinitely small increments ∆s, ∆t.”

6Translation: “One will then have.”
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length of a plane curve (respectively, area of a surface in 3-space). Thus,
Cauchy proves the formula

S =
1

4

∫ π

−π
Adp (4.1)

for the length of a plane curve, in his Théorème I in [17, p. 167–168]. In
formula (4.1), p is the polar angle (usually denoted θ today), whereas A is
the sum of the orthogonal projections of the length elements onto a rotating
line with parameter p. Note that this is an exact formula (rather than an
approximation), typical of modern integral geometry.

In his Théorème II, Cauchy goes on to prove a constructive version, or
a discretisation, of his Théorème I. Here Cauchy replaces integrating with
respect to the variable-line differential dp, by averaging over a system of n
equally spaced lines (i.e., such that successive lines form equal angles). Cauchy
then obtains the approximation

S =
π

2
M (4.2)

where M is the average. Here the equality sign appears in [17, p. 169] as in our
formula (4.2), and denotes approximation. Cauchy also provides an explicit
error bound of

πM

2n2
(4.3)

for the approximation, in [17, p. 169]. Cauchy first proves the result for a
straight line segment, and then writes:

Le théorème II étant ainsi démontré pour le cas particulier où la
quantité S se réduit à une longueur rectiligne s, il suffira, pour
le démontrer dans le cas contraire, de décomposer S en éléments
infiniment petits.7 (Cauchy [17], 1850, p. 171; emphasis added)

Thus Cauchy obtains a sequence of error bounds of the form (4.3) that improve
(become smaller) as n increases.

4.2 Analysis of Cauchy’s argument

Cauchy exploits two entities which need to be carefully distinguished to keep
track of the argument:

7Translation: “Theorem II having been proved for the special case when the quantity S is
a straight line segment s, it would be sufficient, to prove it in the contrary [i.e., the general]
case, to decompose S into infinitely small elements.”
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1. the curve itself, and

2. the circle (or in modern terminology, the Grassmannian) of directions
parametrized by p (counterpart of the modern polar angle θ).

Note that Cauchy treats the curve and the Grassmannian differently. Namely,
the curve is subdivided into infinitely many infinitesimal elements of length.
Meanwhile, as far as the Grassmannian is concerned, Cauchy works with a
finite n, chooses n directions that are equally spaced, and is interested in the
asymptotic behavior of the sequence of error estimates (4.3) as n tends to
infinity.

If an infinitesimal merely meant a variable quantity or sequence to Cauchy,
then there shouldn’t be any difference in Cauchy’s treatment of the curve and
the Grassmannian; both should be sequences. However, Cauchy does treat
them differently:

• the curve is viewed as an aggregate of infinitely many infinitesimal ele-
ments;

• the circle of directions is decomposed into n segments, and the focus is
on the asymptotic behavior of the error bound as a function of n.

The approach in the 1832/1850 paper on integral geometry indicates that
Cauchy’s infinitesimal (the element of length decomposing the curve) is not a
variable quantity or a sequence, but rather an atomic entity, as discussed in
Section 2.

5 Centers of curvature, elasticity

In studying the geometry of curves, Cauchy routinely exploits infinitesimals
and related notions such as infinite proximity. We will analyze Cauchy’s book
Leçons sur les applications du calcul infinitésimal à la géométrie ([13], 1826).

5.1 Angle de contingence

Cauchy starts by defining the angle de contingence ±∆τ as the angle between
the two tangent lines of an arc ±∆s at its extremities.To follow the mathe-
matics it is helpful to think of parameter τ as the angle measured counter-
clockwise between the positive direction of the x-axis and the tangent vector
to the curve. He then considers the normals to the curve at the extremities of
the arc starting at the point (x, y).
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5.2 Center of curvature and radius of curvature

Cauchy goes on to give two definitions of both the center of curvature and the
radius of curvature. Thus, he writes:

la distance du point (x, y) au point de rencontre des deux nor-
males est sensiblement équivalente au rayon d’un cercle qui aurait
la même courbure que la courbe.8 (Cauchy [13], 1826, p. 98)

Notice that Cauchy mentions two items:

(Ca1) the intersection of the two normal lines produces a point which will
generate the center of curvature, and

(Ca2) the distance between (x, y) and the point defined in item (Ca1) which
will generate the radius of curvature.

Thus the radius of curvature is naturally defined in terms of the center of
curvature (namely, as the distance between the point (x, y) and the center of
curvature).

5.3 ε, nombre infiniment petit

Next, Cauchy chooses an infinitesimal number ε and exploits the law of sines
to write down a relation that will give an expression for the radius of curvature:

[S]i l’on désigne par ε un nombre infiniment petit, on aura9

sin
(
π
2 ± ε

)
r

=
sin(±∆τ)√
∆x2 + ∆y2

(5.1)

(Cauchy [13], 1826, p. 98; emphasis and counter “(5.1)” added).

Note that Cauchy describes his infinitesimal ε neither as a sequence nor as a
variable quantity but rather as an infinitely small number (“nombre”). At the
next stage, Cauchy passes to the limit to obtain:

On en conclura, en passant aux limites,

1

ρ
= ± dτ√

dx2 + dy2
(5.2)

[13, p. 99] (emphasis and counter “(5.2)” added)

8Translation: “the distance from the point (x, y) to the intersection point of two normals
is appreciably equivalent to the radius of a circle which would have the same curvature as
the curve.”

9Translation: “If one denotes by ε an infinitely small number, one will obtain”
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It is instructive to analyze what happens exactly in passing from formula (5.1)
to formula (5.2). Here Cauchy replaces the infinitesimals ∆x, ∆y, and sin ∆τ
by the corresponding differentials dx, dy, and dτ . The expression sin(π2 ± ε) is
infinitely close to 1 whereas r is infinitely close to ρ, justifying the replacements
in the left-hand side of Cauchy’s equation.

As in Cauchy’s definition of derivative analyzed in Section 3, Cauchy’s
limite here admits of a close proxy in the standard part function (see Section 8).
Meanwhile, any attempt to interpret Cauchy’s procedure in the context of an
Archimedean continuum will have to deal with the nettlesome issue of the
absence of Cauchyan infinitesimals like ∆x, ∆y, ∆τ , and ε in such a framework.

5.4 Second characterisation of radius and center of curvature

Using his formula for ρ, Cauchy goes on to give his second characterisation of
the radius of curvature and center of curvature:

Ce rayon, porté à partir du point (x, y) sur la normale qui renferme
ce point, est ce qu’on nomme le rayon de courbure de la courbe
proposée, relatif au point dont il s’agit, et l’on appelle centre de
courbure celle des extrémités du rayon de courbure que l’on peut
considérer comme le point de rencontre de deux normales infini-
ment voisines. (Cauchy [13], p. 99, emphasis in the original)

Here Cauchy notes that the center of curvature can be viewed as the other
endpoint of the vector of length ρ starting at the point (x, y) and normal to the
curve. Cauchy then reiterates the earlier definition of the center of curvature
of a plane curve in terms of the intersection point of a pair of infinitely close
normals, as Leibniz may have done; see Katz–Sherry ([30], 2013). Note that
neither the center of curvature nor the radius of curvature are defined using a
notion of limit in the context of an Archimedean continuum.

Cauchy’s presentation of infinitesimal techniques here contains no trace of
the variable quantities or sequences exploited in his textbooks in the defini-
tions of infinitesimals. To adapt Cauchy’s definition of center of curvature to
modern custom, it is certainly possible to paraphrase it in the context of an
Archimedean continuum. This can be done for example by taking a suitable
sequence of (pairs of) normals and passing to a limit. However, such a para-
phrase would not be faithful to Cauchy’s own procedure. We will follow the
continuation of Cauchy’s analysis in Section 5.5.
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5.5 Formula for ρ in terms of infinitesimal displacements

At this stage, Cauchy’s goal is to develop a formula for the radius of curvature ρ
of the curve at a point (x, y). Cauchy seeks to express ρ in terms of the distance
between the pair of points obtained from (x, y) by means of equal infinitesimal
displacements, one along the curve and the other along the tangent. To this
end, Cauchy starts by choosing an infinitesimal i:

Ajoutons que, si, à partir du point (x, y), on porte sur la courbe
donnée et sur sa tangente, prolongées dans le même sens que
l’arc s, des longueurs égales et infiniment petites représentées par i,
on trouvera, pour les coordonnées de l’extrémité de la seconde
longueur,

x+ i
dx

ds
, y + i

dy

ds

et, pour les coordonnées de l’extrémité de la première,

x+ i
dx

ds
+
i2

2

(
d2x

ds2
+ I

)
, y + i

dy

ds
+
i2

2

(
d2y

ds2
+ J

)
,

I, J désignant des quantités infiniment petites. (Cauchy [13], 1826,
p. 105)

Cauchy refers to the endpoints of the infinitesimal segment of the curve itself
as the extremities. He denotes the distance between the two extremities by γ.10

Then straightforward calculations produce the following formula for ρ:

De cette dernière formule . . . on tire

ρ = lim
i2

2γ
. (5.3)

(ibid.; counter “(5.3)” added)

Note that in Cauchy’s formula that we labeled (5.3), the symbol “lim” is ap-
plied to a ratio of two infinitesimals. Therefore the use of lim here is analogous
to the use of the standard part function as in (8.7). Cauchy employed a similar
technique in the definition of derivative analyzed in Section 3, and in pass-
ing from formula (5.1) to formula (5.2) as analyzed in Section 5.3. Cauchy
concludes as follows:

10Actually Cauchy uses a slightly different symbol not available in modern fonts.
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En conséquence, pour obtenir le rayon de courbure d’une courbe
en un point donné, il suffit de porter sur cette courbe et sur sa
tangente, prolongées dans le même sens, des longueurs égales et
infiniment petites, et de diviser le carré de l’une d’elles par le dou-
ble de la distance comprise entre les deux extrémités. La limite
du quotient est la valeur exacte du rayon de courbure. (op. cit.,
pp. 105–106; emphasis in the original)

Cauchy’s limite here again plays the role of the standard part (8.3).

5.6 Elasticity

Another example of Cauchy’s application of infinitesimals is his foundational
article on elasticity ([12], 1823) where un élément infiniment petit is exploited
on page 302. The article is mentioned by Freudenthal in ([23], 1971, p. 378);
for details see Belhoste ([7], 1991, p. 94).

6 Continuity in Cauchy

In his Cours d’Analyse ([11], 1821), Cauchy comments as follows concern-
ing the continuity of a few functions, including the function a

x in the range
between 0 and infinity:

[E]ach of these functions is continuous in the neighborhood of any
finite value given to the variable x if that finite value is contained
. . . , for the function a

x . . . , between the limits x = 0 and x = ∞.
(Cauchy as translated by Bradley and Sandifer11 [10], 2009, p. 27)

Here Cauchy asserts the continuity of the function a
x for finite values of x

contained between the limits 0 and ∞.

6.1 Ambiguity in definition of continuity

From a modern viewpoint, the above definition is ambiguous. Interpreting it
as continuity on (0,∞) would rule out the possibility of interpreting Cauchy’s
continuity as uniform continuity, since 1

x is not uniformly continuous on (0,∞).
Interpreting it as saying that for every real x there is a neighborhood of x
where the function is continuous, would not rule out a uniform interpretation;
e.g., the function 1

x is uniformly continuous in a suitable neighborhood of each
nonzero real point.

11Reinhard Siegmund-Schultze writes: “By and large, with few exceptions to be noted
below, the translation is fine” ([37], 2009).
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Cauchy on occasion mentions that x is a real (as opposed to complex )
variable. However, identifying Cauchy’s notion with the modern notion of
real number would clearly be problematic. Cauchy seems not to have elabo-
rated a distinction between finer types of continuity we are familiar in modern
mathematics, such as ordinary pointwise continuity vs uniform continuity.

6.2 From variables to infinitesimals

There was a transformation in Cauchy’s thinking about continuity from an
1817 treatment in terms of variables to an 1821 treatment in terms of in-
finitesimals. In 1817, Cauchy defined continuity of f in terms of commutation
of taking limit and evaluating the function:

La limite d’une fonction continue de plusieurs variables est la même
fonction de leur limite. Conséquence de ce Théorème relativement
à la continuité des fonctions composées qui ne dépendent que d’une
seule variable.12 (Cauchy as quoted by Guitard [26], 1986, p. 34;
emphasis added; cf. Belhoste [7], 1991, p. 309)

Four years later in his Cours d’Analyse, Cauchy defined continuity as follows:

Among the objects related to the study of infinitely small quanti-
ties, we ought to include ideas about the continuity and the discon-
tinuity of functions. In view of this, let us first consider functions
of a single variable. Let f(x) be a function of the variable x, and
suppose that for each value of x between two given limits, the func-
tion always takes a unique finite value. If, beginning with a value
of x contained between these limits, we add to the variable x an
infinitely small increment α, the function itself is incremented by
the difference f(x + α) − f(x), which depends both on the new
variable α and on the value of x. Given this, the function f(x) is
a continuous function of x between the assigned limits if, for each
value of x between these limits, the numerical value of the dif-
ference f(x + α) − f(x) decreases indefinitely with the numerical
value of α. (Cauchy as translated in [10, p. 26]; emphasis on “con-
tinuous” in the original; emphasis on “infinitely small increment”
added)

12Translation: “The limit of a continuous function of several variables is [equal to] the
same function of their limit. Consequences of this Theorem with regard to the continuity
of composite functions dependent on a single variable.” The reference for this particular
lesson in the Archives of the Ecole Polytechnique is as follows: Le 4 Mars 1817, la leçon 20.
Archives E. P., X II C7, Registre d’instruction 1816–1817.
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This definition can be thought of as an intermediary one between the 1817
definition purely in terms of variables, and his second 1821 definition stated
purely in terms of infinitesimals. Cauchy’s second definition summarizes the
definition just given as follows:

In other words, the function f(x) is continuous with respect to x
between the given limits if, between these limits, an infinitely small
increment in the variable always produces an infinitely small in-
crement in the function itself. (ibid.; emphasis in the original)

Cauchy’s second definition just quoted can be compared with one of the first
modern ones; see formula (8.4). Cauchy concludes his discussion of continuity
and discontinuity as follows:

We also say that the function f(x) is a continuous function of the
variable x in a neighborhood of a particular value of the variable x
whenever it is continuous between two limits of x that enclose that
particular value, even if they are very close together. Finally, when-
ever the function f(x) ceases to be continuous in the neighborhood
of a particular value of x, we say that it becomes discontinuous,
and that there is solution13 of continuity for this particular value.
(ibid.; emphasis in the original)

Three salient points emerge from these passages:

1. Cauchy makes it clear at the outset that in his mind continuity is “among
the objects related to the study of infinitely small quantities”;

2. the infinitely small α is used conspicuously in the definitions;

3. conspicuously absent from Cauchy’s multiple definitions of continuity is
the notion of limit.14

Yushkevich observes in this connection that “the definition of continuity in
Cauchy is as far from the Epsilontik as his definition of limit” ([42], 1986,
p. 69).

6.3 The 1853 definition

Some three decades later in 1853, Cauchy defined continuity in a similar fash-
ion:

13meaning dissolution, i.e., absence (of continuity).
14The word limit itself does occur in Cauchy’s definitions here but in an entirely different

sense of endpoint of an interval where inputs to the function originate (what we would call
today the domain of the function); cf. Smoryński ([39], 2017, p. 52, note 48).
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. . . une fonction u de la variable réelle x sera continue, entre deux
limites données de x, si, cette fonction admettant pour chaque
valeur intermédiaire de x une valeur unique et finie, un accroisse-
ment infiniment petit attribué à la variable produit toujours, entre
les limites dont il s’agit, un accroissement infiniment petit de la
fonction elle-même. (Cauchy [18], 1853; emphasis in the original)

Cauchy’s 1853 definition echoes the 1821 definition given in Section 6.2, where
Cauchy denoted his infinitely small α and required the difference f(x+α)−f(x)
to be infinitesimal as a criterion for continuity of the function f .

Cauchy’s 1821 example of the function 1
x between 0 and infinity suggests

that Cauchy’s definition of continuity is, from a modern viewpoint, somewhat
ambiguous, as discussed in Section 6.1. Resolving the ambiguity by attributing
uniform continuity to Cauchy may not preserve such inherent ambiguity.

A possible interpretation of Cauchy’s comments is available in the context
of an infinitesimal-enriched continuum. Here one can interpret x as referring
to an assignable value (i.e., what we refer to today as a real value), and α an
(inassignable) infinitesimal. Then 1

x is continuous in a neighorbood of x in
the sense that for each infinitesimal α the difference f(x + α) − f(x) is also
infinitesimal.

6.4 Contingency and determinacy

We wish to suggest, following Hacking ([27], 2014, pp. 72–75), the possibility of
alternative courses for the development of analysis (a Latin model as opposed
to a butterfly model).15 From such a standpoint, the traditional assumption
that the historical development inexorably led to modern classical analysis (as
formalized by Weierstrass and others) remains merely a hypothesis. A reader
of Dani–Papadopoulous [19] may be surprised to learn that

Cauchy gave a faultless definition of continuous function, using
the notion of ‘limit’ for the first time. Following Cauchy’s idea,
Weierstrass popularized the ε-δ argument in the 1870’s. ([19], 2019,
p.283)

Such views fit well with a deterministic butterfly model leading from Cauchy
to Weierstrass. However, such views are not merely anachronistic but contrary
to fact, as we saw in Sections 6.2 and 6.3. Cauchy did write: “Lorsque les
valeurs numériques successives d’une même variable décroissent indéfiniment,

15Hacking contrasts a model of a deterministic biological development of animals like
butterflies (the egg–larva–cocoon–butterfly sequence), as opposed to a model of a contingent
historical evolution of languages like Latin.
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de manière à s’abaisser au-dessous de tout nombre donné, cette variable de-
vient ce qu’on nomme un infiniment petit ou une quantité infiniment petite.
Une variable de cette espèce a zéro pour limite” [11, p. 4] (emphasis in the origi-
nal). However, interpreting Cauchy’s wording as an anticipation of the modern
Epsilontik notion of limit would be anachronistic, since Cauchy’s wording here
echoes formulations provided by his teacher Lacroix, and even earlier formula-
tions found in Leibniz, not to speak of the ancient method of exhaustion; see
Bair et al. ([4], 2019) for details.

We argue, following Robinson ([35], 1966) and Laugwitz [32], 1987), that
the procedures of Leibniz, Euler and Cauchy were closer to the procedures
in Robinson’s framework than the procedures in a Weierstrassian framework.
On this view, interpretation of the work of Leibniz, Euler, and Cauchy in
analysis is more successful in a modern infinitesimal framework than a modern
Archimedean one; see e.g., Bair et al. ([1], 2018) on Leibniz and Bair et al. ([3],
2017) on Euler. For a survey of infinitesimal mathematics and its history see
e.g., Robinson ([35], 1966, chapter 10, pp. 260–282).

7 Reception of Cauchy’s ideas among his colleagues

For historians advocating an externalist approach to the history of mathe-
matics, it is important to consider the reception of Cauchy’s ideas among his
contemporaries. Cauchy’s contemporaries and colleagues at the Ecole Poly-
technique (Poisson and others; see below) had specific ideas about what in-
finitely small meant. One cannot provide a proper analysis of Cauchy’s notion
without taking into account the ideas on the subject among his contempo-
raries. There seems to be little reason to doubt that the notion of infinitely
small in the minds of Poisson, de Prony, Petit, and others was solidly in
the Leibniz–l’Hôpital–Bernoulli–Euler school. If so, the question arises how
modern commentators could assume that Cauchy meant something else by
infinitely small than was customary in his natural scientific milieu.

How was the notion perceived by Cauchy’s contemporaries like Poisson as
well as a majority of Cauchy’s colleagues at the École Polytechnique? Their
comments (see below) indicate that their work was a natural habitat for in-
finitesimals in the sense of the founders of the calculus. Thus, Cauchy’s col-
league Petit, a professor of physics, requested that

this material [on differential calculus] be presented without cer-
tain notions from algebra, which mainly had to do with series and
which, he alleged, the students would never have occasion to use in
the [engineering] services. Moreover, he insisted that the method
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of infinitesimals be used. (Petit as translated by Belhoste in [7],
1991, p. 65; emphasis added)

In a similar vein, de Prony reported:

I will finish my observations on the course in pure analysis by
manifesting the desire to see the use of the algorithm of imaginaries
[i.e., complex numbers] reduced to what is strictly necessary. I have
been astonished, for instance, to see the expression of the element
of a curve, given in polar coordinates, derived [by Cauchy] from
an analysis using this algorithm; it follows much more quickly and
with greater ease from a consideration of infinitesimals. (de Prony
as translated in [7, p. 83]; emphasis added)

Poisson and de Prony both championed the use of infinitesimals through their
influence on the Conseil de Perfectionnement (CP) of the École, as noted by
Gilain:

[O]n trouve dans le programme officiel, adopté par le CP, une modi-
fication significative : l’ajout dans les applications géométriques du
calcul différentiel et intégral, et dans le programme de mécanique,
de l’instruction d’utiliser les infiniment petits. Même si l’auteur
de cette proposition n’est pas mentionné dans les Procès-verbaux,
on peut penser qu’elle émane des examinateurs de mathématiques,
Poisson et de Prony, qui animaient en général la commission pro-
gramme du CP, et dont on connâıt les convictions en faveur de la
méthode des infiniment petits. (Gilain [24], 1989, §32; emphasis
added)

Like Cauchy, his contemporaries de Prony, Petit, and Poisson saw infinites-
imals as a natural tool both in teaching and in research, though they were
critical of what they saw as excessive rigor in Cauchy’s teaching.

Paying proper attention to the scientific context of the period goes hand-
in-hand with looking at Cauchy’s practices and procedures on his own terms,
or as close as possible to his own terms, without necessarily committing oneself
to an Archimedean interpretation thereof. Thus, Ferraro writes:

Cauchy uses infinitesimal neighborhoods of x in a decisive way . . .
Infinitesimals are not thought as a mere façon de parler, but they
are conceived as numbers, though a theory of infinitesimal numbers
is lacking. (Ferraro [21], 2008, p. 354)

This comment by Ferraro is remarkable for two reasons:
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1. it displays a clear grasp of the distinction between procedure and ontol-
ogy (see B laszczyk et al. ([8], 2017);

2. it is a striking admission concerning the bona fide nature of Cauchy’s
infinitesimals.

Ferraro’s comment is influenced by Laugwitz’s perceptive analysis of Cauchy’s
sum theorem in ([32], 1987), a paper cited several times on Ferraro’s page 354.

8 Modern infinitesimals in relation to Cauchy’s proce-
dures

While set-theoretic justifications for a modern framework, Archimedean or
otherwise, are obviously not to be found in Cauchy, Cauchy’s procedures ex-
ploiting infinitesimals find closer proxies in Robinson’s framework for analysis
with infinitesimals than in a Weierstrassian framework. In this section we
outline a construction of a hyperreal extension

R ↪→ ∗R, (8.1)

and point out specific similarities between procedures using the hyperreals, on
the one hand, with Cauchy’s procedures, on the other.

Let RN denote the ring of sequences of real numbers, with arithmetic op-
erations defined termwise. Then we have

∗R = RN/MAX

where MAX is the maximal ideal consisting of all “negligible” sequences (un).
Here a sequence is negligible if it vanishes for a set of indices of full measure ξ,
namely, ξ

(
{n ∈ N : un = 0}

)
= 1. Here

ξ : P(N)→ {0, 1}

is a finitely additive probability measure taking the value 1 on cofinite sets,
where P(N) is the set of subsets of N. The subset Fξ ⊆ P(N) consisting of sets
of full measure ξ is called a free ultrafilter. These originate with Tarski ([41],
1930). The set-theoretic presentation of an infinitesimal-enriched continuum
was therefore not available prior to that date.

The embedding (8.1) uses constant sequences. We can therefore define the
subring

hR ⊆ ∗R (8.2)
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to be the set of the finite elements of ∗R; i.e., elements smaller in absolute value
than some real number, relying on the embedding (8.1). The subring (8.2)
admits a map st to R, known as standard part

st : hR→ R, (8.3)

which rounds off each finite hyperreal number to its nearest real number. This
enables one, for instance, to define continuity and the derivative as follows.
Following Robinson, we say that a function

f(x) is continuous in [an open interval] (a, b) if

f(x0 + η) =1 f(x0) (8.4)

for all standard x0 in the open interval and for all infinitesimal η.
(Robinson [34], 1961, p. 436; emphasis in the original; counter (8.4)
added)

Robinson’s symbol “=1” denotes the relation of infinite proximity. Robinson’s
notation =1 in [34] for infinite proximity was replaced by ' in his books and
by ≈ in most modern sources in infinitesimal analysis.

We also define the derivative of t = f(s) as

f ′(s) = st

(
∆t

∆s

)
(8.5)

where ∆s 6= 0, or equivalently f ′(s) is the standard real number such that

f ′(s) ≈ ∆t

∆s
. (8.6)

Such a definition parallels Cauchy’s definition (3.1) of derivative, more closely
than any Epsilontik definition. Limit is defined in terms of standard part, e.g.,
by setting

lim
s→0

f(s) = st(f(ε)) (8.7)

where ε is a nonzero infinitesimal. This definition of limit via the standard part
is analogous to Cauchy’s limite, similarly defined in terms of infinitesimals, as
analyzed in Section 3. For more details on Robinson’s framework see e.g.,
Fletcher et al. ([22], 2017).
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9 Conclusion

We have argued that Cauchy’s work on integral geometry, centers of curvature,
and other applications exploits infinitesimals as atomic entities not reducible
to simpler ones (such as terms in a sequence).

The oft-repeated claim, as documented e.g., in Bair et al. ([2], 2017) and
Bascelli et al. ([6], 2018), that “Cauchy’s infinitesimal is a variable with limit 0”
is a reductionist view of Cauchy’s foundational stance, at odds with much
compelling evidence in Cauchy’s writings, as we argued in Sections 2 through 6.
Cauchy’s notion of infinitesimal was therefore close to that of his contemporary
scientists including Poisson, as we saw in Section 7.

While Cauchy did give an occasional Epsilontik proof that today would
be interpreted in the context of an Archimedean continuum, his techniques
relying on infinitesimals find better proxies in a modern framework exploit-
ing an infinitesimal-enriched continuum. Cauchy’s infinitesimal techniques in
fields as diverse as geometric probability, differential geometry, continuity and
convergence are just as viable as his Epsilontik techniques.

Robinson first proposed an interpretation of Cauchy’s procedures in the
framework of a modern theory of infinitesimals in ([35], 1966, chapter 10).
A set-theoretic foundation for infinitesimals could not have been provided by
Cauchy for obvious reasons, but Cauchy’s procedures find closer proxies in
modern infinitesimal frameworks than in modern Archimedean ones.
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[13] A. L. Cauchy, Leçons sur les applications du calcul infinitésimal à la
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Paris: Gauthier-Villars (1908), 167–177.
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