June 16, 2024

Infinitesimal analysis 88-503 homework set 4

Due Date: 30 june '24

1. Prove that there exists a hyperinteger H divisible by all standard integers $n \in \mathbb{N}$.

2. Show that if a sequence converges in \mathbb{R} then it has exactly one cluster point (nekudat hitztabrut).

3. Suppose that $a_i \geq 0$ for all $i \in \mathbb{N}$. Prove that the series $\sum_{i=1}^{\infty} a_i$ converges if and only if $\sum_{i=1}^{n} a_i$ is finite for *all* infinite *n*, and that this holds if and only if $\sum_{i=1}^{n} a_i$ is finite for *some* infinite *n*.

4. Use the hyperreal characterisation of uniform continuity (see Section 6.8 of the class notes) to show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1).

5. Consider the LSEQ transformation (see Section 6.9 of the class notes). Apply LSEQ to Ψ_i in the following formulas and determine whether the new formula is true:

- (1) Ψ_1 is the formula $(\forall r \in \mathbb{R}) (\exists n \in \mathbb{N}) r < n;$
- (2) Ψ_2 is the formula $(\forall q \in \mathbb{Q})(\exists n, m \in \mathbb{Z}) q = \frac{n}{m};$
- (3) $(\forall \epsilon \in \mathbb{R}^+) \Psi_3(\epsilon)$, where $\Psi_3(\epsilon)$ is the formula

$$(\forall x \in \mathbb{R})(\exists \delta \in \mathbb{R}^+)(\forall y \in \mathbb{R}) (|x-y| < \delta \rightarrow x^2 - y^2 < \epsilon);$$

(4)
$$(\forall \epsilon \in \mathbb{R}^+) \Psi_4(\epsilon)$$
, where where $\Psi_4(\epsilon)$ is the formula

 $(\forall x \in \mathbb{R}) (\exists \delta \in \mathbb{R}^+) (\forall y \in \mathbb{R}) (|x - y| < \delta \rightarrow \sin x - \sin y < \epsilon).$