Each problem is worth 22 points. All answers must be fully justified by giving complete proofs. The writing in the exam book must be fully legible and neat.

- 1. This question deals with saturation (revaya).
 - (a) Give a detailed formulation of the property of countable saturation.
 - (b) Use countable saturation to deduce the existence of positive infinite members of *ℝ.
- 2. This question deals with the LSEQ transformation.
 - (a) Give a definition of the LSEQ transformation when applied to a formula ϕ .
 - (b) Apply LSEQ to Ψ_1 and determine whether the new formula is true, where Ψ_1 is the formula

$$(\forall r \in \mathbb{R}) (\exists x \in \mathbb{R}) \arctan r < x.$$

- 3. Apply the LSEQ transformation to Ψ_i in
 - (a) the formula $(\forall \epsilon \in \mathbb{R}^+) \Psi_2(\epsilon)$ and determine whether the new formula is true, where $\Psi_2(\epsilon)$ is the formula

 $(\forall x \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) (|x-y| < \delta \rightarrow \sqrt{x} - \sqrt{y} < \epsilon).$

(b) the formula $(\forall \epsilon \in \mathbb{R}^+) \Psi_3(\epsilon)$ and determine whether the new formula is true, where $I = (0, \frac{\pi}{2})$ and $\Psi_3(\epsilon)$ is the formula

$$(\forall x \in I) (\exists \delta \in \mathbb{R}^+) (\forall y \in I) (|x - y| < \delta \rightarrow \tan x - \tan y < \epsilon).$$

- 4. Let $^{*}\mathbb{Q}$ be the *-transform of \mathbb{Q} .
 - (a) Use transfer so show that every hyperrational in ${}^*\mathbb{Q}$ is a ratio of hyperintegers.
 - (b) Let L denote the set of finite hyperrationals, and let I denote the set of infinitesimal hyperrationals. Determine the quotient L/I.
- 5. This question deals with compactness.
 - (a) Give a detailed formulation of the hyperreal characterisation of compactness of sets in \mathbb{R} .
 - (b) Use the hyperreal characterisation of compactness to show that a nested decreasing sequence of nonempty compact sets in \mathbb{R} has a common point.