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1 Rigour, then and now 

uilding upon pioneering work by Kepler, Fermat, Cava­
lieri, Gregory, Wallis, Barrow and others, Isaac Newton 
and Gottfried Wilhelm von Leibniz invented calculus in 

the 17th century. While immediately acquiring an enthusiastic 
following, the new methods proved to be controversial in the eyes 
of some of their contemporaries, who employed the more tradi­
tional methods of their predecessors. One of the controversial 
aspects of the new technique was Leibniz's distinction between 
assignable and unassignable quantities (including infinitesimals 
and infinite quantities [1]) . 

At the French Academy, the opposition to the new calculus 
was led by Michel Rolle, and across the Channel, by George 
Berkeley. The scientific success of the new methods ultimately 
silenced the opposition, but lingering doubts persisted (fed in part 
by doctrinal theological issues [2]) . A new era was ushered in by 
Augustin-Louis Cauchy's textbook Cours d'Analyse, addressed 
to the students of the Ecole Polytechnique in Paris. 
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Cauchy and the title page of Cours d'Analyse 

Cauchy published his Cours d'Analyse (CDA) 200 years ago. 
The book was of fundamental importance for the development 
of both real and complex analysis. Hans Freudenthal mentioned 
in his essay on Cauchy (for the Dictionary of Scientific Biogra­
phy [3]) that Niels Henrik Abel described the CDA as 'an excel­
lent work which should be read by every analyst who loves math­
ematical rigor.' But what did rigour mean to Abel and Cauchy? 

In the early 19th century context, the term rigour referred to 
the standard of mathematical precision set by the geometry of 
Euclid. This context enables us to understand Cauchy's intention 
when, in the introduction to CDA [4, p. 1], he referred to 'all the 
rigor which one demands from geometry,' committing himself 
further to 'never rely on arguments drawn from the generality of 
algebra.' We see that Cauchy's notion ofrigour in CDA is distinct 
from 'what has been called .the nineteenth-century "rigorization" 
of real analysis' [5, p. 221]. 

Like the term rigour, Cauchy's term generality of algebra re­
quires explanation to be comprehensible to modern readers. It 
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refers to certain techniques used by his predecessors, particu­
larly Euler and Lagrange, that today would be considered cav­
alier, specifically (a) proofs based on the algebraic manipulation 
of divergent series and (b) the idea that algebraic rules and formu­
las valid in the real domain remain valid in the complex domain. 
Some of the proofs that fall under item (a) have since been justi­
fied using summation techniques developed later, whereas some 
of the techniques under item (b) have been verified in terms of 
analytic continuation. 

By the standards of the current century, some of Freudenthal's 
comments could be considered controversial. Thus, Freudenthal 
writes [3, p. 137]: 

Terms like 'infinitesimall)l,l small' prevail in Cauchy's 
limit arguments and epsilontics still looks far away, 
but there is one exception. His proof ... of the well­
known theorem 

If limx-+oo (f(x + 1) - f(x)) = a, 
then limx-+oo x- 1 f(x) =a 

is a paragon, and the first example, of epsilontics -
the character c; even occurs there. 

The claim that infinitesimals 'prevail' in Cauchyan foundations of 
analysis, whereas ( c; , J) arguments 'look far away' and are limited 
to a small number of exceptions, may surprise a reader whose per­
ceptions of Cauchyan rigour are influenced by Judith Grabiner's 
views [6] and publications that followed, especially if they tend 
to identify rig our with the jettisoning of infinitesimals in favour 
of (c:, J) arguments based on an 'algebra of inequalities'. Some 
historians today would view both Freudenthal's and Grabiner's 
perspectives as outdated. But the dual view of Cauchyan analysis 
persists in the current literature. 

2 Dual tracks 

The track-A view holds that Cauchy, ahead of his time, worked 
primarily with an Archimedean continuum and pioneered many 
of the techniques that would become known as (c, J) in the next 
century. 

The track-B view holds that Cauchy, like most of his con­
temporaries and colleagues at the Ecole Polytechnique, based his 
analysis primarily on variable quantities and infinitesimals; see 
Laugwitz [7, 8]. 

What were then the Cauchyan foundations of analysis? While 
we will not purport to provide a definitive answer in this short 
note, we will tet Cauchy speak for himself (using the translation 
by Bradley and Sandifer [4]). Cauchy writes in the introduction 
to CDA [4, p. 1]: 

In speaking of the continuity of functions, I could '~ot 

dispense with a treatment of the principal properties 
of infinitely small quantities, properties which serve 
as the foundation of the infinitesimal calculus. 

Track-A advocates read this passage as a concession to the man­
agement of the Ecole and argue that Cauchy 'could not dispense 
with a treatment of . . . infinitely small quantities' because of ex­
plicit mandates from the Ecole, against his better judgement. 



Track-B advocates read this passage as a recognition by 
Cauchy (in a departure from his pre-1820 approaches) that a con­
vincing and accessible treatment of continuity necessitates in­
firutesimals, and they note that Cauchy's favourable judgement 
of infinitesimals is corroborated by their use in his research long 
after the end of his teaching stint at the Ecole [9]. 

Readers searching for an ( E:, 8) definition of limit in CDA may 
be surprised to find instead the following definition [4, p. 6]: 

We call a quantity variable if it can be considered as 
able to take on successively many different values. 
... When the values successively attributed to a par­
ticular variable indefinitely approach a fixed value in 
such a way as to end up by differing from it by as lit­
tle as we wish, this fixed value is called the limit of 
all the other values. 

Here the notion of a variable quantity is taken as primary, and 
limits are defined in terms of variable quantities. Variable quan­
tities similarly provide the basis for the definition of infinitesi­
mals [4, p. 7]: 

When the successive numerical values of such a vari­
able decrease indefinitely, in such a way as to fall be­
low any given number, this variable becomes what 
we call infinitesimal, or an infinitely small quantity. 
A variable of this kind has zero as its limit. 

Track-A advocates read this as asserting that an infinitesimal is 
merely a null sequence (i.e. a sequence tending to zero), and take 
the last sentence to refer to infinitesimals. Track-B advocates 
point out that Cauchy did not write that a variable quantity is an 
infinitesimal but rather that a variable quantity becomes an in­
finitesimal, implying a change in nature (from being a variable 
quantity to being an infinitesimal). They take the last sentence to 
refer to the variable quantity mentioned at the beginning of the 
passage. 

Returning to limits, Cauchy writes [4, p. 12]: 

When a variable quantity converges towards a fixed 
limit, it is often useful to indicate this limit with par­
ticular notation. We do this by placing the abbrevia­
tion lim in front of the variable quantity in question. 

Bradley and Sandifer note that the 1821 edition of the CDA used 
the notation 'lim.' (with a full stop). Cauchy's description of 
'lim.' as an abbreviation suggests that he viewed it as secondary 
to, or an aspect of, the concept of a variable quantity. 

In Chapter 2, Cauchy returns to the definition of infinitesi­
mals [4, p. 21]: 

We say that a variable quantity becomes infinitely 
small when its numerical value decreases indefinitely 
in such a way as to converge towards the limit zero. 

The relation between the concepts of variable quantity and in­
finitesimal was already discussed above, as well as the possible 
ambiguity of the verb becomes; limits again play a secondary role. 
Cauchy proceeds next to the properties of infinitesimals [ 4, p. 22]: 

Infinitely small and infinitely large quantities enjoy 
several properties that lead to the solution of iinpor­
tant questions, which I will explain in a few words. 
Let a be an infinitely small quantity, that is a vari­
able whose numerical va,l.ue decr!!.a.ses indefinitely. 

Track-A advocates point out that here Cauchy states that an in­
finitesimal is a variable quantity. Track-B advocates note that 
here Cauchy is no longer dealing with detailed definitions, and 
this particular formulation is merely shorthand for the more care­
ful definition in terms of becoming elaborated earlier. 

3 Continuity in 1817, 1821 ~nd beyond 

Cauchy's first documented characterisation of continuity is found 
in a record of a course summary dating from March 1817 (a 
month before the earliest written mention of Bolzano's Rein an­
alytischer Beweis in an Olms catalogue"). The definition can be 
described as reasonably precise in the sense of enabling a straight­
forward transcription as an impeccable modern definition [ 1 0]. In 
modern mathematics, a real function r.p is continuous at c E lR if 
and only if for each sequence (xn) converging to c, one has 

r.p(c) = r.p( lim Xn) = lim r.p(xn), 
n-+oo n-+oo 

(1) 

or briefly r.p o lim = limo r.p at c, expressing the commutation of 
r.p and lim. In 1817, Cauchy wrote [10, p. 209]: 

The limit of a continuous function of several vari­
ables is [equal to] the same function of their limit. 
Consequences of this Theorem with regard to the 
continuity of composite functions dependent on a 
single variable. 

(Being part of a summary, the second phrase is not a complete 
sentence.) Cauchy's 1817 characterisation of continuity in terms 
of the commutation of r.p and lim as in (1) does not use infinites­
imals and thus contrasts with his definitions involving infinites­
imals given four years later in CDA. Surprisingly, it is the 1817 
characterisation that is actually used in CDA; see Section 5. 

Here is Cauchy's first definition of continuity in CDA [ 4, 
p.26]: 

Let f ( x) be a function of the variable x, and suppose 
that for each value of x between two given limits, the 
function always takes a unique finite value. If, be­
ginning with a value of x contained between these 
limits, we add to the variable x an infinitely small in­
crement a, the function itself is incremented by the 
difference f(x +a)- f(x), which depends both on 
the new variable a and on the value of x. Given this, 
the function f ( x) is a continuous function of x be­
tween the assigned limits if, for each value of x be­
tween these limits, the numerical value of the differ­
ence f ( x +a) - f ( x) decreases indefinitely with the 
numerical value of a. 

Note that, while -the increment a is described as infinitesimal, 
the resulting change f ( x + a) - f ( x) is not. This 1821 defini­
tion can be seen as intermediary between the March 1817 char­
acterisation in terms of variables (not mentioning infinitesimals) 
and his second 1821 definition stated purely in terms of infinites­
imals [4, p. 26]: 

In other words, the function f ( x) is continuous with 
respect to x between the given limits if, between these 
limits, an infinitely small increment in the variable 
always produces an infinitely small increment in the 
function itself 
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Significantly, Cauchy's abbreviation 'lim.' appeared in none of 
the definitions of continuity given in CDA. It is the second defi­
nition purely in terms of infinitesimals that reappears in the fol­
lowing works by Cauchy: 

• Resume des Let;ons (1823), English translation [11, p. 9] 

• Let;ons sur le Calcul Dijjhentiel (1829) [12, p. 9] 

• Memoire sur !'Analyse lnfinitesimale (1844) [13, p. 17] 

• the 1853 article [14] on the sum theorem (see Section 6) 

Nonetheless, the perception that Cauchy allegedly 'sought to es­
tablish foundations for real analysis that gave no role to infinites­
imals'(e.g. [15]) has firmly entered the canonical creation narra­
tive of modern mathematical analysis. 

4 lnfinitesimals without choice 

Cauchy's definition of continuity in CDA, in its B-track interpre­
tation, is harder to follow for modern readers more familiar with 
the (c:, o) definition of continuity ala Weierstrass and Dini than 
with the definition in a modern infinitesimal theory. We therefore 
provide a formalisation of Cauchy's procedures involving conti­
nuity in terms of the theory SPOT (acronym of its axioms) de­
veloped in [16]. SPOT has the advantage of being conservative 
over the traditional Zermelo-Fraenkel set theory (ZF) and there­
fore depends on neither the axiom of choice nor the existence of 
ultra-filters. 

The language of ZF is limited to the two-place membership 
relation E. The language of SPOT includes also a predicate 
ST, where ST(x) reads 'xis standard.' Such a distinction be­
tween standard and non-standard entities can be thought of as 
formalising the Leibnizian distinction between assignable and 
unassignable quantities [ 1]. The standard ordered field lR has both 
standard and non-standard elements. An element a is infinitesi­
mal if Ia I < r for each standard r > 0. Let x be a standard point 
in the domain of a real standard function f . Then f is continuous 
at x (in the traditional sense of the ( c:, o) definition) if and only if 

infinitesimal a 

produce infinitesimal changes f ( x + a) - f ( x) , 
(2) 

whenever x + a is in the domain of f. Continuity in an inter­
val, say (0, 1 ), is equivalent to the satisfaction of condition (2) at 
every standard point x E (0, 1). 

It should be mentioned that, according to most scholars, 
Cauchy did not formulate the notion of continuity at a point, but 
only 'continuity between limits' (i.e. in an interval) or in a neigh­
bourhood of a point. Freudenthal remarks [3, p. 137]: 

It is the weakest point in Cauchy's reform of calcu­
lus that he never grasped the importance of uniform 
continuity. 

From an A-track viewpoint, the weakness is that there seems to be 
no trace in Cauchy of the idea that a significant issue is whether 
the allowable error is independent of the point x or not. 

From a B-track viewpoint, the weakness is that Cauchy did 
not make it clear whether condition (2) is expected to be satisfied 
only at assignable points x or at all points of the interval. Note 
that uniform continuity off on, say, (0, 1) is equivalent to (2) 
being satisfied at all points of (0, 1). For example, 1/ x fails to be 
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uniformly continuous because of the failure of (2) at an infinites­
imal input x = j3 > 0: indeed, the change 

1 1 
----
f3 +a j3 

is not infinitesimal if, say, a = j3. See further in Section 6. 
By Section 2.3, Cauchy reaches the theorem described by 

Freudenthal as a paragon of ( c:, o) arguments. What Cauchy ac­
tually shows is that if f( x +I)- f(x) is between k- c: and k + c: 
then (assuming monotonicity) f(x) j x is similarly between k- c: 
and k + c:. If anything this is a parago-n of ( c:, c:) arguments, since 
here the o equals c:! The trademark feature of modern ( c: , o) argu­
ments, namely an explicit (non-trivial) dependence of 0 on c:, does 
not appear anywhere in Cauchy's alleged 'algebra of inequalities', 
lending support to Freudenthal's sentiment that 'epsilontics looks 
far away ' [3, p. 137]. 

Here Cauchy mentions that an infinite limit is 'larger than any 
assignable number' (e.g. [ 4, p.J137]) indicating familiarity with 
this Leibnizian term (which occurs nine times in CDA). 

5 Functional equations and continuity 

In Chapter 5, Cauchy studies functional relations for continuous 
functions, and treats the following problem [4, p. 71] : 

Problem I. - To determine the function cp( x ) in such a 
manner that it remains continuous between any two 
real limits of the variable x and so that for all real 
values of the variables x and y, we have cp( x + y) = 

cp(x) + cp(y). 

Cauchy arrives at 

cp (: a) = : cp(a) 

and argues as follows [4, p. 72] : 

Then, by supposing that the fraction mjn varies in 
such a way as to converge towards any number f.L, and 
passing to the limit, we find that cp(JLa) = f.Lcp( a). 

Here Cauchy exploits the 1817 characterisation of the continuity 
of cp in terms of the commutation of cp and lim as summarised 
in formula (1), rather than the ~efinitions presented in Chapter 2 
of CDA (the 1817 characterisation is also used in the proof of 
the intermediate value theorem). Curiously, Cauchy provides no 
explanatory comment. Possibly, Cauchy wrote the material in 
Chapter 5 with definition (1) in mind, and introduced the defi­
nitions in Chapter 2 at a later stage in the writing of the book. 
Cauchy applies a similar technique to study the functional rela­
tion cp(x + y) = cp(x)cp(y) and other variations. 

6 Sum theorem and convergence always 

Chapter 6 includes Cauchy's controversial sum theorem. We 
summarise the historical facts . The 1821 formulation of the the­
orem appears to be incorrect to the modern reader, .as it seems 
to assert that pointwise convergence of a series of continuous 
functions implies the continuity of the sum. Already in 1826 
Abel pointed out that the theorem 'suffers excep'tions'. Cauchy 
was curiously silent on the subject of the sum theorem for several 
decades. Then in 1853,he presented a modified statement of the 
sum theorem, mentioned an example similar to Abel's (without 



mentioning Abel b:f name) and explained why the example does 
not contradict the (modified) theorem. Numerous scholars have 
attempted to explain what the modification was (if any) and to 
interpret Cauchy's sum theorem in terms intelligible to modern 
audiences. 

Cauchy considers the series obtained as the sum of the terms 
of the sequence uo, u1, u2, ... , un, Un+1, .. . , denoted (1). In its 
1821 formulation, the theorem asserts the following [4, p. 90]: 

When the various terms of series (1) are functions of 
the same variable x, continuous with respect to this 
variable in the neighborhood of a particular value for 
which the series converges, the sum s of the series is 
also a continuous function of x in the neighborhood 
of this particular value. 

Here is the 1853 formulation [14, pp. 456-457, our translation]: 

If the various terms of the series 

are functions of a real variable x and are continu­
ous with respect to this variable between the given 
bounds, and if, furthermore, the sum 

Un + Un+1 + ... + Un'-1 (3) 

always becomes infinitely small for infinitely large 
values of the whole numbers n and n' > n, then 
the series (1) will converge and the sum s of the se­
ries will be, between the given bounds, a continuous 
function of the variable x. 

Note that Cauchy adds the word toujours (always). But what ex­
actly is supposed to happen always in 1853, and how does this 
modify the 1821 hypothesis? Cauchy himself provides a hint in 
his 1853 analysis of the example 

l: sinnx , 
n 

n 

representing a (discontinuous) sawtooth waveform. But the hint 
he provides is itself puzzling. Cauchy evaluates Un + Un+l + 
... + Un' -1 at x = 1 In and shows that the sum does not become 
arbitrarily small, and in fact can be made 'sensibly equal' to the 
integral 

J,oo sinx 
-- dx = 0.6244 ... 

1 X 

Here Cauchy explicitly describes n (and n') as infinite; then 
x = 1 In is infinitesimal. 

Many scholars of both A-track and B-track persuasions have 
argued that Cauchy meant to add what is known today as the con­
dition of uniform convergence. 

A-track advocates may interpret the condition as requiring the 
sums Un + Un+1 + ... -fUn' -1 to be small independently of n, n' 
and also of the input x, a condition that can be stated formally in 
terms of an alternating quantifier string of the type 

Vc > 0,38 > 0,\:/n < n' E N,Vx, 

( n > ~--+ lun(x) + Un+l(x) + .. . + Un' - 1(x)l <c). 

Something along these (long) lines would have to be attributed to 
Cauchy, in inchoate form, in order to interpret the addition of uni­
form convergence in an A-track fashion. What is unclear is how 
the word 'always' manages to allude to such independence, par­
ticularly since Cauchy seems to have overlooked its significance 
in the context of continuity (see Freudenthal's remark quoted in 
Section 4 and the ensuing discussion). Moreover, the evaluation 
at what seems to be a new type of point, namely x = 1 In, ap­
pearing in Cauchy's discussion of 

l: sinnx, 
n -· n 

suggests that the insistence on the qualifier always indicates an 
extension of the inputs x to include additional ones (that were not 
'always' included before). 

A B-track reading of Cauchy's 1853 hypothesis interprets the 
qualifier always as referring to additional unassignable inputs x 
(including infinitesimal values such as 1l n for infinite n). If one 
requires the sum Un + Un+ 1 + ... + Un'- 1 to be infinitesimal 
for all infinite n , n' and all inputs x (standard and non-standard) 
then one indeed obtains a condition equivalent to uniform conver­
gence [17, Theorem 4.6.1, p. 116], guaranteeing the continuity of 
the limit function. 

7 Conclusion 

Though we have sketched widely divergent readings of Cauchy's 
definitions and his theorems, we hope to have conveyed to the 
reader a sense that not only the concept of rigour but also conti­
nuity and limit may have had a different meaning to Cauchy than 
they do to us today, underscoring the contingency of the historical 
evolution of mathematics. While Cauchy incontestably made ex­
tensive use of bona fide infinitesimals in fields as varied as differ­
ential geometry, elasticity theory and geometric probability [9], 
the nature of his foundational stance remains controversial. But 
perhaps this is as it should be: with a genius of Cauchy's calibre, 
tidy construals of his work may necessarily amount to a flattening 
of his multi-dimensional vision. 
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letters 
Musical Necklaces Reprise 

F urther to my recent letter [1], one of the difficulties 
mentioned in David Thomson's article on counting chord 
types in a p-note equi-tempered scale is the calculation of 

the article's functions lt and lt ,m [2]. These functions count cer-
tain chord types but are defined implicitly. Mobius inversion of 
the formulas given in the article produces the following explicit 
results by which the function values can be calculated directly: 

lt = Lf.L(g)2t fg 
git 

lt,m = L f.L(g) (:f!g) 
gigcd(t ,m) 

fort :::: 1 and t[p , 

fort:::: 1,m:::: 0, 

where f.L(g) is the Mobius function [3, A008683]. For example, 
in a 12-note equi-tempered scale, the number of chords with 6 
distinct transposed versions is 

]6 = f.L(l)26 + f.L(2)23 + f.L(3)22 + f.L(6)2 1 

= 64 - 8 - 4 + 2 = 54, 

and the number of chord types comprising chords with 12 trans­
posed versions, each with 4 notes, is 

I12 - J12,4 
12,4- 12 

f.L(1) (~2) + f.L(2) (~) + f.L(4) G) 
12 

495-15 + 0 
= 12 = 40, 

in agreement with the values given in the article. 
Returning to the general musical polygon/necklace isomor­

phism noted in [1], the functions lt and lt ,m derived above for 
certain chord types are each related to certain necklace types. In 
the article's notation: 

It= Jt/t, 

If.n = lt ,nt fpjt, 

are discusssed in [3, A001037 and A185158], and see [4] for fur­
ther connections. 
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It is also a useful student exercise to use the formulas for It 
and Jt above to derive the alternative formula for the total number 
of chord types given in [1] directly; i.e., show 

LIt= L L f.L(g)2t fg j t 
t ip t ip git 

1 
=- 2::::: <p(g)2p fg, 

p gip 

where cp(g) is the Euler totient function [3, AOOOOlO], as ob­
served along the bottom row of the article's table [2, p. 51]. Sim­
ilarly, the formulas for If.n and lt ,m may be used to produce gen­
eral results corresponding to the table's marginal totals. 

Richard L. Ollerton CMath FIMA 
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The d'Aiembertian 

J 
ames Moffat's excellent article on Quaternions and the Dis­
covery of Antimatter (Mathematics Today, April2021) used 
the Laplacian operator extended to four dimensional space­

time without noting that this extension is commonly referred to as 
the d'Alembertian. The article also used the del symbol (typically 
associated with the Laplacian) rather than the box symbol (typi­
cally associated with the d'Alembertian). The Editor apologies for 
any confusion caused by these slight deviations from the common 
approach. 


