
Exercises for

Elementary Differential Geometry

Chapter 1

1.1.1 Is γγγ(t) = (t2, t4) a parametrization of the parabola y = x2?

1.1.2 Find parametrizations of the following level curves:
(i) y2 − x2 = 1.

(ii) x2

4 + y2

9 = 1.

1.1.3 Find the Cartesian equations of the following parametrized curves:
(i) γγγ(t) = (cos2 t, sin2 t).
(ii) γγγ(t) = (et, t2).

1.1.4 Calculate the tangent vectors of the curves in Exercise 1.1.3.

1.1.5 Sketch the astroid in Example 1.1.4. Calculate its tangent vector at each point.
At which points is the tangent vector zero ?

1.1.6 Consider the ellipse
x2

p2
+
y2

q2
= 1,

where p > q > 0. The eccentricity of the ellipse is ǫ =
√

1 − q2

p2 and the points

(±ǫp, 0) on the x-axis are called the foci of the ellipse, which we denote by fff1 and
fff2. Verify that γγγ(t) = (p cos t, q sin t) is a parametrization of the ellipse. Prove
that:
(i) The sum of the distances from fff1 and fff2 to any point ppp on the ellipse does
not depend on ppp.
(ii) The product of the distances from fff1 and fff2 to the tangent line at any point
ppp of the ellipse does not depend on ppp.
(iii) If ppp is any point on the ellipse, the line joining fff1 and ppp and that joining fff2
and ppp make equal angles with the tangent line to the ellipse at ppp.

1.1.7 A cycloid is the plane curve traced out by a point on the circumference of a circle
as it rolls without slipping along a straight line. Show that, if the straight line
is the x-axis and the circle has radius a > 0, the cycloid can be parametrized as

γγγ(t) = a(t− sin t, 1 − cos t).

1.1.8 Show that γγγ(t) = (cos2 t − 1
2 , sin t cos t, sin t) is a parametrization of the curve

of intersection of the circular cylinder of radius 1
2 and axis the z-axis with the
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sphere of radius 1 and centre (−1
2 , 0, 0). This is called Viviani’s Curve - see

below.

1.1.9 The normal line to a curve at a point ppp is the straight line passing through ppp
perpendicular to the tangent line at ppp. Find the tangent and normal lines to
the curve γγγ(t) = (2 cos t − cos 2t, 2 sin t − sin 2t) at the point corresponding to
t = π/4.

1.1.10 Find parametrizations of the following level curves:
(i) y2 = x2(x2 − 1).
(ii) x3 + y3 = 3xy (the folium of Descartes).

1.1.11 Find the Cartesian equations of the following parametrized curves:
(i) γγγ(t) = (1 + cos t, sin t(1 + cos t)).
(ii) γγγ(t) = (t2 + t3, t3 + t4).

1.1.12 Calculate the tangent vectors of the curves in Exercise 1.1.11. For each curve,
determine at which point(s) the tangent vector vanishes.

1.1.13 If P is any point on the circle C in the xy-plane of radius a > 0 and centre (0, a),
let the straight line through the origin and P intersect the line y = 2a at Q, and
let the line through P parallel to the x-axis intersect the line through Q parallel
to the y-axis at R. As P moves around C, R traces out a curve called the witch

of Agnesi. For this curve, find
(i) a parametrization;
(ii) its Cartesian equation.

O P R�
Q

1.1.14 Generalize Exercise 1.1.7 by finding parametrizations of an epicycloid (resp.
hypocycloid), the curve traced out by a point on the circumference of a circle
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as it rolls without slipping around the outside (resp. inside) of a fixed circle.

1.1.15 For the logarithmic spiral γγγ(t) = (et cos t, et sin t), show that the angle between
γγγ(t) and the tangent vector at γγγ(t) is independent of t. (There is a picture of
the logarithmic spiral in Example 1.2.2.)

1.1.16 Show that all the normal lines to the curve

γγγ(t) = (cos t+ t sin t, sin t− t cos t)

are the same distance from the origin.

1.2.1 Calculate the arc-length of the catenary γγγ(t) = (t, cosh t) starting at the point
(0, 1). This curve has the shape of a heavy chain suspended at its ends - see
Exercise 2.2.4.

1.2.2 Show that the following curves are unit-speed:

(i) γγγ(t) =
(

1
3(1 + t)3/2, 1

3 (1 − t)3/2, t√
2

)
.

(ii) γγγ(t) =
(

4
5

cos t, 1 − sin t,−3
5

cos t
)
.

1.2.3 A plane curve is given by

γγγ(θ) = (r cos θ, r sin θ),

where r is a smooth function of θ (so that (r, θ) are the polar coordinates of
γγγ(θ)). Under what conditions is γγγ regular? Find all functions r(θ) for which γγγ
is unit-speed. Show that, if γγγ is unit-speed, the image of γγγ is a circle; what is its
radius?

1.2.4 This exercise shows that a straight line is the shortest curve joining two given

points. Let ppp and qqq be the two points, and let γγγ be a curve passing through
both, say γγγ(a) = ppp, γγγ(b) = qqq, where a < b. Show that, if uuu is any unit vector,

γ̇γγ...uuu ≤‖ γ̇γγ ‖

and deduce that

(qqq − ppp)...uuu ≤
∫ b

a

‖ γ̇γγ ‖ dt.

By taking uuu = (qqq − ppp)/ ‖ qqq − ppp ‖, show that the length of the part of γγγ between
ppp and qqq is at least the straight line distance ‖ qqq − ppp ‖.

1.2.5 Find the arc-length of the curve

γγγ(t) = (3t2, t− 3t3)

starting at t = 0.
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1.2.6 Find, for 0 ≤ x ≤ π, the arc-length of the segment of the curve

γγγ(t) = (2 cos t− cos 2t, 2 sin t− sin 2t)

corresponding to 0 ≤ t ≤ x.

1.2.7 Calculate the arc-length along the cycloid in Exercise 1.1.7 corresponding to one
complete revolution of the circle.

1.2.8 Calculate the length of the part of the curve

γγγ(t) = (sinh t− t, 3 − cosh t)

cut off by the x-axis.

1.2.9 Show that a curve γγγ such that
...
γγγ = 0 everywhere is contained in a plane.

1.3.1 Which of the following curves are regular ?
(i) γγγ(t) = (cos2 t, sin2 t) for t ∈ R.
(ii) the same curve as in (i), but with 0 < t < π/2.
(iii) γγγ(t) = (t, cosh t) for t ∈ R.
Find unit-speed reparametrizations of the regular curve(s).

1.3.2 The cissoid of Diocles (see below) is the curve whose equation in terms of polar
coordinates (r, θ) is

r = sin θ tan θ, −π/2 < θ < π/2.

Write down a parametrization of the cissoid using θ as a parameter and show
that

γγγ(t) =

(
t2,

t3√
1 − t2

)
, −1 < t < 1,

is a reparametrization of it.
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1.3.3 The simplest type of singular point of a curve γγγ is an ordinary cusp: a point ppp
of γγγ, corresponding to a parameter value t0, say, is an ordinary cusp if γ̇γγ(t0) = 0

and the vectors γ̈γγ(t0) and
...
γγγ (t0) are linearly independent (in particular, these

vectors must both be non-zero). Show that:
(i) the curve γγγ(t) = (tm, tn), where m and n are positive integers, has an ordinary
cusp at the origin if and only if (m,n) = (2, 3) or (3, 2);
(ii) the cissoid in Exercise 1.3.2 has an ordinary cusp at the origin;
(iii) if γγγ has an ordinary cusp at a point ppp, so does any reparametrization of γγγ.

1.3.4 Show that:
(i) if γ̃γγ is a reparametrization of a curve γγγ, then γγγ is a reparametrization of γ̃γγ;
(ii) if γ̃γγ is a reparametrization of γγγ, and γ̂γγ is a reparametrization of γ̃γγ, then γ̂γγ is
a reparametrization of γγγ.

1.3.5 Repeat Exercise 1.3.1 for the following curves:
(i) γγγ(t) = (t2, t3), t ∈ R.
(ii) γγγ(t) = ((1 + cos t) cos t, (1 + cos t) sin t), −π < t < π.

1.3.6 Show that the curve

γγγ(t) =

(
2t,

2

1 + t2

)
, t > 0,

is regular and that it is a reparametrization of the curve

γ̃γγ(t) =

(
2 cos t

1 + sin t
, 1 + sin t

)
, −π

2
< t <

π

2
.

1.3.7 The curve

γγγ(t) = (a sinωt, b sin t),

where a, b and ω are non-zero constants, is called a Lissajous figure. Show that
γγγ is regular if and only if ω is not the quotient of two odd integers.

1.3.8 Let γγγ be a curve in Rn and let γ̃γγ be a reparametrization of γγγ with reparametriza-
tion map φ (so that γ̃γγ(t̃) = γγγ(φ(t̃))). Let t̃0 be a fixed value of t̃ and let t0 = φ(t̃0).
Let s and s̃ be the arc-lengths of γγγ and γ̃γγ starting at the point γγγ(t0) = γ̃γγ(t̃0).
Prove that s̃ = s if dφ/dt̃ > 0 for all t̃, and s̃ = −s if dφ/dt̃ < 0 for all t̃.

1.3.9 Suppose that all the tangent lines of a regular plane curve pass through some
fixed point. Prove that the curve is part of a straight line. Prove the same result
if all the normal lines are parallel.

1.4.1 Show that the Cayley sextic

γγγ(t) = (cos3 t cos 3t, cos3 t sin 3t), t ∈ R,
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is a closed curve which has exactly one self-intersection. What is its period? (The
name of this curve derives from the fact that its Cartesian equation involves a
polynomial of degree six.)

1.4.2 Give an example to show that a reparametrization of a closed curve need not be
closed.

1.4.3 Show that if a curve γγγ is T1-periodic and T2-periodic, it is (k1T1 +k2T2)-periodic
for any integers k1, k2.

1.4.4 Let γγγ : R → Rn be a curve and suppose that T0 is the smallest positive number
such that γγγ is T0-periodic. Prove that γγγ is T -periodic if and only if T = kT0 for
some integer k.

1.4.5 Suppose that a non-constant function γ : R → R is T -periodic for some T 6= 0.
This exercise shows that there is a smallest positive T0 such that γ is T0-periodic.
The proof uses a little real analysis. Suppose for a contradiction that there is no
such T0.
(i) Show that there is a sequence T1, T2, T3, . . . such that T1 > T2 > T3 > · · · > 0
and that γ is Tr-periodic for all r ≥ 1.
(ii) Show that the sequence {Tr} in (i) can be chosen so that Tr → 0 as r → ∞.
(iii) Show that the existence of a sequence {Tr} as in (i) such that Tr → 0 as
r → ∞ implies that γ is constant.

1.4.6 Let γγγ : R → Rn be a non-constant curve that is T -periodic for some T > 0.
Show that γγγ is closed.

1.4.7 Show that the following curve is not closed and that it has exactly one self-
intersection:

γγγ(t) =

(
t2 − 3

t2 + 1
,
t(t2 − 3)

t2 + 1

)
.

1.4.8 Show that the curve

γγγ(t) = ((2 + cos t) cosωt, (2 + cos t) sinωt, sin t),

where ω is a constant, is closed if and only if ω is a rational number. Show that,
if ω = m/n where m and n are integers with no common factor, the period of γγγ
is 2πn.

1.5.1 Show that the curve C with Cartesian equation

y2 = x(1 − x2)

is not connected. For what range of values of t is

γγγ(t) = (t,
√
t− t3)
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a parametrization of C? What is the image of this parametrization?

1.5.2 State an analogue of Theorem 1.5.1 for level curves in R3 given by f(x, y, z) =
g(x, y, z) = 0.

1.5.3 State and prove an analogue of Theorem 1.5.2 for curves in R3 (or even Rn).
(This is easy.)

1.5.4 Show that the conchoid

(x− 1)2(x2 + y2) = x2

is not connected, but is the union of two disjoint connected curves (consider the
line x = 1). How do you reconcile this with its (single) parametrization

γγγ(t) = (1 + cos t, sin t+ tan t) ?

1.5.5 Show that the condition on f and g in Exercise 1.5.2 is satisfied for the level
curve given by

x2 + y2 =
1

4
, x2 + y2 + z2 + x =

3

4

except at the point (1/2, 0, 0). Note that Exercise 1.1.15 gives a parametrization
γγγ of this level curve; is (1/2, 0, 0) a singular point of γγγ ?

1.5.6 Sketch the level curve C given by f(x, y) = 0 when f(x, y) = y − |x|. Note
that f does not satisfy the conditions in Theorem 1.5.1 because ∂f/∂x does
not exist at the point (0, 0) on the curve. Show nevertheless that there is a
smooth parametrized curve γγγ whose image is the whole of C. Is there a regular

parametrized curve with this property ?

Chapter 2

2.1.1 Compute the curvature of the following curves:

(i) γγγ(t) =
(

1
3(1 + t)3/2, 1

3 (1 − t)3/2, t√
2

)
.

(ii) γγγ(t) =
(

4
5

cos t, 1 − sin t,−3
5

cos t
)
.

(iii) γγγ(t) = (t, cosh t).
(iv) γγγ(t) = (cos3 t, sin3 t).
For the astroid in (iv), show that the curvature tends to ∞ as we approach one
of the points (±1, 0), (0,±1). Compare with the sketch found in Exercise 1.1.5.

2.1.2 Show that, if the curvature κ(t) of a regular curve γγγ(t) is > 0 everywhere, then
κ(t) is a smooth function of t. Give an example to show that this may not be
the case without the assumption that κ > 0.

2.1.3 Show that the curvature of the curve

γγγ(t) = (t− sinh t cosh t, 2 cosh t), t > 0,
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is never zero, but that it tends to zero as t→ ∞.

2.1.4 Show that the curvature of the curve

γγγ(t) = (sec t, sec t tan t), −π/2 < t < π/2,

vanishes at exactly two points on the curve.

2.2.1 Show that, if γγγ is a unit-speed plane curve,

ṅnns = −κsttt.

2.2.2 Show that the signed curvature of any regular plane curve γγγ(t) is a smooth
function of t. (Compare with Exercise 2.1.2.)

2.2.3 Let γγγ and γ̃γγ be two plane curves. Show that, if γ̃γγ is obtained from γγγ by applying
an isometry M of R2, the signed curvatures κs and κ̃s of γγγ and γ̃γγ are equal if M
is direct but that κ̃s = −κs if M is opposite (in particular, γγγ and γ̃γγ have the same
curvature). Show, conversely, that if γγγ and γ̃γγ have the same nowhere-vanishing
curvature, then γ̃γγ can be obtained from γγγ by applying an isometry of R2.

2.2.4 Let k be the signed curvature of a plane curve C expressed in terms of its arc-
length. Show that, if Ca is the image of C under the dilation vvv 7→ avvv of the
plane (where a is a non-zero constant), the signed curvature of Ca in terms of its

arc-length s is 1
ak(

s
a ).

A heavy chain suspended at its ends hanging loosely takes the form of a plane
curve C. Show that, if s is the arc-length of C measured from its lowest point, ϕ
the angle between the tangent of C and the horizontal, and T the tension in the
chain, then

T cosϕ = λ, T sinϕ = µs,

where λ, µ are non-zero constants (we assume that the chain has constant mass
per unit length). Show that the signed curvature of C is

κs =
1

a

(
1 +

s2

a2

)−1

,

where a = λ/µ, and deduce that C can be obtained from the catenary in Example
2.2.4 by applying a dilation and an isometry of the plane.

2.2.5 Let γγγ(t) be a regular plane curve and let λ be a constant. The parallel curve γγγλ

of γγγ is defined by
γγγλ(t) = γγγ(t) + λnnns(t).

Show that, if λκs(t) 6= 1 for all values of t, then γγγλ is a regular curve and that
its signed curvature is κs/|1 − λκs|.
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2.2.6 Another approach to the curvature of a unit-speed plane curve γγγ at a point γγγ(s0)
is to look for the ‘best approximating circle’ at this point. We can then define

the curvature of γγγ to be the reciprocal of the radius of this circle.
Carry out this programme by showing that the centre of the circle which passes
through three nearby points γγγ(s0) and γγγ(s0 ± δs) on γγγ approaches the point

ǫǫǫ(s0) = γγγ(s0) +
1

κs(s0)
nnns(s0)

as δs tends to zero. The circle C with centre ǫǫǫ(s0) passing through γγγ(s0) is called
the osculating circle to γγγ at the point γγγ(s0), and ǫǫǫ(s0) is called the centre of

curvature of γγγ at γγγ(s0). The radius of C is 1/|κs(s0)| = 1/κ(s0), where κ is the
curvature of γγγ - this is called the radius of curvature of C at γγγ(s0).

2.2.7 With the notation in the preceding exercise, we regard ǫǫǫ as the parametrization
of a new curve, called the evolute of γγγ (if γγγ is any regular plane curve, its evolute
is defined to be that of a unit-speed reparametrization of γγγ). Assume that
κ̇s(s) 6= 0 for all values of s (a dot denoting d/ds), say κ̇s > 0 for all s (this can
be achieved by replacing s by −s if necessary). Show that the arc-length of ǫǫǫ is
− 1

κs(s) (up to adding a constant), and calculate the signed curvature of ǫǫǫ. Show

also that all the normal lines to γγγ are tangent to ǫǫǫ (for this reason, the evolute
of γγγ is sometimes described as the ‘envelope’ of the normal lines to γγγ).

Show that the evolute of the cycloid

γγγ(t) = a(t− sin t, 1 − cos t), 0 < t < 2π,

where a > 0 is a constant, is

ǫǫǫ(t) = a(t+ sin t,−1 + cos t)

(see Exercise 1.1.7) and that, after a suitable reparametrization, ǫǫǫ can be ob-
tained from γγγ by a translation of the plane.

2.2.8 A string of length ℓ is attached to the point γγγ(0) of a unit-speed plane curve γγγ(s).
Show that when the string is wound onto the curve while being kept taught, its
endpoint traces out the curve

ιιι(s) = γγγ(s) + (ℓ− s)γ̇γγ(s),

where 0 < s < ℓ and a dot denotes d/ds. The curve ιιι is called the involute of γγγ
(if γγγ is any regular plane curve, we define its involute to be that of a unit-speed
reparametrization of γγγ). Suppose that the signed curvature κs of γγγ is never zero,
say κs(s) > 0 for all s. Show that the signed curvature of ιιι is 1/(ℓ− s).
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2.2.9 Show that the involute of the catenary

γγγ(t) = (t, cosh t)

with l = 0 (see the preceding exercise) is the tractrix

x = cosh−1

(
1

y

)
−
√

1 − y2.

See §8.3 for a simple geometric characterization of this curve.

2.2.10 A unit-speed plane curve γγγ(s) rolls without slipping along a straight line ℓ parallel
to a unit vector aaa, and initially touches ℓ at a point ppp = γγγ(0). Let qqq be a point
fixed relative to γγγ. Let ΓΓΓ(s) be the point to which qqq has moved when γγγ has rolled
a distance s along ℓ (note that ΓΓΓ will not usually be unit-speed). Let θ(s) be the
angle between aaa and the tangent vector γ̇γγ. Show that

ΓΓΓ(s) = ppp + saaa + ρ−θ(s)(qqq − γγγ(s)),

where ρϕ is the rotation about the origin through an angle ϕ. Show further that

Γ̇ΓΓ(s)...ρ−θ(s)(q− γγγ(s)) = 0.

Geometrically, this means that a point on ΓΓΓ moves as if it is rotating about the
instantaneous point of contact of the rolling curve with ℓ. See Exercise 1.1.7 for
a special case.

2.2.11 Show that, if two plane curves γγγ(t) and γ̃γγ(t) have the same non-zero curvature
for all values of t, then γ̃γγ can be obtained from γγγ by applying an isometry of R2.

2.2.12 Show that if all the normal lines to a plane curve pass through some fixed point,
the curve is part of a circle.

2.2.13 Let γγγ(t) = (ekt cos t, ekt sin t), where −∞ < t < ∞ and k is a non-zero constant
(a logarithmic spiral – see Example 1.2.2). Show that there is a unique unit-
speed parameter s on γγγ such that s > 0 for all t and s→ 0 as t→ ∓∞ if ±k > 0,
and express s as a function of t.
Show that the signed curvature of γγγ is 1/ks. Conversely, describe every curve
whose signed curvature, as a function of arc-length s, is 1/ks for some non-zero
constant k.

2.2.14 If γγγ is a plane curve, its pedal curve with respect to a fixed point ppp is the curve
traced out by the foot of the perpendicular from ppp to the tangent line at a variable
point of the curve. If γγγ is unit-speed, show that the pedal curve is parametrized
by

δδδ = ppp + ((γγγ − ppp)...nnns)nnns,
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where nnns is the signed unit normal of γγγ. Show that δδδ is regular if and only if γγγ
has nowhere vanishing curvature and does not pass through ppp.
Show that the pedal curve of the circle γγγ(t) = (cos t, sin t) with respect to the
point (−2, 0) is obtained by applying a translation to the limaçon in Example
1.1.7.

2.2.15 A unit-speed plane curve γγγ has the property that its tangent vector ttt(s) makes
a fixed angle θ with γγγ(s) for all s. Show that:
(i) If θ = 0, then γγγ is part of a straight line.
(ii) If θ = π/2, then γγγ is a circle.
(iii) If 0 < θ < π/2, then γγγ is a logarithmic spiral.

2.2.16 Let γγγλ be a parallel curve of the parabola γγγ(t) = (t, t2). Show that:
(i) γγγλ is regular if and only if λ < 1/2.
(ii) If λ > 1/2, γγγλ has exactly two singular points.
What happens if λ = 1/2?

2.2.17 This exercise gives another approach to the definition of the ‘best approximating
circle’ to a curve γγγ at a point γγγ(t0) of γγγ - see Exercise 2.2.6. We assume that γγγ
is unit-speed for simplicity.
Let C be the circle with centre ccc and radius R, and consider the smooth function

F (t) = ‖ γγγ(t) − ccc ‖2 −R2.

Show that F (t0) = Ḟ (t0) = 0 if and only if C is tangent to γγγ at γγγ(t0). This sug-
gests that the ‘best’ approximating circle can be defined by the three conditions
F (t0) = Ḟ (t0) = F̈ (t0) = 0. Show that, if γ̈γγ(t0) 6= 0, the unique circle C for
which F satisfies these conditions is the osculating circle to γγγ at the point γγγ(t0).

2.2.18 Show that the evolute of the parabola γγγ(t) = (t, t2) is the semi-cubical parabola

ǫǫǫ(t) =
(
−4t3, 3t2 + 1

2

)
.

2.2.19 Show that the evolute of the ellipse γγγ(t) = (a cos t, b sin t), where a > b > 0 are
constants, is the astroid

ǫǫǫ(t) =

(
a2 − b2

a
cos3 t,

b2 − a2

b
sin3 t

)
.

(Compare Example 1.1.4.)

2.2.20 Show that all the parallel curves (Exercise 2.2.5) of a given curve have the same
evolute.

2.2.21 Let γγγ be a regular plane curve. Show that:
(i) The involute of the evolute of γγγ is a parallel curve of γγγ.
(ii) The evolute of the involute of γγγ is γγγ.
(These statements might be compared to the fact that the integral of the deriv-
ative of a smooth function f is equal to f plus a constant, while the derivative
of the integral of f is f .)
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2.2.22 A closed plane curve γγγ is parametrized by the direction of its normal lines, i.e.
γγγ(θ) is a 2π-periodic curve such that θ is the angle between the normal line at
γγγ(θ) and the positive x-axis. Let p(θ) be the distance from the origin to the
tangent line at γγγ(θ). Show that:

(i) γγγ(θ) =
(
p cos θ − dp

dθ sin θ, p sin θ + dp
dθ cos θ

)
.

(ii) γγγ is regular if and only if p+ d2p
dθ2 > 0 for all θ (we assume that this condition

holds in the remainder of this exercise).

(iii) The signed curvature of γγγ is κs =
(
p+ d2p

dθ2

)−1

.

(iv) The length of γγγ is
∫ 2π

0
p(θ)dθ.

(v) The tangent lines at the points γγγ(θ) and γγγ(θ+ π) are parallel and a distance
w(θ) = p(θ) + p(θ + π) apart (w(θ) is called the width of γγγ in the direction θ).
(vi) γγγ has a circumscribed square, i.e. a square all of whose sides are tangent to
γγγ.
(vii) If γγγ has constant width D, its length is πD;
(viii) Taking p(θ) = a cos2(kθ/2) + b, where k is an odd integer and a and b are
constants with b > 0, a+ b > 0, gives a curve of constant width a+ 2b.
(ix) The curve in (viii) is a circle if |k| = 1 but not if |k| > 1.

2.2.23 Show that if the parabola y = 1
2x

2 rolls without slipping on the x-axis, the
curved traced out by the point fixed relative to the parabola and initially at
(0, 1) can be parametrized by

γγγ(t) =
1

2
(t+ tanh t, cosh t+ sech t).

2.2.24 Show that, if γγγ(t) is a closed curve of period T0, and ttt, nnns and κs are its unit
tangent vector, signed unit normal and signed curvature, respectively, then

ttt(t+ T0) = ttt(t), nnns(t+ T0) = nnns(t), κs(t+ T0) = κs(t).

2.3.1 Compute κ, τ, ttt,nnn and bbb for each of the following curves, and verify that the
Frenet–Serret equations are satisfied:

(i) γγγ(t) =
(

1
3(1 + t)3/2, 1

3 (1 − t)3/2, t√
2

)
.

(ii) γγγ(t) =
(

4
5 cos t, 1 − sin t,−3

5 cos t
)
.

Show that the curve in (ii) is a circle, and find its centre, radius and the plane
in which it lies.

2.3.2 Describe all curves in R3 which have constant curvature κ > 0 and constant

torsion τ .

2.3.3 A regular curve γγγ in R3 with curvature > 0 is called a generalized helix if its
tangent vector makes a fixed angle θ with a fixed unit vector aaa. Show that the
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torsion τ and curvature κ of γγγ are related by τ = ±κ cot θ. Show conversely
that, if the torsion and curvature of a regular curve are related by τ = λκ where
λ is a constant, then the curve is a generalized helix.
In view of this result, Examples 2.1.3 and 2.3.2 show that a circular helix is a
generalized helix. Verify this directly.

2.3.4 Let γγγ(t) be a unit-speed curve with κ(t) > 0 and τ(t) 6= 0 for all t. Show that,
if γγγ is spherical, i.e. if it lies on the surface of a sphere, then

(2.22)
τ

κ
=

d

ds

(
κ̇

τκ2

)
.

Conversely, show that if Eq. 2.22 holds, then

ρ2 + (ρ̇σ)2 = r2

for some (positive) constant r, where ρ = 1/κ and σ = 1/τ , and deduce that
γγγ lies on a sphere of radius r. Verify that Eq. 2.22 holds for Viviani’s curve
(Exercise 1.1.8).

2.3.5 Let P be an n × n orthogonal matrix and let aaa ∈ Rn, so that M(vvv) = Pvvv + aaa
is an isometry of R3 (see Appendix 1). Show that, if γγγ is a unit-speed curve in
Rn, the curve ΓΓΓ = M(γγγ) is also unit-speed. Show also that, if ttt,nnn,bbb and TTT,NNN,BBB
are the tangent vector, principal normal and binormal of γγγ and ΓΓΓ, respectively,
then TTT = Pttt, NNN = Pnnn and BBB = Pbbb.

2.3.6 Let (aij) be a skew-symmetric 3×3 matrix (i.e. aij = −aji for all i, j). Let vvv1,vvv2

and vvv3 be smooth functions of a parameter s satisfying the differential equations

v̇vvi =

3∑

j=1

aijvvvj ,

for i = 1, 2 and 3, and suppose that for some parameter value s0 the vectors
vvv1(s0),vvv2(s0) and vvv3(s0) are orthonormal. Show that the vectors vvv1(s),vvv2(s)
and vvv3(s) are orthonormal for all values of s.

2.3.7 Repeat Exercise 2.3.1 for the following unit-speed curves:

(i) γγγ(t) =
(
sin2 t√

2
, 1

2 sin t
√

2, t√
2

)
.

(ii) γγγ(t) =
(

1√
3

cos t+ 1√
2

sin t, 1√
3

cos t, 1√
3

cos t− 1√
2

sin t
)
.

2.3.8 Repeat Exercise 2.3.1 for the curve

γγγ(t) =
1√
2
(cosh t, sinh t, t)

(which is not unit-speed).
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2.3.9 Show that the curve

γγγ(t) =

(
1 + t2

t
, t+ 1,

1 − t

t

)

is planar.

2.3.10 Show that the curvature of the curve

γγγ(t) = (t cos(ln t), t sin(ln t), t), t > 0

is proportional to 1/t.

2.3.11 Show that the torsion of a regular curve γγγ(t) is a smooth function of t whenever
it is defined.

2.3.12 Let γγγ(t) be a unit-speed curve in R3, and assume that its curvature κ(t) is
non-zero for all t. Define a new curve δδδ by

δδδ(t) =
dγγγ(t)

dt
.

Show that δδδ is regular and that, if s is an arc-length parameter for δδδ, then

ds

dt
= κ.

Prove that the curvature of δδδ is
(

1 +
τ2

κ2

) 1
2

,

and find a formula for the torsion of δδδ in terms of κ, τ and their derivatives with
respect to t.

2.3.13 Show that the curve (shown below) on the cone

σσσ(u, v) = (u cos v, u sin v, u)

given by u = eλt, v = t, where λ is a constant, is a generalized helix.
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2.3.14 Show that the twisted cubic

γγγ(t) = (at, bt2, ct3),

where a, b and c are constants, is a generalized helix if and only if

3ac = ±2b2.

2.3.15 A space curve γ̃γγ is called a Bertrand mate of a space curve γγγ if, for each point
P of γγγ, there is a point P̃ of γ̃γγ such that the line PP̃ is parallel both to the
principal normal of γγγ at P and to the principal normal of γ̃γγ at P̃ . If γγγ has a
Bertrand mate it is called a Bertrand curve.
Assume that γγγ and γ̃γγ are unit-speed and let γ̃γγ(s̃) be the point of γ̃γγ corresponding
to the point γγγ(s) of γγγ, where s̃ is a smooth function of s. Show that:
(i) γ̃γγ(s̃) = γγγ(s) + annn(s), where nnn is the principal normal of γγγ and a is a constant.
(ii) There is a constant α such that the tangent vector, principal normal and
binormal of γγγ and γ̃γγ at corresponding points are related by

t̃tt = cosαttt − sinαbbb, ñnn = ±nnn, b̃bb = ±(sinαttt + cosαbbb),

where the signs in the last two equations are the same.
(iii) The curvature and torsion of γγγ and γ̃γγ at corresponding points are related by

cosα
ds̃

ds
= 1 − aκ, sinα

ds̃

ds
= −aτ,

cosα
ds

ds̃
= 1 + aκ̃, sinα

ds

ds̃
= −aτ̃ .

(iv) aκ− aτ cotα = 1.
(v) a2τ τ̃ = sin2 α, (1 − aκ)(1 + aκ̃) = cos2 α.

2.3.16 Show that every plane curve is a Bertrand curve.

2.3.17 Show that a space curve γγγ with nowhere vanishing curvature κ and nowhere
vanishing torsion τ is a Bertrand curve if and only if there exist constants a, b
such that

aκ+ bτ = 1.

2.3.18 Show that a Bertrand curve C with nowhere vanishing curvature and torsion has
more than one Bertrand mate if and only if it is a circular helix, in which case
it has infinitely-many Bertrand mates, all of which are circular helices with the
same axis and pitch as C.

2.3.19 Show that a spherical curve of constant curvature is a circle.
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2.3.20 The normal plane at a point P of a space curve C is the plane passing through P
perpendicular to the tangent line of C at P . Show that, if all the normal planes
of a curve pass through some fixed point, the curve is spherical.

2.3.21 Let γγγ be a curve in R3 and let Π be a plane

vvv...NNN = d,

where NNN and d are constants with NNN 6= 0, and vvv = (x, y, z). Let

F (t) = γγγ(t)...NNN − d.

Show that:
) F (t0) = 0 if and only if γγγ intersects Π at the point γγγ(t0).

(ii) F (t0) = Ḟ (t0) = 0 if and only if γγγ touches Π at γγγ(t0) (i.e. γ̇γγ(t0) is parallel
to Π).
(iii) If the curvature of γγγ at γγγ(t0) is non-zero, there is a unique plane Π such
that

F (t0) = Ḟ (t0) = F̈ (t0) = 0,

and that this plane Π is the plane passing through γγγ(t0) parallel to γ̇γγ(t0) and
γ̈γγ(t0) (Π is called the osculating plane of γγγ at γγγ(t0); intuitively, it is the plane
which most closely approaches γγγ near the point γγγ(t0)).
(iv) If γγγ is contained in a plane Π′, then Π′ is the osculating plane of γγγ at each
of its points.
(v) If the torsion of γγγ is non-zero at γγγ(t0), then γγγ crosses its osculating plane
there.
Compare Exercise 2.2.17.

2.3.22 Find the osculating plane at a general point of the circular helix

γγγ(t) = (a cos t, a sin t, bt).

2.3.23 Show that the osculating planes at any three distinct points P1, P2, P3 of the
twisted cubic

γγγ(t) = (t, t2, t3)

meet at a single point Q, and that the four points P1, P2, P3, Q all lie in a plane.

2.3.24 Suppose that a curve γγγ has nowhere vanishing curvature and that each of its
osculating planes pass through some fixed point. Prove that the curve lies in a
plane.

2.3.25 Show that the orthogonal projection of a curve C onto its normal plane at a
point P of C is a plane curve which has an ordinary cusp at P provided that
C has non-zero curvature and torsion at P (see Exercise 1.3.3). Show, on the
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other hand, that P is a regular point of the orthogonal projection of C onto its
osculating plane at P .

2.3.26 Let S be the sphere with centre ccc and radius R. Let γγγ be a unit-speed curve in
R3 and let

F (t) = ‖ γγγ(t) − ccc ‖2 −R2.

Let t0 ∈ R. Show that:
(i) F (t0) = 0 if and only if γγγ intersects S at the point γγγ(t0).

(ii) F (t0) = Ḟ (t0) = 0 if and only if γγγ is tangent to S at γγγ(t0).

Compute F̈ and
...
F and show that there is a unique sphere S (called the osculating

sphere of γγγ at γγγ(t0)) such that

F (t0) = Ḟ (t0) = F̈ (t0) =
...
F (t0) = 0.

Show that the centre of S is

ccc = γγγ +
1

κ
nnn − κ̇

κ2τ
bbb

in the usual notation, all quantities being evaluated at t = t0. What is its radius?
The point ccc(t0) is called the centre of spherical curvature of γγγ at γγγ(t0). Show
that ccc(t0) is independent of t0 if and only if γγγ is spherical, in which case the
sphere on which γγγ lies is its osculating sphere.

2.3.27 The osculating circle of a curve γγγ at a point γγγ(t0) is the intersection of the
osculating plane and the osculating sphere of γγγ at γγγ(t0). Show that the centre
of the osculating circle is the centre of curvature

γγγ +
1

κ
nnn,

and that its radius is 1/κ, all quantities being evaluated at t = t0. (Compare
Exercise 2.2.17.)

Chapter 3

3.1.1 Show that
γγγ(t) = ((1 + a cos t) cos t, (1 + a cos t) sin t),

where a is a constant, is a simple closed curve if |a| < 1, but that if |a| > 1 its
complement is the disjoint union of three connected subsets of R2, two of which
are bounded and one is unbounded. What happens if a = ±1?

3.1.2 Show that, if γγγ is as in Exercise 3.1.1, its turning angle ϕ satisfies

dϕ

dt
= 1 +

a(cos t+ a)

1 + 2a cos t+ a2
.
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Deduce that ∫ 2π

0

a(cos t+ a)

1 + 2a cos t+ a2
dt =

{
0 if |a| < 1,

2π if |a| > 1.

3.2.1 Show that the length ℓ(γγγ) and the area A(γγγ) are unchanged by applying an
isometry to γγγ.

3.2.2 By applying the isoperimetric inequality to the ellipse

x2

p2
+
y2

q2
= 1

(where p and q are positive constants), prove that

∫ 2π

0

√
p2 sin2 t+ q2 cos2 t dt ≥ 2π

√
pq,

with equality holding if and only if p = q.

3.2.3 What is the area of the interior of the ellipse

γγγ(t) = (p cos t, q sin t),

where p and q are positive constants?

3.3.1 Show that the ellipse in Example 3.1.2 is convex.

3.3.2 Show that the limaco̧n in Example 1.1.7 has only two vertices (cf. Example
3.1.3).

3.3.3 Show that a plane curve γγγ has a vertex at t = t0 if and only if the evolute ǫǫǫ of
γγγ (Exercise 2.2.7) has a singular point at t = t0.

3.3.4 Show that the vertices of the curve y = f(x) satisfy

(
1 +

(
df

dx

)2
)
d3f

dx3
= 3

df

dx

(
d2f

dx2

)2

.

3.3.5 Show that the curve

γγγ(t) = (at− b sin t, a− b cos t),

where a and b are non-zero constants, has vertices at the points γγγ(nπ) for all
integers n. Show that these are all the vertices of γγγ unless

a− b

b
≤ 2b

a
≤ a+ b

b
,
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in which case there are infinitely-many other vertices.

Chapter 4

4.1.1 Show that any open disc in the xy-plane is a surface.

4.1.2 Define surface patches σσσx
± : U → R3 for S2 by solving the equation x2+y2+z2 = 1

for x in terms of y and z:

σσσx
±(u, v) = (±

√
1 − u2 − v2, u, v),

defined on the open set U = {(u, v) ∈ R2 | u2 + v2 < 1}. Define σσσy
± and σσσz

±
similarly (with the same U) by solving for y and z, respectively. Show that these
six patches give S2 the structure of a surface.

4.1.3 The hyperboloid of one sheet is

S = {(x, y, z) ∈ R3 | x2 + y2 − z2 = 1}.

Show that, for every θ, the straight line

(x− z) cos θ = (1 − y) sin θ, (x+ z) sin θ = (1 + y) cos θ

is contained in S, and that every point of the hyperboloid lies on one of these
lines. Deduce that S can be covered by a single surface patch, and hence is a
surface. (Compare the case of the cylinder in Example 4.1.3.)
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Find a second family of straight lines on S, and show that no two lines of the
same family intersect, while every line of the first family intersects every line
of the second family with one exception. One says that the surface S is doubly

ruled.

4.1.4 Show that the unit cylinder can be covered by a single surface patch, but that
the unit sphere cannot. (The second part requires some point set topology.)

4.1.5 Show that every open subset of a surface is a surface.

4.1.6 Show that a curve on the unit cylinder that intersects the straight lines on the
cylinder parallel to the z-axis at a constant angle must be a straight line, a circle
or a circular helix.

4.1.7 Find a surface patch for the ellipsoid

x2

p2
+
y2

q2
+
z2

r2
= 1,

where p, q and r are non-zero constants. (A picture of an ellipsoid can be found
in Theorem 5.2.2.)

4.1.8 Show that

σσσ(u, v) = (sinu, sin v, sin(u+ v)), −π/2 < u, v < π/2

is a surface patch for the surface with Cartesian equation

(x2 − y2 + z2)2 = 4x2z2(1 − y2).

4.2.1 Show that, if f(x, y) is a smooth function, its graph

{(x, y, z) ∈ R3 | z = f(x, y)}
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is a smooth surface with atlas consisting of the single regular surface patch

σσσ(u, v) = (u, v, f(u, v)).

In fact, every surface is “locally” of this type - see Exercise 5.6.4.

4.2.2 Verify that the six surface patches for S2 in Exercise 4.1.2 are regular. Calculate
the transition maps between them and verify that these maps are smooth.

4.2.3 Which of the following are regular surface patches (in each case, u, v ∈ R):
(i) σσσ(u, v) = (u, v, uv).
(ii) σσσ(u, v) = (u, v2, v3).
(iii) σσσ(u, v) = (u+ u2, v, v2) ?

4.2.4 Show that the ellipsoid
x2

p2
+
y2

q2
+
z2

r2
= 1,

where p, q and r are non-zero constants, is a smooth surface.

4.2.5 A torus (see above) is obtained by rotating a circle C in a plane Π around a
straight line l in Π that does not intersect C. Take Π to be the xz-plane, l to be
the z-axis, a > 0 the distance of the centre of C from l, and b < a the radius of
C. Show that the torus is a smooth surface with parametrization

σσσ(θ, ϕ) = ((a+ b cos θ) cosϕ, (a+ b cos θ) sinϕ, b sin θ).
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4.2.6 A helicoid is the surface swept out by an aeroplane propeller, when both the
aeroplane and its propeller move at constant speed (see the picture above). If the
aeroplane is flying along the z-axis, show that the helicoid can be parametrized
as

σσσ(u, v) = (v cosu, v sinu, λu),

where λ is a constant. Show that the cotangent of the angle that the standard
unit normal of σσσ at a point ppp makes with the z-axis is proportional to the distance
of ppp from the z-axis.

4.2.7 Let γγγ be a unit-speed curve in R3 with nowhere vanishing curvature. The tube

of radius a > 0 around γγγ is the surface parametrized by

σσσ(s, θ) = γγγ(s) + a(nnn(s) cos θ + bbb(s) sin θ),

where nnn is the principal normal of γγγ and bbb is its binormal. Give a geometrical
description of this surface. Prove that σσσ is regular if the curvature κ of γγγ is less
than a−1 everywhere.
Note that, even if σσσ is regular, the surface σσσ will have self-intersections if the curve
γγγ comes within a distance 2a of itself. This illustrates the fact that regularity
is a local property: if (s, θ) is restricted to lie in a sufficiently small open subset
U of R2, σσσ : U → R3 will be smooth and injective (so there will be no self-
intersections) - see Exercise 5.6.3. We shall see other instances of this later (e.g.
Example 12.2.5).

The tube around a circular helix

4.2.8 Show that translations and invertible linear transformations of R3 take smooth
surfaces to smooth surfaces.

4.2.9 Show that every open subset of a smooth surface is a smooth surface.

4.2.10 Show that the graph in Exercise 4.2.1 is diffeomorphic to an open subset of a
plane.
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4.2.11 Show that the surface patch in Exercise 4.1.8 is regular.

4.2.12 Show that the torus in Exercise 4.2.5 can be covered by three patches σσσ(θ, ϕ),
with (θ, ϕ) lying in an open rectangle in R2, but not by two.

4.2.13 For which values of the constant c is

z(z + 4) = 3xy + c

a smooth surface?

4.2.14 Show that

x3 + 3(y2 + z2)2 = 2

is a smooth surface.

4.2.15 Let S be the astroidal sphere

x2/3 + y2/3 + z2/3 = 1.

Show that, if we exclude from S its intersections with the coordinate planes, we
obtain a smooth surface S̃.

4.2.16 Show that the surface

xyz = 1

is not connected, but that it is the disjoint union of four connected surfaces.
Find a parametrization of each connected piece.

4.2.17 Show that the set of mid-points of the chords of a circular helix is a subset of a
helicoid.

4.3.1 If S is a smooth surface, define the notion of a smooth function S → R. Show
that, if S is a smooth surface, each component of the inclusion map S → R3 is
a smooth function S → R.

4.3.2 Let S be the half-cone x2 + y2 = z2, z > 0 (see Example 4.1.5). Define a map
f from the half-plane {(0, y, z) | y > 0} to S by f(0, y, z) = (y cos z, y sin z, y).
Show that f is a local diffeomorphism but not a diffeomorphism.

4.4.1 Find the equation of the tangent plane of each of the following surface patches
at the indicated points:

(i) σσσ(u, v) = (u, v, u2 − v2), (1, 1, 0).

(ii) σσσ(r, θ) = (r cosh θ, r sinh θ, r2), (1, 0, 1).

4.4.2 Show that, if σσσ(u, v) is a surface patch, the set of linear combinations of σσσu and
σσσv is unchanged when σσσ is reparametrized.



24

4.4.3 Let S be a surface, let ppp ∈ S and let F : R3 → R be a smooth function. Let
∇∇∇SF be the perpendicular projection of the gradient ∇∇∇F = (Fx, Fy, Fz) of F
onto TpppS. Show that, if γγγ is any curve on S passing through ppp when t = t0, say,

(∇∇∇SF )...γ̇γγ(t0) =
d

dt

∣∣∣∣
t=t0

F (γγγ(t)).

Deduce that ∇∇∇SF = 000 if the restriction of F to S has a local maximum or a
local minimum at ppp.

4.4.4 Let f : S1 → S2 be a local diffeomorphism and let γγγ be a regular curve on S1.
Show that f ◦ γγγ is a regular curve on S2.

4.4.5 Find the equation of the tangent plane of the torus in Exercise 4.2.5 at the point
corresponding to θ = ϕ = π/4.

4.5.1 Calculate the transition map Φ between the two surface patches for the Möbius
band in Example 4.5.3. Show that it is defined on the union of two disjoint
rectangles in R2, and that the determinant of the Jacobian matrix of Φ is equal
to +1 on one of the rectangles and to −1 on the other.

4.5.2 Suppose that two smooth surfaces S and S̃ are diffeomorphic and that S is
orientable. Prove that S̃ is orientable.

4.5.3 Show that for the latitude-longitude parametrization of S2 (Example 4.1.4) the
standard unit normal points inwards. What about the parametrizations given
in Exercise 4.1.2?

4.5.4 Let γγγ be a curve on a surface patch σσσ, and let vvv be a unit vector field along γγγ,
i.e. vvv(t) is a unit tangent vector to σσσ for all values of the curve parameter t, and
vvv is a smooth function of t. Let ṽvv be the result of applying a positive rotation
through π/2 to vvv. Suppose that, for some fixed parameter value t0,

γ̇γγ(t0) = cos θ0vvv(t0) + sin θ0ṽvv(t0).

Show that there is a smooth function θ(t) such that θ(t0) = θ0 and

γ̇γγ(t) = cos θ(t)vvv(t) + sin θ(t)ṽvv(t) for all t.

4.5.5 The map F : R3\{(0, 0, 0)} → R3\{(0, 0, 0)} given by

F (vvv) =
vvv

vvv...vvv

is called inversion with respect to S2 (compare the discussion of inversion in
circles in Appendix 2). Geometrically, F (vvv) is the point on the radius from the
origin passing through vvv such that the product of the distances of vvv and F (vvv)
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from the origin is equal to 1. Let S be a surface that does not pass through the
origin, and let S∗ = F (S). Show that, if S is orientable, then so is S∗. Show, in
fact, that if NNN is the unit normal of S at a point ppp, that of S∗ at F (ppp) is

NNN∗ =
2(ppp.NNN)

‖ ppp ‖2
ppp −NNN.

Chapter 5

5.1.1 Show that the following are smooth surfaces:
(i) x2 + y2 + z4 = 1;
(ii) (x2 + y2 + z2 + a2 − b2)2 = 4a2(x2 + y2), where a > b > 0 are constants.
Show that the surface in (ii) is, in fact, the torus of Exercise 4.2.5.

5.1.2 Consider the surface S defined by f(x, y, z) = 0, where f is a smooth function
such that ∇∇∇f does not vanish at any point of S. Show that ∇∇∇f is perpendicular
to the tangent plane at every point of S, and deduce that S is orientable.
Suppose now that F : R3 → R is a smooth function. Show that, if the restriction
of F to S has a local maximum or a local minimum at ppp then, at ppp, ∇∇∇F = λ∇∇∇f for
some scalar λ. (This is called Lagrange’s Method of Undetermined Multipliers.)

5.1.3 Show that the smallest value of x2 + y2 + z2 subject to the condition xyz = 1 is
3, and that the points (x, y, z) that give this minimum value lie at the vertices
of a regular tetrahedron in R3.

5.2.1 Write down parametrizations of each of the quadrics in parts (i)–(xi) of Theorem
5.2.2 (in case (vi) one must remove the origin).

5.2.2 Show that the quadric

x2 + y2 − 2z2 − 2

3
xy + 4z = c

is a hyperboloid of one sheet if c > 2, and a hyperboloid of two sheets if c < 2.
What if c = 2? (This exercise requires a knowledge of eigenvalues and eigenvec-
tors.)

5.2.3 Show that, if a quadric contains three points on a straight line, it contains the
whole line. Deduce that, if L1, L2 and L3 are non-intersecting straight lines in
R3, there is a quadric containing all three lines.

5.2.4 Use the preceding exercise to show that any doubly ruled surface is (part of)
a quadric surface. (A surface is doubly ruled if it is the union of each of two
families of straight lines such that no two lines of the same family intersect, but
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every line of the first family intersects every line of the second family, with at
most a finite number of exceptions.) Which quadric surfaces are doubly ruled ?

5.2.5 By setting

u =
x

p
− y

q
, v =

x

p
+
y

q
,

find a surface patch covering the hyperbolic paraboloid

x2

p2
− y2

q2
= z.

Deduce that the hyperbolic paraboloid is doubly ruled.

5.2.6 A conic is a level curve of the form

ax2 + by2 + 2cxy + dx+ ey + f = 0,

where the coefficients a, b, c, d, e and f are constants, not all of which are zero.
By imitating the proof of Theorem 5.2.2, show that any non-empty conic that
is not a straight line or a single point can be transformed by applying a direct
isometry of R2 into one of the following:

(i) An ellipse x2

p2 + y2

q2 = 1.

(ii) A parabola y2 = 2px.

(iii) A hyperbola x2

p2 − y2

q2 = 1.

(iv) A pair of intersecting straight lines y2 = p2x2.

Here, p and q are non-zero constants.

5.2.7 Show that:

(i) Any connected quadric surface is diffeomorphic to a sphere, a circular cylinder
or a plane.

(ii) Each connected piece of a non-connected quadric surface is diffeomorphic to
a plane.

5.3.1 The surface obtained by rotating the curve x = cosh z in the xz-plane around the
z-axis is called a catenoid (illustrated below). Describe an atlas for this surface.

5.3.2 Show that

σσσ(u, v) = (sechu cos v, sechu sin v, tanhu)

is a regular surface patch for S2 (it is called Mercator’s projection). Show that
meridians and parallels on S2 correspond under σσσ to perpendicular straight lines
in the plane. (This patch is ’derived’ in Exercise 6.3.3.)
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5.3.3 Show that, if σσσ(u, v) is the (generalized) cylinder in Example 5.3.1:
(i) The curve γ̃γγ(u) = γγγ(u)− (γγγ(u)...aaa)aaa is contained in a plane perpendicular to aaa.
(ii) σσσ(u, v) = γ̃γγ(u) + ṽaaa, where ṽ = v + γγγ(u)...aaa.
(iii) σ̃σσ(u, ṽ) = γ̃γγ(u) + ṽaaa is a reparametrization of σσσ(u, v).
This exercise shows that, when considering a generalized cylinder σσσ(u, v) =
γγγ(u) + vaaa, we can always assume that the curve γγγ is contained in a plane per-
pendicular to the vector aaa.

5.3.4 Consider the ruled surface

(5.5) σσσ(u, v) = γγγ(u) + vδδδ(u),

where ‖ δδδ(u) ‖= 1 and δ̇δδ(u) 6= 0 for all values of u (a dot denotes d/du). Show

that there is a unique point ΓΓΓ(u), say, on the ruling through γγγ(u) at which δ̇δδ(u)
is perpendicular to the surface. The curve ΓΓΓ is called the line of striction of the

ruled surface σσσ (of course, it need not be a straight line). Show that Γ̇ΓΓ...δ̇δδ = 0.

Let ṽ = v +
γ̇γγ... ˙δδδ

‖ ˙δδδ‖2

, and let σ̃σσ(u, ṽ) be the corresponding reparametrization of σσσ.

Then, σ̃σσ(u, ṽ) = ΓΓΓ(u) + ṽδδδ(u). This means that, when considering ruled surfaces

as in (5.5), we can always assume that γ̇γγ...δ̇δδ = 0. We shall make use of this in
Chapter 12.

5.3.5 A loxodrome is a curve on a sphere that intersects the meridians at a fixed angle,
say α. Show that, in the Mercator surface patch σσσ of S2 in Exercise 5.3.2, a
unit-speed loxodrome satisfies

u̇ = cosα coshu, v̇ = ± sinα cosh u
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(a dot denoting differentiation with respect to the parameter of the loxodrome).
Deduce that loxodromes correspond under σσσ to straight lines in the uv-plane.

5.3.6 A conoid is a ruled surface whose rulings are parallel to a given plane Π and pass
through a given straight line L perpendicular to Π. If Π is the xy-plane and L
is the z-axis, show that

σσσ(u, θ) = (u cos θ, u sin θ, f(θ)), u 6= 0

is a regular surface patch for the conoid, where θ is the angle between a ruling and
the positive x-axis and f(θ) is the height above Π at which the ruling intersects
L (f is assumed to be smooth).

L�
5.3.7 The normal line at a point P of a surface σσσ is the straight line passing through

P parallel to the normal NNN of σσσ at P . Prove that:
(i) If the normal lines are all parallel, then σσσ is an open subset of a plane.
(ii) If all the normal lines pass through some fixed point, then σσσ is an open subset
of a sphere.
(iii) If all the normal lines intersect a given straight line, then σσσ is an open subset
of a surface of revolution.

5.3.8 Show that the line of striction of the hyperboloid of one sheet

x2 + y2 − z2 = 1

is the circle in which the surface intersects the xy-plane (recall from Exercise
4.1.3 that this surface is ruled.)

5.3.9 Which quadric surfaces are:
(a) Generalized cylinders.
(b) Generalized cones.
(c) Ruled surfaces.



29

(d) Surfaces of revolution ?

5.3.10 Let S be a ruled surface. Show that the union of the normal lines (Exercise
5.3.7) at the points of a ruling of S is a plane or a hyperbolic paraboloid.

5.4.1 One of the following surfaces is compact and one is not:
(i) x2 − y2 + z4 = 1.
(ii) x2 + y2 + z4 = 1.
Which is which, and why ? Sketch the compact surface.

5.4.2 Explain, without giving a detailed proof, why the tube (Exercise 4.2.7) around a
closed curve in R3 with no self-intersections is a compact surface diffeomorphic
to a torus (provided the tube has sufficiently small radius).

5.5.1 Show that the following are triply orthogonal systems:
(i) The spheres with centre the origin, the planes containing the z-axis, and the
circular cones with axis the z-axis.
(ii) The planes parallel to the xy-plane, the planes containing the z-axis and the
circular cylinders with axis the z-axis.

5.5.2 By considering the quadric surface Ft(x, y, z) = 0, where

Ft(x, y, z) =
x2

p2 − t
+

y2

q2 − t
− 2z + t,

construct a triply orthogonal system (illustrated above) consisting of two fam-
ilies of elliptic paraboloids and one family of hyperbolic paraboloids. Find a
parametrization of these surfaces analogous to (5.12).

5.5.3 Show that the following are triply orthogonal systems:

(i) xy = uz2, x2 + y2 + z2 = v, x2 + y2 + z2 = w(x2 − y2).

(ii) yz = ux,
√
x2 + y2 +

√
x2 + z2 = v,

√
x2 + y2 −

√
x2 + z2 = w.

5.5.4 What should be the definition of a (doubly) orthogonal system of curves in R2?
Give examples of such systems such that:
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(i) Each of the two families of curves consists of parallel straight lines.
(ii) One family consists of straight lines and the other consists of circles.

5.5.5 By considering the function

Ft(x, y) =
x2

p2 − t
+

y2

q2 − t
,

where p and q are constants with 0 < p2 < q2, construct an orthogonal sys-
tem of curves in which one family consists of ellipses and the other consists of
hyperbolas.
By imitating Exercise 5.5.2, construct in a similar way an orthogonal system of
curves in which both families consist of parabolas.

5.5.6 Starting with an orthogonal system of curves in the xy-plane, construct two
families of generalized cylinders with axis parallel to the z-axis which intersect
the xy-plane in the two given families of curves. Show that these two families
of cylinders, together with the planes parallel to the xy-plane, form a triply-
orthogonal system.

5.6.1 Show that, if γγγ : (α, β) → R3 is a curve whose image is contained in a surface
patch σσσ : U → R3, then γγγ(t) = σσσ(u(t), v(t)) for some smooth map (α, β) → U ,
t 7→ (u(t), v(t)).

5.6.2 Prove Theorem 1.5.1 and its analogue for level curves in R3 (Exercise 1.5.1).

5.6.3 Let σσσ : U → R3 be a smooth map such that σσσu × σσσv 6= 0 at some point
(u0, v0) ∈ U . Show that there is an open subset W of U containing (u0, v0) such
that the restriction of σσσ to W is injective. Note that, in the text, surface patches
are injective by definition, but this exercise shows that injectivity near a given
point is a consequence of regularity.

5.6.4 Let σσσ : U → R3 be a regular surface patch, let (u0, v0) ∈ U and let σσσ(u0, v0) =
(x0, y0, z0). Suppose that the unit normal NNN(u0, v0) is not parallel to the xy-
plane. Show that there is an open set V in R2 containing (x0, y0), an open
subset W of U containing (u0, v0) and a smooth function ϕ : V → R such that
σ̃σσ(x, y) = (x, y, ϕ(x, y)) is a reparametrization of σσσ : W → R3. Thus, ‘near’ ppp,
the surface is part of the graph z = ϕ(x, y).
What happens if NNN(u0, v0) is parallel to the xy-plane?

5.6.5 Let γγγ : (α, β) → Rn be a regular curve and let t0 ∈ (α, β). Show that, for some
ǫ > 0, the restriction of γγγ to the subinterval (t0 − ǫ, t0 + ǫ) of (α, β) is injective.

Chapter 6

6.1.1 Calculate the first fundamental forms of the following surfaces:
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(i) σσσ(u, v) = (sinhu sinh v, sinhu cosh v, sinhu).
(ii) σσσ(u, v) = (u− v, u+ v, u2 + v2).
(iii) σσσ(u, v) = (coshu, sinhu, v).
(iv) σσσ(u, v) = (u, v, u2 + v2).

What kinds of surfaces are these ?

6.1.2 Show that applying an isometry of R3 to a surface does not change its first
fundamental form. What is the effect of a dilation (i.e. a map R3 → R3 of the
form vvv 7→ avvv for some constant a 6= 0)?

6.1.3 Let Edu2+2Fdudv+Gdv2 be the first fundamental form of a surface patch σσσ(u, v)
of a surface S. Show that, if ppp is a point in the image of σσσ and vvv,www ∈ TpppS, then

〈vvv,www〉 = Edu(vvv)du(www) + F (du(vvv)dv(www) + du(www)dv(vvv)) +Gdu(www)dv(www).

6.1.4 Suppose that a surface patch σ̃σσ(ũ, ṽ) is a reparametrization of a surface patch
σσσ(u, v), and let

Ẽdũ2 + 2F̃ dũdṽ + G̃dṽ2 and Edu2 + 2Fdudv +Gdv2

be their first fundamental forms. Show that:
(i) du = ∂u

∂ũdũ+ ∂u
∂ṽ dṽ, dv = ∂v

∂ũdũ+ ∂v
∂ṽdṽ.

(ii) If

J =

(
∂u
∂ũ

∂u
∂ṽ

∂v
∂ũ

∂v
∂ṽ

)

is the Jacobian matrix of the reparametrization map (ũ, ṽ) 7→ (u, v), and J t is
the transpose of J , then

(
Ẽ F̃
F̃ G̃

)
= J t

(
E F
F G

)
J.

6.1.5 Show that the following are equivalent conditions on a surface patch σσσ(u, v) with
first fundamental form Edu2 + 2Fdudv +Gdv2:
(i) Ev = Gu = 0.
(ii) σσσuv is parallel to the standard unit normal NNN.
(iii) The opposite sides of any quadrilateral formed by parameter curves of σσσ
have the same length (see the remarks following the proof of Proposition 4.4.2).
When these conditions are satisfied, the parameter curves of σσσ are said to form a
Chebyshev net. Show that, in that case, σσσ has a reparametrization σ̃σσ(ũ, ṽ) with
first fundamental form

dũ2 + 2 cos θ dũdṽ + dṽ2,
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where θ is a smooth function of (ũ, ṽ). Show that θ is the angle between the
parameter curves of σ̃σσ. Show further that, if we put û = ũ + ṽ, v̂ = ũ − ṽ, the
resulting reparametrization σ̂σσ(û, v̂) of σ̃σσ(ũ, ṽ) has first fundamental form

cos2 ω dû2 + sin2 ω dv̂2,

where ω = θ/2.

6.1.6 Repeat Exercise 6.1.1 for the following surfaces:
(i) σσσ(u, v) = (u cos v, u sin v, lnu).
(ii) σσσ(u, v) = (u cos v, u sin v, v).
(iii) σσσ(u, v) = (coshu cos v, coshu sin v, u).

6.1.7 Find the length of the part of the curve on the cone in Exercise 2.3.13 with
0 ≤ t ≤ π. Show also that the curve intersects each of the rulings of the cone at
the same angle.

6.1.8 Let σσσ be the ruled surface generated by the binormals bbb of a unit-speed curve γγγ:

σσσ(u, v) = γγγ(u) + vbbb(u).

Show that the first fundamental form of σσσ is

(1 + v2τ2) du2 + dv2,

where τ is the torsion of γγγ.

6.1.9 If E, F and G are the coefficients of the first fundamental form of a surface patch
σσσ(u, v), show that Eu = 2σσσu...σσσuu, and find similar expressions for Ev, Fu, Fv,
Gu and Gv. Deduce the following formulas:

σσσu...σσσuu =
1

2
Eu, σσσv...σσσuu = Fu − 1

2
Ev

σσσu...σσσuv =
1

2
Ev, σσσv...σσσuu =

1

2
Gu

σσσu...σσσvv = Fv − 1

2
Gu, σσσv...σσσuu =

1

2
Gv.

6.2.1 By thinking about how a circular cone can be ‘unwrapped’ onto the plane, write
down an isometry from

σσσ(u, v) = (u cos v, u sin v, u), u > 0, 0 < v < 2π,

(a circular cone with a straight line removed) to an open subset of the xy-plane.

6.2.2 Is the map from the circular half-cone x2 +y2 = z2, z > 0, to the xy-plane given
by (x, y, z) 7→ (x, y, 0) a local isometry ?
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t = 0 t = 0.6

t = 0.2 t = 0.8

t = 0.4 t = 1

6.2.3 Consider the surface patches

σσσ(u, v) = (coshu cos v, coshu sin v, u), σ̃σσ(u, v) = (u cos v, u sin v, v),

parametrizing the catenoid (Exercise 5.3.1) and the helicoid (Exercise 4.2.6),
respectively. Show that the map from the catenoid to the helicoid that takes
σσσ(u, v) to σ̃σσ(sinhu, v) is a local isometry. Which curves on the helicoid correspond
under this isometry to the parallels and meridians of the catenoid ?

In fact, there is an isometric deformation of the catenoid into a helicoid. Let

σ̂σσ(u, v) = (− sinhu sin v, sinhu cos v,−v).

This is the result of reflecting the helicoid σ̃σσ in the xy-plane and then translating
it by π/2 parallel to the z-axis. Define

σσσt(u, v) = cos t σσσ(u, v) + sin t σ̂σσ(u, v),

so that σσσ0(u, v) = σσσ(u, v) and σσσπ/2(u, v) = σ̂σσ(u, v). Show that, for all values of t,
the map σσσ(u, v) 7→ σσσt(u, v) is a local isometry. Show also that the tangent plane
of σσσt at the point σσσt(u, v) depends only of u, v and not on t. The surfaces σσσt are
shown above for several values of t. (The result of this exercise is ‘explained’ in
Exercises 12.5.3 and 12.5.4.)
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6.2.4 Show that the line of striction (Exercise 5.3.4) of the tangent developable of a
unit-speed curve γγγ is γγγ itself. Show also that the intersection of this surface with
the plane passing through a point γγγ(u0) of the curve and perpendicular to it at
that point is a curve of the form

ΓΓΓ(v) = γγγ(u0) −
1

2
κ(u0)v

2nnn(u0) +
1

3
κ(u0)τ(u0)v

3bbb(u0)

if we neglect higher powers of v (we assume that the curvature κ(u0) and the
torsion τ(u0) of γγγ at γγγ(u0) are both non-zero). Note that this curve has an
ordinary cusp (Exercise 1.3.3) at γγγ(u0), so the tangent developable has a sharp
‘edge’ where the two sheets v > 0 and v < 0 meet along γγγ. This is evident for
the tangent developable of a circular helix illustrated earlier in this section.

6.2.5 Show that every generalized cylinder and every generalized cone is locally iso-
metric to a plane.

6.2.6 Suppose that a surface patch σσσ has first fundamental form

du2 + f(u)2dv2,

where f is a smooth function of u only. Show that, if

∣∣∣∣
df

du

∣∣∣∣ < 1 for all values of u,

then σσσ is locally isometric to a surface of revolution.

6.2.7 Suppose that a surface σσσ has first fundamental form

U(du2 + dv2),

where U is a smooth function of u only. Show that σσσ is isometric to a surface of
revolution if ∣∣∣∣

dU

du

∣∣∣∣ < 2U

for all values of u.

6.3.1 Show that every local isometry is conformal. Give an example of a conformal
map that is not a local isometry.

6.3.2 Show that Enneper’s surface

σσσ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)

is conformally parametrized.
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6.3.3 Recall from Example 6.1.3 that the first fundamental form of the latitude-
longitude parametrization σσσ(θ, ϕ) of S2 is

dθ2 + cos2 θ dϕ2.

Find a smooth function ψ such that the reparametrization σ̃σσ(u, v) = σσσ(ψ(u), v)
is conformal. Verify that σ̃σσ is, in fact, the Mercator parametrization in Exercise
5.3.2.

6.3.4 Let Φ : U → V be a diffeomorphism between open subsets of R2. Write

Φ(u, v) = (f(u, v), g(u, v)),

where f and g are smooth functions on the uv-plane. Show that Φ is conformal
if and only if

(6.11) either (fu = gv and fv = −gu) or (fu = −gv and fv = gu).

Show that, if J(Φ) is the Jacobian matrix of Φ, then det(J(Φ)) > 0 in the first
case and det(J(Φ)) < 0 in the second case.

6.3.5 (This exercise requires a basic knowledge of complex analysis.) Recall that the
transition map between two surface patches in an atlas for a surface S is a
smooth map between open subsets of R2. Since R2 is the ‘same’ as the complex
numbers C (via (u, v) ↔ u + iv), we can ask whether such a transition map
is holomorphic. One says that S is a Riemann surface if S has an atlas for
which all the transition maps are holomorphic. Deduce from Theorem 6.3.6 and
the preceding exercise that every orientable surface has an atlas making it a
Riemann surface. (You will need to recall from complex analysis that a smooth
function Φ as in the preceding exercise is holomorphic if and only if the first pair
of equations in (6.11) hold - these are the Cauchy-Riemann equations. If the
second pair of equations in (6.11) hold, Φ is said to be anti-holomorphic.)

6.3.6 Define a map Π̃ similar to Π by projecting from the south pole of S2 onto the xy-
plane. Show that this defines a second conformal surface patch σ̃σσ1 which covers
the whole of S2 except the south pole. What is the transition map between these
two patches? Why do the two patches σσσ1 and σ̃σσ1 not give S2 the structure of a
Riemann surface? How can σ̃σσ1 be modified to produce such a structure?

6.3.7 Show that the stereographic projection map Π takes circles on S2 to Circles in
C∞, and that every Circle arises in this way. (A circle on S2 is the intersection
of S2 with a plane; a Circle in C∞ is a line or a circle in C - see Appendix 2.)

6.3.8 Show that, if M is a Möbius transformation or a conjugate-Möbius transfor-
mation (see Appendix 2), the bijection Π−1 ◦M ◦ Π : S2 → S2 is a conformal
diffeomorphism of S2. It can be shown that every conformal diffeomorphism of
S2 is of this type.
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6.3.9 Let f be a smooth function and let

σσσ(u, v) = (u cos v, u sin v, f(u))

be the surface obtained by rotating the curve z = f(x) in the xz-plane around
the z-axis. Find all functions f for which σσσ is conformal.

6.3.10 Let σσσ be the ruled surface

σσσ(u, v) = γγγ(u) + vδδδ(u),

where γγγ is a unit-speed curve in R3 and δδδ(u) is a unit vector for all u. Prove that
σσσ is conformal if and only if δδδ is constant and γγγ lies in a plane perpendicular to
δδδ. What kind of surface is σσσ in this case ?

6.3.11 With the notation in Exercise 4.5.5, show that the inversion map F : S → S∗ is
conformal.

6.3.12 Show (without using Theorem 6.3.6!) that every surface of revolution has an
atlas consisting of conformal surface patches.

6.4.1 Determine the area of the part of the paraboloid z = x2 + y2 with z ≤ 1 and
compare with the area of the hemisphere x2 + y2 + z2 = 1, z ≤ 0.

6.4.2 A sailor circumnavigates Australia by a route consisting of a triangle whose sides
are arcs of great circles. Prove that at least one interior angle of the triangle is
≥ π

3 + 10
169 radians. (Take the Earth to be a sphere of radius 6500km and assume

that the area of Australia is 7.5 million square km.)

6.4.3 A spherical polygon on S2 is the region formed by the intersection of n hemi-
spheres of S2, where n is an integer ≥ 3. Show that, if α1, . . . , αn are the interior
angles of such a polygon, its area is equal to

n∑

i=1

αi − (n− 2)π.

6.4.4 Suppose that S2 is covered by spherical polygons, and such that the intersection
of any two polygons is either empty or a common edge or vertex of each polygon.
Suppose that there are F polygons, E edges and V vertices (a common edge or
vertex of more than one polygon being counted only once). Show that the sum
of the angles of all the polygons is 2πV . By using the preceding exercise, deduce
that V − E + F = 2. (This result is due to Euler; it is generalized in Chapter
13.)

6.4.5 Show that:
(i) Every local isometry is an equiareal map.
(ii) A map that is both conformal and equiareal is a local isometry.
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Give an example of an equiareal map that is not a local isometry.

6.4.6 Prove Theorem 6.4.5.

6.4.7 Let σσσ(u, v) be a surface patch with standard unit normal NNN. Show that

NNN × σσσu =
Eσσσv − Fσσσu√
EG− F 2

, NNN × σσσv =
Fσσσv −Gσσσv√
EG− F 2

.

6.4.8 Find the area of the part of the helicoid

σσσ(u, v) = (u cos v, u sin v, v)

corresponding to 0 < u < 1, 0 < v < 2π.

6.4.9 Suppose that all the polygons in Exercise 6.4.4 have the same number n of
edges, and that the same number m of polygons meet at each vertex. Show that
nF = 2E = mV and hence find V , E and F in terms of m and n. Show that
1/m+ 1/n > 1/2 and deduce that there are exactly five possibilities for the pair
(m,n).
A polyhedron is a convex subset of R3 bounded by a finite number of plane
polygons. Take a point ppp inside such a polyhedron and for any point qqq on an edge
of the polyhedron draw the straight line through ppp and qqq. This line intersects the
sphere with centre ppp and radius 1 in a point vvv, say. The collection of such points
vvv form the edges of a covering of the sphere with spherical polygons as in the first
part. The result of this exercise therefore gives a classification of polyhedra such
that all faces have the same number of sides and the same number of edges meet
at each vertex. (Note that it is not necessary to assume that the polyhedron is
regular, i.e. that all the edges have the same length.)

6.4.10 Show that, given 5 points on a sphere, it is impossible to connect each pair by
curves on the sphere that intersect only at the given points. Deduce that the
same result holds if ‘sphere’ is replaced by ‘plane’.

6.4.11 Let ppp1,ppp2,ppp3 and qqq1,qqq2,qqq3 be points on a sphere. Show that it is impossible to
join each pppi to each qqqj by nine curves on the sphere that intersect only at the
given points. (This is sometimes called the ‘Utilities Problem’, thinking of ppp1,
ppp2 and ppp3 as the gas, water and electricity supplies to three homes qqq1, qqq2 and
qqq3.)

6.4.12 A surface is obtained by rotating about the z-axis a unit-speed curve γγγ in the
xz-plane that does not intersect the z-axis. Show that its area is

2π

∫
ρ(u) du,

where ρ(u) is the distance of γγγ(u) from the z-axis. Hence find the area of
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(i) S2;
(ii) the torus in Exercise 4.2.5.

6.4.13 Prove that the area of the part of the tube of radius a around a curve γγγ(s) given
by s0 < s < s1, where s0 and s1 are constants, is 2πa(s1 − s0). (See Exercise
4.2.7.)

6.4.14 Show that a map between surfaces that is both conformal and equiareal is a local
isometry.

6.4.15 Let M : R2 → R2 be a linear map, and let uuu,vvv ∈ R2 be the images under M of
the vectors iii = (1, 0), jjj = (0, 1). Show that:
(i) M is a diffeomorphism if and only if uuu and vvv are linearly independent.
(ii) M is an isometry if and only if uuu and vvv are perpendicular unit vectors.
(iii) M is conformal if and only if uuu and vvv are perpendicular vectors of equal
length.
(iv) M is equiareal if and only if uuu × vvv is a unit vector.

6.4.16 Find all functions f for which the surface patch σσσ in Exercise 6.3.9 is equiareal.

6.4.17 In the notation of the proof of Theorem 6.4.6, let

σσσ3(θ, ϕ) = (cosϕ, sinϕ, sin θ + f(ϕ)),

where f is any 2π-periodic smooth function. Show that the map σσσ1(θ, ϕ) 7→
σσσ3(θ, ϕ) from S2 to the unit cylinder is equiareal.

6.5.1 Find the angles and the lengths of the sides of an equilateral spherical triangle
whose area is one quarter of the area of the sphere.

6.5.2 Show that similar spherical triangles are congruent.

6.5.3 The spherical circle of centre ppp ∈ S2 and radius R is the set of points of S2 that
are a spherical distance R from ppp. Show that, if 0 ≤ R ≤ π/2:
(i) A spherical circle of radius R is a circle of radius sinR.
(ii) The area inside a spherical circle of radius R is 2π(1 − cosR).
What if R > π/2?

6.5.4 This exercise describes the transformations of C∞ corresponding to the isome-
tries of S2 under the stereographic projection map Π : S2 → C∞ (Example
6.3.5). If F is any isometry of S2, let F∞ = Π ◦ F ◦ Π−1 be the corresponding
bijection C∞ → C∞.
(i) A Möbius transformation

M(w) =
aw + b

cw + d
,

where a, b, c, d ∈ C and ad−bc 6= 0, is said to be unitary if d = ā and c = −b̄ (see
Appendix 2). Show that the composite of two unitary Möbius transformations
is unitary and that the inverse of a unitary Möbius transformation is unitary.
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(ii) Show that if F is the reflection in the plane passing through the origin and
perpendicular to the unit vector (a, b) (where a ∈ C, b ∈ R - see Example 5.3.4),
then

F∞(w) =
−aw̄ + b

bw̄ + ā
.

(iii) Deduce that if F is any isometry of S2 there is a unitary Möbius transfor-
mation M such that either F∞ = M or F∞ = M ◦ C where J(w) = −w̄.
(iv) Show conversely that if M is any unitary Möbius transformation, the bi-
jections C∞ → C∞ given by M and M ◦ J are both of the form F∞ for some
isometry F of S2.

6.5.5 What does the cosine rule become for a triangle on a sphere of radius R? Explain
how and why this becomes the cosine rule for the plane when R→ ∞.

6.5.6 Find the distance between Athens (latitude 38◦, longitude 24◦) and Bombay
(latitude 19◦, longitude 73◦) measured along the short great circle arc joining
them. (Take the radius of the Earth to be 6500km.)

6.5.7 A spherical square on S2 has each side of length A and each angle equal to α
(each side being an arc of a great circle). Show that

cosA = cot2
1

2
α.

6.5.8 In the notation of Proposition 6.5.3, let λ = sinα/ sinA.
(i) Show that sinα+ sinβ = λ(sinA+ sinB), sinα− sinβ = λ(sinA− sinB).
(ii) Show that cosα + cosβ cos γ = λ sin γ sinB cosA, and obtain a similar for-
mula for cosβ + cosα cos γ.
(iii) Deduce from (ii) that

(cosα+ cosβ)(1 + cos γ) = λ sin γ sin(A+B).

(iv) Deduce from (i) and (iii) that

tan
1

2
(α+ β) =

cos 1
2 (A−B)

cos 1
2 (A+B)

cot
1

2
γ

and prove similarly that

tan
1

2
(α− β) =

sin 1
2 (A−B)

sin 1
2
(A+B)

cot
1

2
γ.

(v) Find two formulas similar to those in (iv) for tan 1
2 (A±B).

The formulas in (iv) and (v) are called Napier’s Analogies (after the same Napier
who invented logarithms).
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6.5.9 Suppose that two spherical triangles with vertices aaa,bbb, ccc and aaa′,bbb′, ccc′ are such
that
(i) the angle of the triangles at aaa and aaa′ are equal, and
(ii) the two sides of the first triangle meeting at aaa have the same length as the
two sides of the second triangle meeting at aaa′.
Prove that the triangles are congruent.

Chapter 7

7.1.1 Compute the second fundamental form of the elliptic paraboloid

σσσ(u, v) = (u, v, u2 + v2).

7.1.2 Suppose that the second fundamental form of a surface patch σσσ is zero every-
where. Prove that σσσ is an open subset of a plane. This is the analogue for
surfaces of the theorem that a curve with zero curvature everywhere is part of a
straight line.

7.1.3 Let a surface patch σ̃σσ(ũ, ṽ) be a reparametrization of a surface patch σσσ(u, v) with
reparametrization map (u, v) = Φ(ũ, ṽ). Prove that

(
L̃ M̃
M̃ Ñ

)
= ±J t

(
L M
M N

)
J,

where J is the Jacobian matrix of Φ and we take the plus sign if det(J) > 0
and the minus sign if det(J) < 0. Deduce from Exercise 6.1.4 that the second
fundamental form of a surface patch is unchanged by a reparametrization of the
patch which preserves its orientation.

7.1.4 What is the effect on the second fundamental form of a surface of applying an
isometry of R3? Or a dilation?

7.1.5 Repeat Exercise 7.1.1 for the helicoid

σσσ(u, v) = (u cos v, u sin v, v).

7.1.6 Find the second fundamental form of the tangent developable of a unit-speed
curve γγγ with nowhere vanishing curvature (see §6.2). Show that the second
fundamental form is zero everywhere if and only if γγγ is planar. How is this result
related to Exercise 7.1.2?

7.2.1 Calculate the Gauss map G of the paraboloid S with equation z = x2+y2. What
is the image of G?
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7.2.2 Show that the Weingarten map changes sign when the orientation of the surface
changes.

7.2.3 Repeat Exercise 7.2.1 for the hyperboloid of one sheet x2 + y2 − z2 = 1 and the
hyperboloid of two sheets x2 − y2 − z2 = 1.

7.3.1 Let γγγ be a regular, but not necessarily unit-speed, curve on a surface. Prove
that (with the usual notation) the normal and geodesic curvatures of γγγ are

κn =
〈〈γ̇γγ, γ̇γγ〉〉
〈γ̇γγ, γ̇γγ〉 and κg =

γ̈γγ...(NNN × γ̇γγ)

〈γ̇γγ, γ̇γγ〉3/2
.

7.3.2 Show that the normal curvature of any curve on a sphere of radius r is ±1/r.

7.3.3 Compute the geodesic curvature of any circle on a sphere (not necessarily a great
circle).

7.3.4 Show that, if γγγ(t) = σσσ(u(t), v(t)) is a unit-speed curve on a surface patch σσσ with
first fundamental form Edu2 + 2Fdudv +Gdv2, the geodesic curvature of γγγ is

κg = (v̈u̇− v̇ü)
√
EG− F 2 + Au̇3 +Bu̇2v̇ + Cu̇v̇2 +Dv̇3,

where A, B, C and D can be expressed in terms of E, F , G and their derivatives.
Find A,B,C,D explicitly when F = 0.

7.3.5 Suppose that a unit-speed curve γγγ with curvature κ > 0 and principal normal nnn
is a parametrization of the intersection of two oriented surfaces S1 and S2 with
unit normals NNN1 and NNN2. Show that, if κ1 and κ2 are the normal curvatures of
γγγ when viewed as a curve in S1 and S2, respectively, then

κ1NNN2 − κ2NNN1 = κ(NNN1 ×NNN2) × nnn.

Deduce that, if α is the angle between the two surfaces,

κ2 sin2 α = κ2
1 + κ2

2 − 2κ1κ2 cosα.

7.3.6 A curve γγγ on a surface S is called asymptotic if its normal curvature is everywhere
zero. Show that any straight line on a surface is an asymptotic curve. Show also
that a curve γγγ with positive curvature is asymptotic if and only if its binormal
bbb is parallel to the unit normal of S at all points of γγγ.

7.3.7 Prove that the asymptotic curves on the surface

σσσ(u, v) = (u cos v, u sin v, lnu)

are given by
lnu = ±(v + c),
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where c is an arbitrary constant.

7.3.8 Show that if a curve on a surface has zero normal and geodesic curvature every-
where, it is part of a straight line.

7.3.9 Calculate the normal curvature at the point (1, 0, 1) of the curve γγγ on the hy-
perbolic paraboloid

σσσ(u, v) =

(
1

2
(u+ v),

1

2
(v − u), uv

)

corresponding to the straight line u = v = t in the uv-plane (note that γγγ is not

unit-speed).

7.3.10 Consider the surface of revolution

σσσ(u, v) = (f(u) cos v, f(u) sinv, g(u)),

where u 7→ (f(u), 0, g(u)) is a unit-speed curve in R3. Compute the geodesic and
normal curvatures of

(i) a meridian v = constant;
(ii) a parallel u = constant.

7.3.11 Find the geodesic and normal curvatures of a circle z = constant on the parab-
oloid x2 + y2 = z.

7.3.12 Consider the ruled surface

σσσ(u, v) = γγγ(u) + vδδδ(u),

where γγγ is a unit-speed curve and δδδ is a unit vector. Show that the geodesic
curvature of the curve γγγ on σσσ is

κg = −θ̇ − ttt...δ̇δδ

sin θ
,

where ttt is the tangent vector of γγγ and θ is the oriented angle t̂ttδδδ (note that ttt(u)
and δδδ(u) are tangent vectors to σσσ at the point γγγ(u)). Recall from Example 5.3.1
that, for σσσ to be regular, ttt and δδδ must not be parallel, so sin θ 6= 0.

7.3.13 Suppose that a surface patch σσσ(u, v) has first fundamental form

du2 + 2 cos θ dudv + dv2,

where θ is a smooth function of (u, v) (cf. Exercise 6.1.5). Show that the geodesic
curvatures κ′g and κ′′g of the parameter curves v = constant and u = constant,
respectively, are given by

κ′g = −θu, κ′′g = θv.
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7.3.14 In the notation of Exercise 7.3.4, suppose that F = 0. Show that

κg =
√
EG(u̇v̈ − üv̇) +

1

2

{
−
√
G

E
(Euu̇+ Evv̇) +

√
E

G
(Guu̇+Gv v̇)

}
u̇v̇

+
1

2
√
EG

(Guv̇ −Evu̇).

7.3.15 Continuing to assume that F = 0, deduce from the preceding exercise that the
geodesic curvatures κ′g and κ′′g of the parameter curves v = constant and u =
constant on σσσ are

κ′g = − Ev

2E
√
G
, κ′′g =

Gu

2G
√
E
,

respectively. Hence prove Liouville’s formula: if θ (which may depend on (u, v))

is the oriented angle ̂̇γγγσσσu between γγγ and the curves v = constant, the geodesic
curvature of γγγ is

κg = θ̇ + κ′g cos θ + κ′′g sin θ.

An analogue of Liouville’s formula for the normal curvature is given in Theorem
8.2.4.

7.3.16 Let ppp be a point on a curve C on a surface S, and let Π be the tangent plane to
S at ppp. Let C̃ be the curve obtained by projecting C orthogonally onto Π. Show
that the curvature of the plane curve C̃ at ppp is equal, up to sign, to the geodesic
curvature of C at ppp.

7.3.17 Show that the asymptotic curves on the surface

σσσ(u, v) =

(
u, v,

1

2
(u2 − v2)

)

are straight lines.

7.3.18 Let γγγ be a unit-speed curve and consider the ruled surface

σσσ(u, v) = γγγ(u) + vnnn(u),

where nnn is the principal normal of γγγ. Prove that γγγ is an asymptotic curve on σσσ.

7.3.19 A surface is obtained by rotating the parabola z2 = 4x in the xz-plane around
the z-axis (this is not a paraboloid). Show that the orthogonal projections of
the asymptotic curves on the surface onto the xy-plane are logarithmic spirals
(when suitably parametrized). (See Example 1.2.2.)

7.3.20 Let γγγ be a curve on a surface S, and assume that C has nowhere vanishing
curvature. Show that γγγ is asymptotic if and only if the osculating plane at every
point ppp of γγγ is parallel to the tangent plane of S at ppp.
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7.3.21 Show that, if every curve on a surface is asymptotic, the surface is an open subset
of a plane.

7.3.22 Let γγγ be a unit-speed curve on an oriented surface with curvature κ > 0. Let ψ
be the angle between γ̈γγ and NNN, and let BBB = ttt ×NNN (in the usual notation). Show
that

NNN = nnn cosψ + bbb sinψ, BBB = bbb cosψ − nnn sinψ.

Deduce that

ṫtt = κnNNN − κgBBB, ṄNN = −κnttt + τgBBB, ḂBB = κgttt − τgNNN,

where τg = τ + ψ̇ (τg is called the geodesic torsion of γγγ).

7.3.23 Show that an asymptotic curve with nowhere vanishing curvature has torsion
equal to its geodesic torsion (see the preceding exercise).

7.4.1 Let γ̃γγ be a reparametrization of γγγ, so that γ̃γγ(t) = γγγ(ϕ(t)) for some smooth
function ϕ with dϕ/dt 6= 0 for all values of t. If vvv is a tangent vector field along
γγγ, show that ṽvv(t) = vvv(ϕ(t)) is one along γ̃γγ. Prove that

∇γ̃γγṽvv =
dϕ

dt
∇γγγvvv,

and deduce that vvv is parallel along γγγ if and only if ṽvv is parallel along γ̃γγ.

7.4.2 Show that the parallel transport map Π
pppqqq
γγγ : TpppS → TqqqS is invertible. What is

its inverse ?

7.4.3 Suppose that a triangle on the unit sphere whose sides are arcs of great circles
has vertices ppp,qqq, rrr. Let vvv0 be a non-zero tangent vector to the arc pppqqq through ppp
and qqq at ppp. Show that, if we parallel transport vvv0 along pppqqq, then along qqqrrr and
then along rrrppp, the result is to rotate vvv0 through an angle 2π−A, where A is the
area of the triangle. For an analogous result see Theorem 13.6.4.

7.4.4 Calculate the Christoffel symbols when the first fundamental form is

du2 + 2 cos θ dudv + dv2

for some smooth function θ(u, v) (Exercise 6.1.5).

7.4.5 Let σσσ(u, v) be a surface patch. Show that the following are equivalent:
(i) The parameter curves of σσσ(u, v) form a Chebyshev net (see Exercise 6.1.5).
(ii) The tangent vectors to the parameter curves u = constant are parallel along
each parameter curve v = constant.
(iii) The tangent vectors to the parameter curves v = constant are parallel along
each parameter curve u = constant.
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7.4.6 Let θ = σ̂σσuσσσv be the oriented angle between the parameter curves of a surface
patch σσσ with first fundamental form Edu2 + 2Fdudv +Gdv2. Show that

θu = −A
(

Γ2
11

E
+

Γ1
12

G

)
, θv = −A

(
Γ2

12

E
+

Γ1
22

G

)
,

where A =
√
EG− F 2.

7.4.7 With the notation in the preceding exercise, show that

Au

A
= Γ1

11 + Γ2
12,

Av

A
= Γ2

22 + Γ1
12.

Chapter 8

8.1.1 Show that the Gaussian and mean curvatures of the surface z = f(x, y), where
f is a smooth function, are

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
, H =

(1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy

2(1 + f2
x + f2

y )3/2
.

8.1.2 Calculate the Gaussian curvature of the helicoid and catenoid (Exercises 4.2.6
and 5.3.1).

8.1.3 Show that the Gaussian and mean curvatures of a surface S are smooth functions
on S.

8.1.4 In the notation of Example 8.1.5, show that if δδδ is the principal normal nnn of γγγ
or its binormal bbb, then K = 0 if and only if γγγ is planar.

8.1.5 What is the effect on the Gaussian and mean curvatures of a surface S if we
apply a dilation of R3 to S?

8.1.6 Show that the Weingarten map W of a surface satisfies the quadratic equation

W2 − 2HW +K = 0,

in the usual notation.

8.1.7 Show that the image of the Gauss map of a generalized cone is a curve on S2,
and deduce that the cone has zero Gaussian curvature.

8.1.8 Let σσσ : U → R3 be a patch of a surface S. Show that the image under the Gauss
map of the part σσσ(R) of S corresponding to a region R ⊆ U has area

∫ ∫

R

|K|dAσσσ,
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where K is the Gaussian curvature of S.

8.1.9 Let S be the torus in Exercise 4.2.5. Describe the parts S+ and S− of S where
the Gaussian curvature K of S is positive and negative, respectively. Show,
without calculation, that

∫ ∫

S+

K dA = −
∫ ∫

S−

K dA = 4π.

It follows that
∫∫

S K dA = 0, a result that will be ‘explained’ in §13.4.

8.1.10 Let www(u, v) be a smooth tangent vector field on a surface patch σσσ(u, v). This
means that

www(u, v) = α(u, v)σσσu + β(u, v)σσσv

where α and β are smooth functions of (u, v). Then, if γγγ(t) = σσσ(u(t), v(t)) is
any curve on σσσ, www gives rise to the tangent vector field www|γγγ(t) = www(u(t), v(t))
along γγγ. Let ∇uwww be the covariant derivative of www|γγγ along a parameter curve
v = constant, and define ∇vwww similarly. (Note that if σσσ is the uv-plane, then ∇u

and ∇v become ∂/∂u and ∂/∂v). Show that

∇v(∇uwww) −∇u(∇vwww) = (wwwv...NNN)NNNu − (wwwu...NNN)NNNv,

where NNN is the unit normal of σσσ. Deduce that, if λ(u, v) is a smooth function of
(u, v), then

∇v(∇u(λwww)) −∇u(∇v(λwww)) = λ (∇v(∇uwww) −∇u(∇vwww)) .

Use Proposition 8.1.2 to show that

∇v(∇uσσσu) −∇u(∇vσσσu) = K(−Fσσσu +Eσσσv),

where

K =
LN −M2

EG− F 2
,

and find a similar expression for ∇v(∇uσσσv) −∇u(∇vσσσv). Deduce that

∇v(∇uwww) = ∇u(∇vwww)

for all tangent vector fields www if and only if K = 0 everywhere on the surface.
(Note that this holds for the plane: wwwuv = wwwvu.) We shall see the significance of
the condition K = 0 in §8.4.

8.1.11 Calculate the Gaussian and mean curvatures of the surface

σσσ(u, v) = (u+ v, u− v, uv)
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at the point (2, 0, 1).

8.1.12 Consider the quadric surface

x2

a
+
y2

b
+
z2

c
= 1,

where we can assume that the non-zero constants a, b, c satisfy a > 0, a > b > c.
Thus, if c > 0 we have an ellipsoid; if b > 0 > c a hyperboloid of one sheet; and
if b < 0 a hyperboloid of two sheets. Show that the Gaussian curvature at a
point ppp of the quadric is

K =
d4

abc
,

where d is the distance from ppp to TpppS.

Obtain a similar result for the paraboloid

x2

a
+
y2

b
= 4z,

where a > b and a > 0 (an elliptic paraboloid if b > 0, a hyperbolic paraboloid
if b < 0).

8.1.13 Show that the Gaussian curvature of the surface S with Cartesian equation
xyz = 1 is

K = 3(x−2 + y−2 + z−2)−2,

and calculate its mean curvature. Show that the maximum value of K is attained
at exactly four points which form the vertices of a regular tetrahedron.

8.1.14 A circle initially in the xz-plane tangent to the z-axis is rotated at constant an-
gular velocity around the z-axis at the same time as its centre moves at constant
speed parallel to the z-axis. Show that the surface generated has a parametriza-
tion

σσσ(u, v) = (a(1 + cosu) cos v, a(1 + cosu) sin v, a sinu+ bv + c),

where a, b and c are constants. (Compare Exercise 4.2.6.)

Assume that a = b and c = 0. Show that the Gaussian curvature of σσσ at a point
a distance d from the z-axis is

3d− 4a

4a3
.

8.1.15 Show that, if the Gaussian curvature K of a ruled surface is constant, then
K = 0. A complete description of such surfaces is given in §8.4.

8.1.16 Show that the Gaussian curvature of the tube of radius a around a unit-speed
curve γγγ (see Exercise 4.2.7) is

K =
−κ cos θ

a(1 − κa cos θ)
,
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where κ is the curvature of γγγ (we assume that κ < a−1 at every point of γγγ).
Note that K does not depend on the torsion of γγγ.
Suppose now that γγγ is a closed curve of length ℓ. Show that:

(i)
∫ ℓ

0

∫ 2π

0
K dA = 0, where dA is the element of area on the tube.

(ii)
∫ ℓ

0

∫ 2π

0
|K| dA = 4

∫ ℓ

0
κ(s)ds, where κ(s) is the curvature of γγγ at the point

γγγ(s).
The explanation for (i) appears in §13.4 and the geometrical meaning of (ii) in
Theorem 8.1.6.

8.1.17 Show that the Gaussian and mean curvatures are unchanged by applying a direct
isometry of R3. What about an opposite isometry?

8.1.18 Show that an asymptotic curve on a surface S is perpendicular to its image under
the Gauss map at the corresponding point.

8.1.19 Let γγγ be a curve on an oriented surface S with unit normal NNN. Show that

ṄNN...ṄNN + 2HṄNN...γ̇γγ +Kγ̇γγ...γ̇γγ = 0.

Deduce that, if γγγ is an asymptotic curve on S, its torsion τ is related to the
Gaussian curvature K of S by τ2 = −K.

8.2.1 Calculate the principal curvatures of the helicoid and the catenoid, defined in
Exercises 4.2.6 and 5.3.1, respectively.

8.2.2 A curve γγγ on a surface S is called a line of curvature if the tangent vector of γγγ
is a principal vector of S at all points of γγγ (a ‘line’ of curvature need not be a
straight line!). Show that γγγ is a line of curvature if and only if

ṄNN = −λγ̇γγ,

for some scalar λ, where NNN is the standard unit normal of σσσ, and that in this case
the corresponding principal curvature is λ. (This is called Rodrigues’s formula.)

8.2.3 Show that a curve γγγ(t) = σσσ(u(t), v(t)) on a surface patch σσσ is a line of curvature
if and only if (in the usual notation)

(EM − FL)u̇2 + (EN −GL)u̇v̇ + (FN −GM)v̇2 = 0.

Deduce that all parameter curves are lines of curvature if and only if either
(i) the second fundamental form of σσσ is proportional to its first fundamental
form, or
(ii) F = M = 0.
For which surfaces does (i) hold? Show that the meridians and parallels of a
surface of revolution are lines of curvature.
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8.2.4 In the notation of Example 8.1.5, show that if γγγ is a curve on a surface S and δδδ
is the unit normal of S, then K = 0 if and only if γγγ is a line of curvature of S.

8.2.5 Suppose that two surfaces S1 and S2 intersect in a curve C that is a line of
curvature of S1. Show that C is a line of curvature of S2 if and only if the angle
between the tangent planes of S1 and S2 is constant along C.

8.2.6 Let ΣΣΣ : W → R3 be a smooth function defined on an open subset W of R3 such
that, for each fixed value of u (resp. v, w), ΣΣΣ(u, v, w) is a (regular) surface patch.
Assume also that

(5) ΣΣΣu...ΣΣΣv = ΣΣΣv...ΣΣΣw = ΣΣΣw...ΣΣΣu = 0.

This means that the three families of surfaces formed by fixing the values of u,
v or w constitute a triply orthogonal system (see §5.5).
(i) Show that ΣΣΣu...ΣΣΣvw = ΣΣΣv...ΣΣΣuw = ΣΣΣw...ΣΣΣuv = 0.
(ii) Show that, for each of the surfaces in the triply orthogonal system, the
matrices FI and FII are diagonal.
(iii) Deduce that the intersection of any surface from one family of the triply
orthogonal system with any surface from another family is a line of curvature on
both surfaces. (This is called Dupin’s Theorem.)

8.2.7 Show that, if p, q and r are distinct positive numbers, there are exactly four
umbilics on the ellipsoid

x2

p2
+
y2

q2
+
z2

r2
= 1.

What happens if p, q and r are not distinct?

8.2.8 Show that the principal curvatures of a surface patch σσσ : U → R3 are smooth
functions on U provided that σσσ has no umbilics. Show also that the principal
curvatures either stay the same or both change sign when σσσ is reparametrized.

8.2.9 Show that the principal curvatures of the surface

y cos
z

a
= x sin

z

a
,

where a is a non-zero constant, are

± a

x2 + y2 + a2
.

In particular, the mean curvature of the surface is zero.

8.2.10 Show that a point of a surface is an umbilic if and only if H2 = K at that point
(in the notation of Definition 8.1.1). Deduce that a surface with K < 0 has no
umbilics.
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8.2.11 Show that the umbilics of the surface in Exercise 8.1.13 coincide with the points
at which the Gaussian curvature of the surface attains its maximum value.

8.2.12 Suppose that a surface S has positive Gaussian curvature everywhere. Show
that every curve on S has positive curvature everywhere (in particular, there are
no straight line segments on S).

8.2.13 Show that the principal curvatures of a surface S change sign when the orien-
tation of S changes (i.e. when the unit normal of S changes sign), but that the
principal vectors are unchanged.

8.2.14 Show that applying a direct isometry of R3 to a surface leaves the principal
curvatures unchanged, but that an opposite isometry changes their sign.

8.2.15 Suppose that m curves on a surface S all pass through a point ppp of S and that
adjacent curves make equal angles π/m with one another at ppp. Show that the
sum of the normal curvatures of the curves at ppp is equal to mH, where H is the
mean curvature of S at ppp.

8.2.16 Find the lines of curvature on a tangent developable (§6.2).

8.2.17 In the notation of Exercise 8.2.4, assume that γγγ is a line of curvature of S. Show
that the ruled surface is
(i) a generalized cone if and only if the corresponding principal curvature is a
non-zero constant along γγγ;
(ii) a generalized cylinder if and only if the corresponding principal curvature is
zero at all points of γγγ.

8.2.18 Let γγγ be a curve on a surface S. Show that γγγ is a line of curvature on S if and
only if, at each point of γγγ, the tangent vector of γγγ is parallel to that of the image
of γγγ under the Gauss map of S at the corresponding point. Deduce that, if ppp is
a point of a surface S that is not an umbilic, the Gauss map of S takes the two
lines of curvature of S passing through ppp to orthogonal curves on S2.

8.2.19 Show that if every curve on a (connected) surface S is a line of curvature, then
S is an open subset of a plane or a sphere.

8.2.20 Show that a curve on a surface is a line of curvature if and only if its geodesic
torsion vanishes everywhere (see Exercise 7.3.22).

8.2.21 Let γγγ be a line of curvature of a surface S, and suppose that at each point of
γγγ the osculating plane of γγγ makes the same angle with the tangent plane of S.
Show that γγγ is a plane curve.
Show conversely that, if a plane cuts a surface everywhere at the same angle,
the intersection is a line of curvature on the surface.

8.2.22 Let γγγ be a curve on a surface with principal curvatures κ1 and κ2, and let θ
be the angle between the tangent vector of γγγ and a non-zero principal vector
corresponding to κ1. Prove that the geodesic torsion (Exercise 7.3.22) of γγγ is
given by

τg = (κ2 − κ1) sin θ cos θ.



51

8.2.23 Show that, if there is an asymptotic curve passing through a point ppp of a surface
S, the principal curvatures κ1 and κ2 of S at ppp satisfy κ1κ2 ≤ 0. Hence give
another proof that the Gaussian curvature of a ruled surface is ≤ 0 everywhere.
Show, conversely, that if κ1κ2 < 0 everywhere there are exactly two asymptotic
curves passing through each point of S and that the angle between them is

2 tan−1

√
−κ1

κ2
.

(This result will be generalized in Exercise 8.2.27.)
What if S is flat?

8.2.24 If ttt and t̃tt are tangent vectors at a point of a surface S, one says that t̃tt is conjugate

to ttt if

〈〈ttt, t̃tt〉〉 = 0,

where 〈〈 , 〉〉 is the second fundamental form of S. Show that:

(i) If t̃tt is conjugate to ttt then ttt is conjugate to t̃tt.

(ii) If t̃tt1 and t̃tt2 are conjugate to ttt, so is λ1ttt1 + λ2ttt2 for all λ1, λ2 ∈ R.

8.2.25 Show that a curve on a surface is asymptotic if and only if its tangent vector is
self-conjugate at every point of the curve.

8.2.26 Show that, if ttt1 and ttt2 are principal vectors corresponding to distinct principal
curvatures, then ttt1 is conjugate to ttt2.

8.2.27 Let ttt1 and ttt2 be unit principal vectors at a point ppp of a surface S corresponding
to principal curvatures κ1 and κ2. Let ttt and t̃tt be unit tangent vectors to S at ppp

and let θ and θ̃ be the oriented angles t̂tt1ttt and t̂tt1t̃tt, respectively. Show that t̃tt is
conjugate to ttt if and only if

tan θ tan θ̃ = −κ1

κ2
.

8.2.28 Let γγγ and γ̃γγ be curves on a surface S that intersect at a point ppp, and assume
that the tangent vectors of γγγ and γ̃γγ at ppp are conjugate. Show that, if κn and κ̃n

are the normal curvatures of γγγ and γ̃γγ at ppp,

1

κn
+

1

κ̃n
=

1

κ1
+

1

κ2
,

where κ1 and κ2 are the principal curvatures of S at ppp (assumed to be non-zero).

8.2.29 Let vvv be a tangent vector field along a curve γγγ on a surface. Show that, if
v̇vv(t) = 0 for some value of t, then vvv(t) is conjugate to γ̇γγ(t).
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8.2.30 With the notation in Exercise 4.5.5, show that the first and second fundamental
forms of S at a point ppp and of S∗ at F (ppp) are related by (in an obvious notation)

E∗ =
E

‖ ppp ‖4
, F ∗ =

F

‖ ppp ‖4
, G∗ =

G

‖ ppp ‖4
,

L∗ = − L

‖ ppp ‖2
−2

E(ppp...NNN)

‖ ppp ‖4
, M∗ = − M

‖ ppp ‖2
−2

F (ppp...NNN)

‖ ppp ‖4
, N∗ = − N

‖ ppp ‖2
−2

G(ppp...NNN)

‖ ppp ‖4

where NNN is the unit normal of S. Deduce that:
(i) F takes lines of curvature on S to lines of curvature on S∗.
(ii) If κ is a principal curvature of S at ppp, then

κ∗ = − ‖ ppp ‖2κ− 2(ppp...NNN)

is one of S∗ at F (ppp).
(iii) F takes umbilics on S to umbilics on S∗.

8.2.31 The third fundamental form of an oriented surface S is defined by

〈〈〈vvv,www〉〉〉 = 〈W(vvv),W(vvv)〉.

It is obvious that 〈〈〈vvv,www〉〉〉 is a symmetric bilinear form. Show that, if σσσ(u, v) is
a surface patch of S, the matrix of 〈〈〈 , 〉〉〉 with respect to the basis {σσσu, σσσv} of
the tangent plane is (in the usual notation) FIII = FIIF−1

I FII .

8.2.32 Suppose that every point on the surface of revolution

σσσ(u, v) = (f(u) cos v, f(u) sinv, g(u))

is parabolic. Show that:
(i) The zeros of ġ = dg/du are isolated (i.e. if ġ(u0) = 0 there is an ǫ > 0 such
that ġ(t) 6= 0 if 0 < |u− u0| < ǫ).
(ii) If ġ is never zero, σσσ is an open subset of a circular cylinder or a circular cone.

8.2.33 Show that the umbilics on a graph surface z = f(x, y) satisfy

zxx = λ(1 + z2
x), zxy = λzxzy, zyy = λ(1 + z2

y)

for some λ (possibly depending on x and y).

8.2.34 Show that applying an isometry of R3 to a surface takes umbilics, elliptic, hy-
perbolic, parabolic and planar points of a surface to points of the same type.

8.2.35 Show that there are
(i) exactly four umbilics on a hyperboloid of two sheets;
(ii) exactly two umbilics on an elliptic paraboloid;
(iii) no umbilics on a hyperboloid of one sheet or a hyperbolic paraboloid.



53

8.2.36 Show that, for the surface S in Exercise 8.1.13, the four points at which the
Gaussian curvature attains its maximum value are exactly the umbilics of S.

8.2.37 Show that ppp = (1, 1, 1) is a planar point of the surface S with Cartesian equation

x2y2 + y2z2 + z2x2 = 3.

Deduce that the eight points (±1,±1,±1) are all planar points of S. (It can be
shown that these are all the planar points of S.)

Determine the shape of S near ppp as follows.
(i) Show that the vector nnn = (1, 1, 1) is normal to S at ppp and that the vectors
ttt1 = (1,−1, 0) and ttt2 = (0, 1,−1) are tangent to S at ppp.
(ii) For any point (x, y, z) ∈ R3 near ppp we can write

(x, y, z) = ppp +Xttt1 + Y ttt2 + Znnn

for some small quantities X, Y, Z depending on x, y, z. From the discussion at
the end of §8.2, we know that, near ppp, Z is equal to a cubic polynomial in X
and Y , if we neglect terms of higher order. Show that, if we neglect such terms,
then

2Z = XY (X − Y )

near ppp.
(iii) Deduce that, near ppp, S has the shape of a monkey saddle.

8.3.1 Show tha:
(i) Setting w = e−u gives a reparametrization σσσ1(v, w) of the pseudosphere with
first fundamental form

dv2 + dw2

w2

(called the upper half-plane model).
(ii) Setting

V =
v2 + w2 − 1

v2 + (w + 1)2
, W =

−2v

v2 + (w + 1)2

defines a reparametrization σσσ2(V,W ) of the pseudosphere with first fundamental
form

4(dV 2 + dW 2)

(1 − V 2 −W 2)2

(called the Poincaré disc model: the region w > 0 of the vw-plane corresponds
to the disc V 2 +W 2 < 1 in the VW -plane).
(iii) Setting

V̄ =
2V

V 2 +W 2 + 1
, W̄ =

2W

V 2 +W 2 + 1
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defines a reparametrization σσσ2(V̄ , W̄ ) of the pseudosphere with first fundamental
form

(1 − W̄ 2)dV̄ 2 + 2V̄ W̄ dV̄ dW̄ + (1 − V̄ 2)dW̄ 2

(1 − V̄ 2 − W̄ 2)2

(called the Beltrami-Klein model: the region w > 0 of the vw-plane again corre-
sponds to the disc V̄ 2 + W̄ 2 < 1 in the V̄ W̄ -plane).
These models are discussed in much more detail in Chapter 11.

8.3.2 For the pseudosphere:
(i) Calculate the length of a parallel.
(ii) Calculate its total area.
(iii) Calculate the principal curvatures.
(iv) Show that all points are hyperbolic.

8.3.3 Let S be a surface of revolution with axis the z-axis, and let its profile curve
be a unit-speed curve γγγ(u) in the xz-plane. Suppose that γγγ intersects the z-
axis at right angles when u = ±π/2, but does not intersect the z-axis when
−π/2 < u < π/2. Prove that, if the Gaussian curvature K of S is constant, that
constant is equal to one and S is the unit sphere.

8.4.1 Let ppp be a hyperbolic point of a surface S (see §8.2). Show that there is a patch
of S containing ppp whose parameter curves are asymptotic curves (see Exercise
7.3.6). Show that the second fundamental form of such a patch is of the form
2Mdudv.

8.4.2 Find a reparametrization of the hyperbolic paraboloid

σσσ(u, v) = (u+ v, u− v, uv)

in terms of parameters (s, t) such that the lines of curvature are the parameter
curves s = constant and t = constant.

8.4.3 Let γγγ be a curve on a surface S, and let S̃ be the ruled surface formed by the
straight lines passing through points ppp of the curve that are tangent to S at ppp

and intersect the curve orthogonally. Show that S̃ is flat if and only if γγγ is a line
of curvature of S.

8.5.1 Suppose that the first fundamental form of a surface patch σσσ(u, v) is of the form
E(du2 +dv2). Prove that σσσuu +σσσvv is perpendicular to σσσu and σσσv. Deduce that
the mean curvature H = 0 everywhere if and only if the Laplacian

σσσuu + σσσvv = 0.

Show that the surface patch

σσσ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)



55

has H = 0 everywhere. (A picture of this surface can be found in §12.2.)

8.5.2 Prove that H = 0 for the surface

z = ln
( cos y

cosx

)
.

(A picture of this surface can also be found in §12.2.)

8.5.3 Let σσσ(u, v) be a surface with first and second fundamental forms Edu2 +Gdv2

and Ldu2 +Ndv2, respectively (cf. Proposition 8.4.1). Define

ΣΣΣ(u, v, w) = σσσ(u, v) + wNNN(u, v),

where NNN is the standard unit normal of σσσ. Show that the three families of surfaces
obtained by fixing the values of u, v or w in ΣΣΣ form a triply orthogonal system
(see §5.5). The surfaces w = constant are parallel surfaces of σσσ. Show that the
surfaces u = constant and v = constant are flat ruled surfaces.

8.5.4 Show that a ruled surface which has constant non-zero mean curvature is a
circular cylinder.

8.5.5 Show that the lines of curvature on a parallel surface of a surface S correspond
to those of S, and that their tangents at corresponding points are parallel.

8.5.6 Suppose that two surface S and S̃ have the same normal lines. Show that S̃ is
a parallel surface of S (cf. Exercise 2.3.15).

Chapter 9

9.1.1 Describe four different geodesics on the hyperboloid of one sheet

x2 + y2 − z2 = 1

passing through the point (1, 0, 0).

9.1.2 A (regular) curve γγγ with nowhere vanishing curvature on a surface S is called a
pre-geodesic on S if some reparametrization of γγγ is a geodesic on S (recall that
a reparametrization of a geodesic is not usually a geodesic). Show that:
(i) A curve γγγ is a pre-geodesic if and only if γ̈γγ...(NNN × γ̇γγ) = 0 everywhere on γγγ (in
the notation of the proof of Proposition 9.1.3).
(ii) Any reparametrization of a pre-geodesic is a pre-geodesic.
(iii) Any constant speed reparametrization of a pre-geodesic is a geodesic.
(iv) A pre-geodesic is a geodesic if and only if it has constant speed.

9.1.3 Consider the tube of radius a > 0 around a unit-speed curve γγγ in R3 defined in
Exercise 4.2.7:

σσσ(s, θ) = γγγ(s) + a(cos θnnn(s) + sin θ bbb(s)).
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Show that the parameter curves on the tube obtained by fixing the value of s
are circular geodesics on σσσ.

9.1.4 Let γγγ(t) be a geodesic on an ellipsoid S (see Theorem 5.2.2(i)). Let 2R(t) be the
length of the diameter of S parallel to γ̇γγ(t), and let S(t) be the distance from
the centre of S to the tangent plane Tγγγ(t)S. Show that the curvature of γγγ is

S(t)/R(t)2, and that the product R(t)S(t) is independent of t.

9.1.5 Show that a geodesic with nowhere vanishing curvature is a plane curve if and
only if it is a line of curvature.

9.1.6 Let S1 and S2 be two surfaces that intersect in a curve C, and let γγγ be a unit-speed
parametrization of C.
(i) Show that if γγγ is a geodesic on both S1 and S2 and if the curvature of γγγ is
nowhere zero, then S1 ad S2 touch along γγγ (i.e. they have the same tangent
plane at each point of C). Give an example of this situation.
(ii) Show that if S1 and S2 intersect orthogonally at each point of C, then γγγ is

a geodesic on S1 if and only if ṄNN2 is parallel to NNN1 at each point of C (where
NNN1 and NNN2 are unit normals of S1 and S2). Show also that, in this case, γγγ is a
geodesic on both S1 and S2 if and only if C is part of a straight line.

9.1.7 Show that the ellipsoid
x2

p2
+
y2

q2
+
z2

r2
= 1

always has at least three closed geodesics.

9.1.8 Find six geodesics on (each connected piece of) the surface in Exercise 8.2.37.

9.1.9 Suppose that the tangent vector to a geodesic γγγ with nowhere vanishing curvature
on a surface S makes a fixed angle with a fixed non-zero vector aaa. Show that, at
every point of γγγ, the vector aaa is tangent to S.

9.1.10 Deduce from Exercise 7.3.3 that great circles are the only circles on a sphere
that are geodesics.

9.1.11 Let γγγ be a unit-speed curve on a surface S. Show that γγγ is a geodesic on S if
and only if, at every point ppp of γγγ, the osculating plane of γγγ at ppp is perpendicular
to TpppS. Dedcuce that, if a geodesic γγγ on S is the intersection of S with a plane,
then γγγ is a normal section of S (this is a converse of Proposition 9.1.6).

9.1.12 Show that if a curve on a surface is both a geodesic and an asymptotic curve,
then it is part of a straight line.

9.1.13 Show that a unit-speed curve γγγ with nowhere vanishing curvature is a geodesic
on the ruled surface

σσσ(u, v) = γγγ(u) + vδδδ(u),

where δδδ is a smooth function of u, if and only if δδδ(u) is perpendicular to the
principal normal of γγγ at γγγ(u) for all values of u.
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9.1.14 Let ΓΓΓ be a unit-speed geodesic on a surface S. Show that the torsion of ΓΓΓ at a
point ppp is

τ = Γ̇ΓΓ...(NNN × ṄNN),

where NNN is the standard unit normal of any surface patch containing ppp. Suppose
now that a curve γγγ on σσσ touches ΓΓΓ at a point ppp. Show that the torsion of ΓΓΓ at ppp
is equal to the geodesic torsion of γγγ at ppp (Exercise 7.3.22). Deduce, in particular,
that the torsion of ΓΓΓ is equal to its geodesic torsion.

9.1.15 Show that the torsion of a unit-speed asymptotic curve on a surface is given by
the same formula as the torsion of a geodesic in the preceding exercise. Deduce
that if a geodesic touches an asymptotic curve at a point ppp, the two curves have
the same torsion at ppp.

9.1.16 Show that, if a geodesic touches a line of curvature at a point ppp, the torsion of
the geodesic vanishes at ppp.

9.1.17 Show that:
(i) The torsion of a geodesic vanishes at an umbilic.
(ii) Two geodesics that intersect at right angles at a point ppp have torsions at ppp
that are equal in magnitude but opposite in sign.
(iii) The curvature κ and torsion τ of a geodesic are related by

τ2 = −(κ− κ1)(κ− κ2) or − (κ+ κ1)(κ+ κ2),

where κ1 and κ2 are the principal curvatures.
(iv) If the surface is flat then, up to a sign, τ = κ tan θ or κ cot θ, where θ is the
angle between the geodesic and one of the lines of curvature.

9.1.18 Let γγγ be a curve on a ruled surface S that intersects each of the rulings of the
surface. Show that, if γγγ has any two of the following properties, it has all three:
(i) γγγ is a pre-geodesic on S.
(ii) γγγ is the line of striction of S (see Exercise 5.3.4).
(iii) γγγ cuts the rulings of S at a constant angle.

9.1.19 Suppose that every geodesic on a (connected) surface is a plane curve. Show
that the surface is an open subset of a plane or a sphere.

9.1.20 Suppose that a geodesic γγγ on a surface S lies on a sphere with centre ccc. Show that
the curvature of γγγ at a point ppp is the reciprocal of the length of the perpendicular
from ccc to the plane passing through ppp parallel to TpppS.

9.2.1 Show that, if ppp and qqq are distinct points of a circular cylinder, there are either
two or infinitely-many geodesics on the cylinder with endpoints ppp and qqq (and
which do not otherwise pass through ppp or qqq). Which pairs ppp, qqq have the former
property ?

9.2.2 Use Corollary 9.2.8 to find all the geodesics on a circular cone.
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9.2.3 Find the geodesics on the unit cylinder by solving the geodesic equations.

9.2.4 Consider the following three properties that a curve γγγ on a surface may have:
(i) γγγ has constant speed.
(ii) γγγ satisfies the first of the geodesic equations (9.2).
(iii) γγγ satisfies the second of the geodesic equations (9.2).
Show that (ii) and (iii) together imply (i). Show also that if (i) holds and if γγγ is
not a parameter curve, then (ii) and (iii) are equivalent.

9.2.5 Let γγγ(t) be a unit-speed curve on the helicoid

σσσ(u, v) = (u cos v, u sin v, v)

(Exercise 4.2.6). Show that

u̇2 + (1 + u2)v̇2 = 1

(a dot denotes d/dt). Show also that, if γγγ is a geodesic on σσσ, then

v̇ =
a

1 + u2
,

where a is a constant. Find the geodesics corresponding to a = 0 and a = 1.
Suppose that a geodesic γγγ on σσσ intersects a ruling at a point ppp a distance D > 0
from the z-axis, and that the angle between γγγ and the ruling at ppp is α, where
0 < α < π/2. Show that the geodesic intersects the z-axis if D > cotα, but that

if D < cotα its smallest distance from the z-axis is
√
D2 sin2 α− cos2 α. Find

the equation of the geodesic if D = cotα.

9.2.6 Verify directly that the differential equations in Proposition 9.2.3 are equivalent
to the geodesic equations in Theorem 9.2.1.

9.2.7 Use Corollary 9.2.7 to show that the geodesics on a generalized cylinder are
exactly those constant-speed curves on the cylinder whose tangent vector makes
a constant angle with the rulings of the cylinder.

9.2.8 Show that (in the usual notation) a parameter curve v = constant is a pre-
geodesic on a surface patch σσσ if and only if

EEv + FEu = 2EFu.

9.2.9 Suppose that a surface patch σσσ has first fundamental form

(1 + u2)du2 − 2uvdudv + (1 + v2)dv2.

Show that the curves on σσσ corresponding to the straight lines u+ v = constant
in the uv-plane are pre-geodesics on σσσ.
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9.2.10 Suppose that the first fundamental form of a surface σσσ is of the form

du2 +Gdv2,

and that the curves on the surface corresponding to the straight lines v/u =
constant are all pre-geodesics. Prove that

(2u2 +Gv2)Gu + uvGv = 0,

and verify that this equation has a solution of the form

G(u, v) =
f(u)

v2
.

9.2.11 Suppose that the coefficients E, F,G of the first fundamental form of a surface
patch σσσ(u, v) depend only on u. Show that, along any geodesic on σσσ, either u =
constant or

dv

du
= −F

G
± Ω

√
EG− F 2

G
√
G− Ω2

,

where Ω is a constant.

9.2.12 Let γγγ be a curve and let S be the ruled surface generated by its binormals (see
Exercise 6.1.9). Suppose that ΓΓΓ is a geodesic on S that intersects γγγ. Show that:
(i) If the torsion of γγγ is a non-zero constant, then ΓΓΓ is contained between two
rulings of S.
(ii) If γγγ is a plane curve, then ΓΓΓ is contained between two rulings only if γγγ and
ΓΓΓ intersect perpendicularly, in which case ΓΓΓ is one of the rulings of S.

9.2.13 A Liouville surface is a surface patch σσσ whose first fundamental form is of the
form

(U + V )(Pdu2 +Qdv2),

where U and P are functions of u only and V and Q are functions of v only.
Show that, if γγγ is a geodesic on σσσ, then along γγγ,

U sin2 θ − V cos2 θ = constant,

where θ is the angle between γγγ and the parameter curves v = constant.

9.2.14 Verify that

σσσ(u, v) =

(√
a(a+ u)(a+ v)

(a− b)(a− c)
,

√
b(b+ u)(b+ v)

(b− a)(b− c)
,

√
c(c+ u)(c+ v)

(c− a)(c− b)

)
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is a parametrization of the quadric surface

x2

a
+
y2

b
+
z2

c
= 1,

where a, b, c are distinct. Determine its first fundamental form and deduce that,
along any geodesic on the surface,

u sin2 θ + v cos2 θ = constant,

where θ is the angle at which the geodesic intersects the parameter curves v =
constant.

9.3.1 There is another way to see that all the meridians, and all the parallels cor-
responding to stationary points of f , are geodesics on a surface of revolution.
What is it ?

9.3.2 Describe qualitatively the geodesics on
(i) a spheroid, obtained by rotating an ellipse around one of its axes;
(ii) a torus (Exercise 4.2.5).

9.3.3 Show that a geodesic on the pseudosphere with non-zero angular momentum Ω
intersects itself if and only if Ω < (1 + π2)−1/2. How many self-intersections are
there in that case ?

9.3.4 Show that if we reparametrize the pseudosphere as in Exercise 8.3.1(ii), the
geodesics on the pseudosphere correspond to segments of straight lines and cir-
cles in the parameter plane that intersect the boundary of the disc orthogonally.
Deduce that, in the parametrization of Exercise 8.3.1(iii), the geodesics corre-
spond to segments of straight lines in the parameter plane. We shall see in §10.4
that there are very few surfaces that have parametrizations with this property.

9.3.5 Suppose that a surface of revolution has the property that every parallel is a
geodesic. What kind of surface is it ?

9.3.6 Show that, along any geodesic on the catenoid (Exercise 5.3.1) that is not a
parallel,

dv

du
= ± Ω√

cosh2 u− Ω2
,

where Ω is a constant.

9.3.7 Show that, if every geodesic on a surface of revolution S intersects the meridians
at a constant angle (possibly different angles for different geodesics), then S is a
circular cylinder.

9.3.8 Deduce from Exercise 4.1.6 and Clairaut’s theorem that the geodesics on the
unit cylinder are straight lines, circles and helices.
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9.3.9 Consider the surface of revolution

σσσ(u, v) =

(
k cosu cos v, k cosu sin v,

∫ u

0

√
1 − k2 sin2 θ dθ

)

where k is a non-zero constant. (This is a surface of constant Gaussian curvature
equal to 1 and is a sphere if k = 1 - see §8.3.) Prove that the geodesic which
passes through the point (k, 0, 0) and makes an angle α with the parallel through
this point is given by

tanu = ± tanα sin kv.

Find the maximum height above the xy-plane attained by this geodesic.

9.3.10 Let f : σ̃σσ(v, w) 7→ σ̃σσ(ṽ, w̃) be an isometry of the pseudosphere, where the
parametrization σ̃σσ is that defined in §9.3.
(i) Show that f takes meridians to meridians, and deduce that ṽ does not depend
on w.
(ii) Deduce that f takes parallels to parallels.
(iii) Deduce from (ii) and Exercise 8.3.2 that w̃ = w.
(iv) Show that f is a rotation about the axis of the pseudosphere or a reflection
in a plane containing the axis of rotation.

9.4.1 The geodesics on a circular (half) cone were determined in Exercise 9.2.2. In-
terpreting ‘line’ as ‘geodesic’, which of the following (true) statements in plane
Euclidean geometry are true for the cone ?
(i) There is a line passing through any two points.
(ii) There is a unique line passing through any two distinct points.
(iii) Any two distinct lines intersect in at most one point.
(iv) There are lines that do not intersect each other.
(v) Any line can be continued indefinitely.
(vi) A line defines the shortest distance between any two of its points.
(vii) A line cannot intersect itself transversely (i.e. with two non-parallel tangent
vectors at the point of intersection).

9.4.2 Show that the long great circle arc on S2 joining the points ppp = (1, 0, 0) and
qqq = (0, 1, 0) is not even a local minimum of the length function L (see the
remarks following the proof of Theorem 9.4.1).

9.4.3 Construct a smooth function with the properties in (9.20) in the following steps:

(i) Show that, for all integers n (positive and negative), tne−1/t2 tends to 0 as t
tends to 0.
(ii) Deduce from (i) that the function

θ(t) =

{
e−1/t2 if t ≥ 0,

0 if t ≤ 0
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is smooth everywhere.
(iii) Show that the function

ψ(t) = θ(1 + t)θ(1 − t)

is smooth everywhere, that ψ(t) > 0 if −1 < t < 1, and that ψ(t) = 0 otherwise.
(iv) Show that the function

φ(t) = ψ

(
t− t0
η

)

has the properties we want.

9.4.4 Repeat Exercise 9.4.1 for a circular cylinder and a sphere.

9.5.1 Let P be a point of a surface S and let vvv be a unit tangent vector to S at P .
Let γγγθ(r) be the unit-speed geodesic on S passing through P when r = 0 and

such that the oriented angle
̂
vvv

dγγγθ

dr = θ. It can be shown that σσσ(r, θ) = γγγθ(r) is
smooth for −ǫ < r < ǫ and all values of θ, where ǫ is some positive number, and
that it is an allowable surface patch for S defined for 0 < r < ǫ and for θ in any
open interval of length ≤ 2π. This is called a geodesic polar patch on S.
Show that, if 0 < R < ǫ, ∫ R

0

∣∣∣∣
∣∣∣∣
dγγγθ

dr

∣∣∣∣
∣∣∣∣
2

dr = R.

By differentiating both sides with respect to θ, prove that

σσσr...σσσθ = 0.

P
geodesi
s

geodesi

ir
le
This is called Gauss’s Lemma – geometrically, it means that the parameter curve
r = R, called the geodesic circle with centre P and radius R, is perpendicular
to each of its radii, i.e. the geodesics passing through P . Deduce that the first
fundamental form of σσσ is

dr2 +G(r, θ)dθ2,
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for some smooth function G(r, θ).

9.5.2 Let P and Q be two points on a surface S, and assume that there is a geodesic
polar patch with centre P as in Exercise 9.5.1 that also contains Q; suppose that
Q is the point σσσ(R, α), where 0 < R < ǫ, 0 ≤ α < 2π. Show in the following
steps that the geodesic γγγα(t) = σσσ(t, α) is (up to reparametrization) the unique
shortest curve on S joining P and Q.
(i) Let γγγ(t) = σσσ(f(t), g(t)) be any curve in the patch σσσ joining P and Q. We
assume that γγγ passes through P when t = 0 and through Q when t = R (this
can always be achieved by a suitable reparametrization). Show that the length
of the part of γγγ between P and Q is ≥ R, and that R is the length of the part
of γγγα between P and Q.
(ii) Show that, if γγγ is any curve on S joining P and Q (not necessarily staying
inside the patch σσσ), the length of the part of γγγ between P and Q is ≥ R.
(iii) Show that, if the part of a curve γγγ on S joining P to Q has length R, then
γγγ is a reparametrization of γγγα.

9.5.3 Suppose that every geodesic circle with centre P in the surface patch in Exercise
9.5.1 has constant geodesic curvature (possibly different constants for different
circles). Prove thatG is of the formG(r, θ) = f(r)g(θ) for some smooth functions
f and g.

Chapter 10

10.1.1 A surface patch has first and second fundamental forms

cos2 v du2 + dv2 and − cos2 v du2 − dv2,

respectively. Show that the surface is an open subset of a sphere of radius one.
Write down a parametrization of S2 with these first and second fundamental
forms.

10.1.2 Show that there is no surface patch whose first and second fundamental forms
are

du2 + cos2 u dv2 and cos2 u du2 + dv2,

respectively.

10.1.3 Suppose that a surface patch σσσ(v, w) has first and second fundamental forms

dv2 + dw2

w2
and Ldv2 +Ndw2,

respectively, where w > 0. Prove that L and N do not depend on v, that
LN = −1/w4 and that

Lw5 dL

dw
= 1 − L2w4.
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Solve this equation for L and deduce that σσσ cannot be defined in the whole of
the half-plane w > 0. Compare the discussion of the pseudosphere in Example
9.3.3.

10.1.4 Suppose that the first and second fundamental forms of a surface patch are
Edu2 +Gdv2 and Ldu2 +Ndv2, respectively. Show that the Codazzi–Mainardi
equations reduce to

Lv =
1

2
Ev

(
L

E
+
N

G

)
, Nu =

1

2
Gu

(
L

E
+
N

G

)
.

Deduce that the principal curvatures κ1 = L/E and κ2 = N/G satisfy the
equations

(κ1)v =
Ev

2E
(κ2 − κ1), (κ2)u =

Gu

2G
(κ1 − κ2).

10.1.5 What are the necessary and sufficient conditions for constants E, F,G, L,M,N
to be the coefficients of the first and second fundamental forms of a surface patch
σσσ(u, v)?
Assuming that these conditions are satisfied, show that there is a reparametriza-
tion of σσσ of the form

ũ = au+ bv, ṽ = cu+ dv,

where a, b, c, d are constants, such that the first and second fundamental forms
become

dũ2 + dṽ2 and κdũ2,

respectively, where κ is a constant. Deduce that the surface is an open subset of
a plane or a circular cylinder.

10.1.6 Suppose that a surface patch has first and second fundamental forms Edu2+Gdv2

and 2dudv, respectively. Show that:
(i) E/G is a constant.
(ii) By a suitable reparametrization we can arrange that this constant is equal
to 1.
(iii) If E = G then

∂2(lnE)

∂u2
+
∂2(lnE)

∂v2
=

2

E
.

10.1.7 Show that, if the parameter curves of a surface patch are asymptotic curves,

Mu

M
= Γ1

11 − Γ2
12,

Mv

M
= Γ2

22 − Γ1
12.

10.1.8 Suppose that a surface S has no umbilics and that one of its principal curvatures
is a non-zero constant κ. Let ppp ∈ S.
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(i) Show that there is a patch σσσ(u, v) of S containing ppp which has first and second
fundamental forms

du2 +Gdv2 and κdu2 +Ndv2,

for some smooth functions G and N of (u, v).

(ii) Calculate the Christoffel symbols of σσσ.

(iii) Show that the parameter curves v = constant are circles of radius r = 1/|κ|.
(iv) Show that

σσσuu + r2σσσ

is independent of u, and deduce that

σσσ(u, v) = γγγ(v) + r(ccc(v) cos
u

r
+ ddd(v) sin

u

r
),

for some curve γγγ(v), where ccc(v) and ddd(v) are perpendicular unit vectors for all
values of v.

(v) Show that ccc and ddd are perpendicular to dγγγ/dv and deduce that σσσ is a
reparametrization of the tube of radius r around γγγ.

10.1.9 Let ΣΣΣ(u, v, w) be a parametrization of a triply orthogonal system as in §5.5.
Prove that, if p = ‖ ΣΣΣu ‖, q = ‖ ΣΣΣv ‖, r = ‖ ΣΣΣw ‖, then

ΣΣΣuu =
pu

p
ΣΣΣu − ppv

q2
ΣΣΣv − ppw

r2
ΣΣΣw,

ΣΣΣvv =
qv
q

ΣΣΣv − qqw
r2

ΣΣΣw − qqu
p2

ΣΣΣu,

ΣΣΣww =
rw
r

ΣΣΣw − rru
p2

ΣΣΣu − rrv
q2

ΣΣΣv,

ΣΣΣvw =
qw
q

ΣΣΣv +
rv
r

ΣΣΣw,

ΣΣΣwu =
ru
r

ΣΣΣw +
pw

p
ΣΣΣu,

ΣΣΣuv =
pv

p
ΣΣΣu +

qu
q

ΣΣΣv.
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Deduce Lamé’s relations:

(
rv
q

)

v

+
(qw
r

)
w

+
quru
p2

= 1,

(pw

r

)
w

+

(
ru
p

)

u

+
rvpv

q2
= 1,

(
qu
p

)

u

+

(
pv

q

)

v

+
pwqw
r2

= 1,

pvw =
pvqw
q

+
pwrv
r

,

qwu =
qwru
r

+
qupw

p
,

ruv =
rupv

p
+
rvqu
q

.

It can be shown, conversely, that if p, q, r are smooth functions of u, v, w satis-
fying Lamé’s relations, there is a triply orthogonal system ΣΣΣ(u, v, w), uniquely
determined up to an isometry of R3, such that p = ‖ ΣΣΣu ‖, q = ‖ ΣΣΣv ‖, r = ‖ ΣΣΣw ‖.

10.2.1 Show that if a surface patch has first fundamental form eλ(du2 + dv2), where λ
is a smooth function of u and v, its Gaussian curvature K satisfies

∆λ+ 2Keλ = 0,

where ∆ denotes the Laplacian ∂2/∂u2 + ∂2/∂v2.

10.2.2 With the notation of Exercise 9.5.1, define u = r cos θ, v = r sin θ, and let
σ̃σσ(u, v) be the corresponding reparametrization of σσσ. It can be shown that σ̃σσ is
an allowable surface patch for S defined on the open set u2 + v2 < ǫ2. (Note
that this is not quite obvious because σσσ is not allowable when r = 0.)

(i) Show that the first fundamental form of σ̃σσ is Ẽdu2 + 2F̃ dudv + G̃dv2, where

Ẽ =
u2

r2
+
Gv2

r4
, F̃ =

(
1 − G

r2

)
uv

r2
, G̃ =

v2

r2
+
Gu2

r4
.

(ii) Show that u2(Ẽ − 1) = v2(G̃− 1), and by considering the Taylor expansions

of Ẽ and G̃ about u = v = 0, deduce that

G(r, θ) = r2 + kr4 + remainder

for some constant k, where remainder/r4 tends to zero as r tends to zero.
(iii) Show that k = −K(ppp)/3, where K(ppp) is the value of the Gaussian curvature
of S at ppp.
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10.2.3 With the notation of Exercises 9.5.1 and 10.2.2, show that:

(i) The circumference of the geodesic circle with centre ppp and radius R is

CR = 2πR

(
1 − K(ppp)

6
R2 + remainder

)
,

where remainder/R2 tends to zero as R tends to zero.
(ii) The area inside the geodesic circle in (i) is

AR = πR2

(
1 − K(ppp)

12
R2 + remainder

)
,

where the remainder satisfies the same condition as in (i).

Verify that these formulas are consistent with those in spherical geometry ob-
tained in Exercise 6.5.3.

10.2.4 Let A,B and C be the vertices of a triangle T on a surface S whose sides are
arcs of geodesics, and let α, β and γ be its internal angles (so that α is the angle
at A, etc.). Assume that the triangle is contained in a geodesic patch σσσ as in
Exercise 9.5.1 with P = A. Thus, with the notation in that exercise, if we take vvv
to be tangent at A to the side passing through A and B, then the sides meeting
at A are the parameter curves θ = 0 and θ = α, and the remaining side can be
parametrized by γγγ(θ) = σσσ(f(θ), θ) for some smooth function f and 0 ≤ θ ≤ α.

v
 C

A B
(i) Use the geodesic equations (9.2) to show that

f ′′ − f ′λ′

λ2
=

1

2

∂G

∂r
,

where a dash denotes d/dθ and λ = ‖ γγγ′ ‖.
(ii) Show that, if ψ(θ) is the angle between σσσr and the tangent vector to the side
opposite A at γγγ(θ), then

ψ′(θ) = −∂
√
G

∂r
(f(θ), θ).
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(iii) Show that, if K is the Gaussian curvature of S,

∫ ∫

T
K dAσσσ = α+ β + γ − π.

This result will be generalized in Corollary 13.2.3.

10.2.5 Show that the Gaussian curvature of the Möbius band in Example 4.5.3 is equal
to −1/4 everywhere along its median circle. Deduce that this Möbius band
cannot be constructed by taking a strip of paper and joining the ends together
with a half-twist. (The analytic description of the ‘cut and paste’ Möbius band
is more complicated than the version in Example 4.5.3.)

10.2.6 Show that the only isometries from the catenoid to itself are products of rotations
around its axis, reflections in planes containing the axis, and reflection in the
plane containing the waist of the catenoid.

10.2.7 A surface has first fundamental form

vmdu2 + undv2

for some integers m,n. For which value(s) of the pair (m,n) is this surface flat ?
Show directly that, in each case in which the surface is flat, it is locally isometric
to a plane. (This is, of course, an immediate consequence of the results of §8.4.)

10.2.8 A surface patch σσσ has first fundamental form

du2 + 2 cos θdudv + dv2,

where θ is a smooth function of (u, v) (Exercise 6.1.5). Show that the Gaussian
curvature of σσσ is

K = − θuv

sin θ
.

Verify the Gauss equations (Proposition 10.1.2).

10.2.9 Show that there is no isometry between any region of a sphere and any region
of a generalized cylinder or a generalized cone.

10.2.10 Consider the surface patches

σσσ(u, v) = (u cos v, u sin v, lnu), σ̃σσ(u, v) = (u cos v, u sin v, v).

Prove that the Gaussian curvature of σσσ at σσσ(u, v) is the same as that of σ̃σσ at
σ̃σσ(u, v), but that the map from σσσ to σ̃σσ which takes σσσ(u, v) to σ̃σσ(u, v) is not an
isometry. Prove that, in fact, there is no isometry from σσσ to σ̃σσ.

10.2.11 Show that the only isometries of the torus in Example 4.2.5 are the maps
σσσ(θ, ϕ) 7→ σσσ(±θ,±ϕ + α), where α is any constant (and any combination of
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signs is allowed). Thus, the isometries are composites of reflection in the coor-
dinate planes and rotations about the z-axis.

10.2.12 Show that, if the parameter curves of a surface are pre-geodesics that intersect
orthogonally, the surface is flat. Is this still true without the assumption of
orthogonality ?

10.3.1 Show that a compact surface with Gaussian curvature > 0 everywhere and con-
stant mean curvature is a sphere.

10.3.2 Show that the solution of the sine-Gordon equation corresponding to the pseu-
dosphere constructed in §8.3 is

θ(u, v) = 2 tan−1(sinh(u− v + c)),

where c is a constant.

10.3.3 Let σσσ(u, v) be a surface patch of constant Gaussian curvature −1 such that
the parameter curves form a Chebyshev net, as in Exercise 6.1.5. Let Q be a
quadrilateral whose sides are parameter curves, and let α1, α2, α3 and α4 be its
interior angles. Show that the area inside Q is

α1 + α2 + α3 + α4 − 2π.

10.4.1 Show that a local diffeomorphism between surfaces that takes unit-speed geodesics
to unit-speed geodesics must be a local isometry.

10.4.2 Show that a local diffeomorphism between surfaces that is the composite of a
dilation and a local isometry takes geodesics to geodesics. Is the converse of this
statement true?

10.4.3 This exercise shows that a geodesic local diffeomorphism F from a surface S
to a surface S̃ that is also conformal is the composite of a dilation and a local
isometry.
(i) Let ppp ∈ S and let σσσ be a geodesic patch containing ppp as in Proposition 9.5.1,
with first fundamental form du2 + Gdv2. Show that σ̃σσ = F ◦ σσσ is a patch of
σ̃σσ containing F (ppp) with first fundamental form λ(du2 +Gdv2) for some smooth
function λ(u, v).
(ii) Show that the parameter curves v = constant are pre-geodesics on σ̃σσ and
deduce that λ is independent of v.
(iii) Show that if γγγ is a geodesic on σσσ and θ is the oriented angle between γγγ and
the parameter curves v = constant,

(10.19)
dθ

dv
+

Gu

2
√
G

= 0.
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(iv) Show that

(10.20)
dθ

dv
+

(λG)u

2λ
√
G

= 0.

(v) Deduce from Eqs. (10.19) and (10.20) that λ is constant.
(vi) Show that F : σσσ → σ̃σσ is the composite of a dilation and a local isometry.

Chapter 11

11.1.1 Show that, if l is a half-line geodesic in H and a is a point not on l, there are
infinitely-many hyperbolic lines passing through a that do not intersect l.

11.1.2 Complete the proof of Proposition 11.1.4 by dealing with the case in which the
hyperbolic line passing through a and b is a half-line.

11.1.3 Show that for any a ∈ H there is a unique hyperbolic line passing through a that
intersects the hyperbolic line l given by v = 0 perpendicularly. If b is the point
of intersection, one calls dH(a, b) the hyperbolic distance of a from l.

11.1.4 The hyperbolic circle Ca,R with centre a ∈ H and radius R > 0 is the set of points
of H which are a hyperbolic distance R from a:

Ca,R = {z ∈ H | dH(z, a) = R}.

Show that Ca,R is a Euclidean circle.
Show that the Euclidean centre of Cic,R, where c > 0, is ib and that its Euclidean
radius is r, where

c =
√
b2 − r2, R =

1

2
ln
b+ r

b− r
.

Deduce that the hyperbolic length of the circumference of Cic,R is 2π sinhR and
that the hyperbolic area inside it is 2π(coshR − 1). Note that these do not
depend on c; in fact, it follows from the results of the next section that the
circumference and area of Ca,R depend only on R and not on a (see the remarks
preceding Theorem 11.2.4).
Compare these formulas with the case of a spherical circle in Exercise 6.5.3, and
verify that they are consistent with Exercise 10.2.3.

11.1.5 Let l be a half-line geodesic in H. Show that, for any R > 0, the set of points
that are a distance R from l is the union of two half-lines passing through the
origin. Note that these half-lines are not geodesics. This contrasts with the
situation in Euclidean geometry, in which the set of points at a fixed distance
from a straight line is a pair of straight lines.

11.1.6 Which region in H corresponds to the pseudosphere with the meridian v = π
removed (in the parametrization used in §11.1)?
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11.2.1 Show that if a, b ∈ H, the hyperbolic distance dH(a, b) is the length of the
shortest curve in H joining a and b.

11.2.2 Show that, if l is any hyperbolic line in H and a is a point not on l, there are
infinitely-many hyperbolic lines passing through a that do not intersect l.

11.2.3 Let a be a point of H that is not on a hyperbolic line l. Show that there is a
unique hyperbolic line m passing through a that intersects l perpendicularly. If
b is the point of intersection of l and m, and c is any other point of l, prove that

dH(a, b) < dH(a, c).

Thus, b is the unique point of l that is closest to a.

11.2.4 This exercise and the next determine all the isometries of H.
(i) Let F be an isometry of H that fixes each point of the imaginary axis l and
each point of the semicircle geodesic m of centre the origin and radius 1. Show
that F is the identity map.
(ii) Let F be an isometry of H such that F (l) = l and F (m) =m, where l and m

are as in (i). Prove that F is the identity map, the reflection R0, the inversion
I0,1 or the composite I0,1 ◦R0 (in the notation at the beginning of §11.2).
(iii) Show that every isometry of H is a composite of elementary isometries.
(iv) Show that every isometry of H is a composite of reflections and inversions
in lines and circles perpendicular to the real axis.

11.2.5 A Möbius transformation (see Appendix 2) is said to be real if it is of the form

M(z) =
az + b

cz + d
,

where a, b, c, d ∈ R. Show that:
(i) Any composite of real Möbius transformations is a real Möbius transfor-
mation, and the inverse of any real Möbius transformation is a real Möbius
transformation.
(ii) The Möbius transformations that take H to itself are exactly the real Möbius
transformations such that ad− bc > 0.
(iii) Every real Möbius tranformation is a composite of elementary isometries of
H, and hence is an isometry of H.
(iv) If J(z) = −z̄ and M is a real Möbius transformation, M ◦ J is an isometry
of H.
(v) If we call an isometry of type (iii) or (iv) a Möbius isometry, any composite
of Möbius isometries is a Möbius isometry;
(vi) every isometry of H is a Möbius isometry.

11.2.6 Show that, if a, b, c are three points of H that do not lie on the same geodesic,
then

dH(a, b) < dH(a, c) + dH(c, b).
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11.2.7 Let l be a semicircle geodesic in H that intersects the real axis at points a and b.
Show that, for any d > 0, the set of points of H that are a hyperbolic distance d
from l is the union of two circular arcs (called equidistant curves) passing through
a and b, but that these are not geodesics unless d = 0. Note that in Euclidean
geometry equidistant curves are straight lines (i.e. geodesics).

11.2.8 Suppose that a triangle in H with vertices a, b, c is such that dH(a, b) = dH(a, c)
(the triangle is ‘isosceles’) and let α be the angle at a. Prove that there is
a function f(α) such that, if d is the mid-point of the side joining b, c, then
dH(a, d) < f(α). (The point is that this upper bound is independent of the
lengths of the sides of the triangle passing through a, which are not bounded.)

11.2.9 Suppose that two triangles T and T ′ in H with vertices a, b, c and a′, b′, c′ are
such that
(i) the angle of T at a is equal to that of T ′ at a′,
(ii) dH(a, b) = dH(a′, b′), and
(iii) dH(a, c) = dH(a′, c′).
Prove that T and T ′ are congruent.

11.2.10 Show that the set of points that are the same hyperbolic distance from two fixed
points of H is a geodesic.

11.3.1 Prove Proposition 11.3.4.

11.3.2 Let l and m be hyperbolic lines in DP that intersect at right angles. Prove that
there is an isometry of DP that takes l to the real axis and m to the imaginary
axis. How many such isometries are there?

11.3.3 Show that the Möbius transformations that take DP to itself are those of the
form

z 7→ az + b

b̄z + ā
, |a| > |b|.

11.3.4 Show that the isometries of DP are the transformations of the following two
types:

z 7→ az + b

b̄z + ā
, z 7→ az̄ + b

b̄z̄ + ā
,

where a and b are complex numbers such that |a| > |b|. Note that this and the
preceding exercise show that the isometries of DP are exactly the Möbius and
conjugate-Möbius transformations that take DP to itself.

11.3.5 Prove that every isometry of DP is the composite of finitely-many isometries of
the two types in Proposition 11.3.3.

11.3.6 Consider a hyperbolic triangle with vertices a, b, c, sides of length A,B,C and
angles α, β, γ (so that A is the length of the side opposite a and α is the angle
at a, etc.). Prove the hyperbolic sine rule

sinα

sinhA
=

sinβ

sinhB
=

sin γ

sinhC
.
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11.3.7 With the notation in the preceding exercise, suppose that γ = π/2. Prove that:

(i) cosα = sinh B cosh A
sinh C

.

(ii) coshA = cos α
sin β .

(iii) sinhA = tanhB
tan β

.

11.3.8 With the notation in Exercise 11.3.6, prove that

coshA =
cosα+ cosβ cos γ

sinβ sin γ
.

This is the formula we promised at the end of §11.2 for the lengths of the sides
of a hyperbolic triangle in terms of its angles.

11.3.9 Show that if R2 is provided with the first fundamental form

4(du2 + dv2)

(1 + u2 + v2)2
,

the stereographic projection map Π : S2\{north pole} → R2 defined in Example
6.3.5 is an isometry. Note the similarity between this formula and that in Propo-
sition 11.3.2: the plane with this first fundamental form provides a ‘model’ for
the sphere in the same way as the half-plane with the first fundamental form in
Proposition 11.3.2 is a ‘model’ for the pseudosphere.

11.3.10 Show that Proposition 11.2.3 holds as stated in DP .

11.3.11 Let n be an integer ≥ 3. Show that, for any angle α such that 0 < α < (n−2)π/n,
there is a regular hyperbolic n-gon with interior angles equal to α. Show that
each side of such an n-gon has length A, where

cosh
A

2
=

cos π
n

sin α
2

.

11.3.12 A Saccheri quadrilateral is a quadrilateral with geodesic sides such that two
opposite sides have equal length A and intersect a third side of length B at right
angles. If C is the length of the fourth side, prove that

coshC = cosh2A coshB − sinh2A,

and determine the other two angles of the quadrilateral.

11.3.13 Prove that the set of points in DP that are equidistant from two geodesics l and
m that intersect at a point a ∈ DP is the union of two hyperbolic lines that
bisect the angles between l and m. Deduce that (as in Euclidean geometry) the
geodesics that bisect the internal angles of a hyperbolic triangle meet in a single
point.
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11.3.14 Let a ∈ DP be a point on a geodesic l, let b be a point on the geodesic m

that intersects l perpendicularly at a, and let c be one of the points in which
m intersects C. Let Cb be the hyperbolic circle with centre b that touches l at
a. Show that, as b recedes from a along m towards c, the circles Cb approach a
limiting curve (called a horocycle) which is a Euclidean circle touching C at c.
Show also that the horocycle is orthogonal to all the geodesics in DP that pass
through c.

11.4.1 Which pairs of hyperbolic lines in H are parallel? Ultraparallel?

11.4.2 Let l be the imaginary axis in H. Show that, for any R > 0, the set of points
that are a distance R from l is the union of two half-lines passing through the
origin, but that these half-lines are not hyperbolic lines. This contrasts with the
situation in Euclidean geometry, in which the set of points at a fixed distance
from a line is a pair of lines.

11.4.3 Let a and b be two distinct points in DP , and let 0 < A < π. Show that the set
of points c ∈ DP such that the hyperbolic triangle with vertices a, b and c has
area A is the union of two segments of lines or circles, but that these are not
hyperbolic lines. Note that this equal-area property could be used to characterize
lines in Euclidean geometry.

11.4.4 A triangle in DP is called asymptotic, biasymptotic or triasymptotic if it has one,
two or three vertices on the boundary of DP , respectively (so that one, two or
three pairs of sides are parallel). Note that such a triangle always has at least
two sides of infinite length.
(i) Show that any triasymptotic triangle has area π.
(ii) Show that the area of a biasymptotic triangle with angle α is π − α. Show
that such a triangle exists for any α with 0 < α < π.
(iii) Show that the area of an asymptotic triangle with angles α and β is π−α−β.
Express the length of the finite side of the triangle in terms of α and β.

11.4.5 Prove that:
(i) If two asymptotic triangles have the same angles (interpreting the angle at
the vertex on the boundary as zero), they are congruent.
(ii) The same result as in (i) holds for biasymptotic triangles.
(iii) Any two triasymptotic triangles are congruent.

11.4.6 It is a theorem of Euclidean geometry that the altitudes of a triangle meet at a
single point (the altitudes are the straight lines through the vertices perpendic-
ular to the opposite sides). By considering first a suitable biasymptotic triangle,
show that the corresponding result in hyperbolic geometry is not true.

11.5.1 Prove Eq. (11.8).

11.5.2 Extend the definition of cross-ratio in the obvious way to include the possibility
that one of the points is equal to ∞, e.g. (∞, b; c, d) = (b − d)/(b − c). Show
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that, if M : C∞ → C∞ is a Möbius transformation, then

(M(a),M(b);M(c),M(d)) = (a, b; c, d) for all distinct points a, b, c, d ∈ C∞.

Show, conversely, that if M : C∞ → C∞ is a bijection satisfying this condition,
then M is a Möbius transformation.

11.5.3 Use the preceding exercise to show that, if (a, b, c) and (a′, b′, c′) are two triples
of distinct points of C∞, there is a unique Möbius transformation M such that
M(a) = a′, M(b) = b′ and M(c) = c′.

11.5.4 Let a, b ∈ C∞ and let d be the spherical distance between the points of S2 that
correspond to a, b under the stereographic projection map Π (Example 6.3.5).
Show that

− tan2 1

2
d =

(
a,−1

ā
; b,−1

b̄

)
.

11.5.5 Show that, if R is the reflection in a line passing through the origin, then KR =
RK. Deduce that R is an isometry of DK .

11.5.6 Show that the isometries of DK are precisely the composites of (finitely-many)
perspectivities and reflections in lines passing through the origin.

11.5.7 Show that the angle between two curves in DK that intersect at the origin is the
same as the Euclidean angle of intersection.

11.5.8 Show that points a, b, c, d ∈ C∞ lie on a Circle if and only if (a, b; c, d) is real
(see Appendix 2 for the definition of a Circle (capital C!)).

11.5.9 If λ = (a, b; c, d), show that the cross-ratio obtained by taking the same points
a, b, c, d in a different order has one of the six values λ, 1/λ, 1 − λ, 1/(1 − λ),
λ/(1 − λ), (1 − λ)/λ.

Chapter 12

12.1.1 Show that the Gaussian curvature of a minimal surface is ≤ 0 everywhere, and
that it is zero everywhere if and only if the surface is an open subset of a plane.
We shall obtain a much more precise result in Corollary 12.5.6.

12.1.2 Let σσσ : U → R3 be a minimal surface patch, and assume that Aσσσ(U) < ∞
(see Definition 6.4.1). Let λ 6= 0 and assume that the principal curvatures κ of
σσσ satisfy |λκ| < 1 everywhere, so that the parallel surface σσσλ of σσσ (Definition
8.5.1) is a regular surface patch. Prove that

Aσσσλ(U) ≤ Aσσσ(U)

and that equality holds for some λ 6= 0 if and only if σσσ(U) is an open subset
of a plane. (Thus, any minimal surface is area-minimizing among its family of
parallel surfaces.)



76

12.1.3 Show that there is no compact minimal surface.

12.1.4 Show that applying a dilation or an isometry of R3 to a minimal surface gives
another minimal surface. Can there be a local isometry between a minimal
surface and a non-minimal surface?

12.1.5 Show that every umbilic on a minimal surface is a planar point.

12.1.6 Let S be a parallel surface of a minimal surface (Definition 8.5.1), and let κ1

and κ2 be the principal curvatures of S. Show that

1

κ1
+

1

κ2
= constant.

12.1.7 Show that no tube (Exercise 4.2.7) is a minimal surface.

12.1.8 Let S be a minimal surface, let ppp ∈ S and let ttt be any non-zero tangent vector
to S at ppp. Show that the Gaussian curvature of S at ppp is

K(ppp) = −〈〈〈ttt, ttt〉〉〉
〈ttt, ttt〉

(see Exercise 8.2.31).

12.2.1 Show that every helicoid is a minimal surface.

12.2.2 Show that the surfaces σσσt in the isometric deformation of a helicoid into a
catenoid given in Exercise 6.2.2 are minimal surfaces. (This is ‘explained’ in
Exercise 12.5.4.)

12.2.3 Show that a generalized cylinder is a minimal surface only when the cylinder is
an open subset of a plane.

12.2.4 Verify that Catalan’s surface

σσσ(u, v) =
(
u− sinu cosh v, 1 − cosu cosh v,−4 sin

u

2
sinh

v

2

)

is a conformally parametrized minimal surface. (As in the case of Enneper’s
surface, Catalan’s surface has self-intersections, so it is only a surface if we
restrict (u, v) to sufficiently small open sets.)
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Show that:
(i) The parameter curve on the surface given by u = 0 is a straight line.
(ii) The parameter curve u = π is a parabola.
(iii) The parameter curve v = 0 is a cycloid (see Exercise 1.1.7).
Show also that each of these curves, when suitably parametrized, is a geodesic
on Catalan’s surface. (There is a sense in which Catalan’s surface is ‘designed’
to have a cycloidal geodesic - see Exercise 12.5.5.)

12.2.5 A translation surface is a surface of the form

z = f(x) + g(y),

where f and g are smooth functions. (It is obtained by “translating the curve
u 7→ (u, 0, f(u)) parallel to itself along the curve v 7→ (0, v, g(v))”.) Show that
this is a minimal surface if and only if

d2f/dx2

1 + (df/dx)2
= − d2g/dy2

1 + (dg/dy)2
.

Deduce that any minimal translation surface is an open subset of a plane or can
be transformed into an open subset of Scherk’s surface in Example 12.2.6 by a
translation and a dilation (x, y, z) 7→ a(x, y, z) for some non-zero constant a.

12.2.6 Show that
sin z = sinhx sinh y

is a minimal surface. It is called Scherk’s fifth minimal surface.

12.3.1 Let S be a connected surface whose Gauss map is conformal.
(i) Show that, if ppp ∈ S and if the mean curvature H of S at ppp is non-zero, there
is an open subset of S containing ppp that is part of a sphere.
(ii) Deduce that, if H is non-zero at ppp, there is an open subset of S containing
ppp on which H is constant.
(iii) Deduce that S is either a minimal surface or an open subset of a sphere.

12.3.2 Show that:
(i) The Gauss map of a catenoid is injective and its image is the whole of S2

except for the north and south poles.
(ii) The image of the Gauss map of a helicoid is the same as that of a catenoid,
but that infinitely-many points on the helicoid are sent by the Gauss map to any
given point in its image.
(The fact that the Gauss maps of a catenoid and a helicoid have the same image
is ‘explained’ in Exercise 12.5.3(ii).)

12.4.1 Use Proposition 12.3.2 to give another proof of Theorem 12.4.1 for surfaces S
with nowhere vanishing Gaussian curvature.
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12.4.2 It was shown in Exercise 8.2.9 that

y cos
z

a
= x sin

z

a
,

where a is a non-zero constant, is a minimal surface. Find a conformal parametriza-
tion of this surface.

12.5.1 Find the holomorphic function ϕϕϕ corresponding to Enneper’s minimal surface
given in Example 12.2.5. Show that its conjugate minimal surface coincides with
a reparametrization of the same surface rotated by π/4 around the z-axis.

Henneberg: close up

Henneberg: large scale
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12.5.2 Find a parametrization of Henneberg’s surface, the minimal surface correspond-
ing to the functions f(ζ) = 1 − ζ−4, g(ζ) = ζ in Weierstrass’s representation.
Shown above are a ‘close up’ view and a ‘large scale’ view of this surface.

12.5.3 Show that, if ϕϕϕ satisfies the conditions in Theorem 12.5.2, so does aϕϕϕ for any
non-zero constant a ∈ C; let σσσa be the minimal surface patch corresponding to
aϕϕϕ, and let σσσ1 = σσσ be that corresponding to ϕϕϕ. Show that:
(i) If a ∈ R, then σσσa is obtained from σσσ by applying a dilation and a translation.
(ii) If |a| = 1, the map σσσ(u, v) 7→ σσσa(u, v) is an isometry, and the tangent planes
of σσσ and σ̃σσ at corresponding points are parallel (in particular, the images of the
Gauss maps of σσσ and σσσa are the same).

12.5.4 Show that if the function ϕϕϕ in the preceding exercise is that corresponding to

the catenoid (see Example 12.5.3), the surface σσσeit

coincides with the surface
denoted by σσσt in Exercise 6.2.3.

12.5.5 Let γγγ : (α, β) → R3 be a (regular) curve in the xy-plane, say

γγγ(u) = (f(u), g(u), 0),

and assume that there are holomorphic functions F and G defined on a rectangle

U = {u+ iv ∈ C |α < u < β, −ǫ < v < ǫ},

for some ǫ > 0, and such that F (u) = f(u) and G(u) = g(u) if u is real and
α < u < β. Note that (with a dash denoting d/dz as usual),

F ′(z)2 +G′(z)2 6= 0 if Im(z) = 0,

so by shrinking ǫ if necessary we can assume that F ′(z)2 + G′(z)2 6= 0 for all
z ∈ U . Show that:
(i) The vector-valued holomorphic function

ϕϕϕ = (F ′, G′, i(F ′2 +G′2)1/2)

satisfies the conditions of Theorem 12.5.2 and therefore defines a minimal surface
σσσ(u, v).
(ii) Up to a translation, σσσ(u, 0) = γγγ(u) for α < u < β.
(iii) γγγ is a pre-geodesic on σσσ (see Exercise 9.1.2).
(iv) If we start with the cycloid

γγγ(u) = (u− sinu, 1 − cosu, 0),

the resulting surface σσσ is, up to a translation, Catalan’s surface and we have
‘explained’ why Catalan’s surface has a cycloidal geodesic - see Exercise 12.2.4.
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12.5.6 If a minimal surface S corresponds to a pair of functions f and g in Weierstrass’s
representation, to which pair of functions does the conjugate minimal surface of
S correspond ?

12.5.7 Calculate the functions f and g in Weierstrass’s representation for the catenoid
and the helicoid.

12.5.8 Let G be the Gauss map of a minimal surface S and let Π : S2 → C∞ be the
stereographic projection map defined in Example 6.3.5. Show that Π ◦ G is the
function g in Weierstrass’s representation of S.

12.5.9 Find a parametrization of Richmond’s surface, the minimal surface correspond-
ing to the functions f(ζ) = 1/ζ2, g(ζ) = ζ2 in Weierstrass’s representation. Show
that its Gaussian curvature tends to zero as the point (u, v) tends to infinity.

12.5.10 Find the Weierstrass representation of the minimal surface

y cos
z

a
= x sin

z

a
,

where a is a non-zero constant (see Exercises 8.2.9 and 12.4.2). Hence find the
Gaussian curvature of this surface.

Chapter 13

13.1.1 A surface patch σσσ has Gaussian curvature ≤ 0 everywhere. Prove that there are
no simple closed geodesics on σσσ. How do you reconcile this with the fact that
the parallels of a circular cylinder are geodesics ?

13.1.2 Let γγγ be a unit-speed curve in R3 with nowhere vanishing curvature. Let nnn be
the principal normal of γγγ, viewed as a curve on S2, and let s be the arc-length
of nnn. Show that the geodesic curvature of nnn is, up to a sign,

d

ds

(
tan−1 τ

κ

)
,

where κ and τ are the curvature and torsion of γγγ. Show also that, if nnn is a
simple closed curve on S2, the interior and exterior of nnn are regions of equal area
(Jacobi’s Theorem).

13.1.3 The vertex of the half-cone

x2 + y2 = z2 tan2 α, z ≥ 0,

where the constant α is the semi-vertical angle of the cone, is smoothed so that
the cone becomes a regular surface. Prove that the total curvature of the surface
is increased by 2π(1 − sinα).
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13.2.1 Consider the surface of revolution

σσσ(u, v) = (f(u) cos v, f(u) sinv, g(u)),

where γγγ(u) = (f(u), 0, g(u)) is a unit-speed curve in the xz-plane. Let u1 < u2

be constants, let γγγ1 and γγγ2 be the two parallels u = u1 and u = u2 on σσσ, and let
R be the region of the uv-plane given by

u1 ≤ u ≤ u2, 0 < v < 2π.

Compute ∫ ℓ(γγγ
1
)

0

κgds,

∫ ℓ(γγγ
2
)

0

κgds and

∫ ∫

R

KdAσσσ,

and explain your result on the basis of the Gauss–Bonnet theorem.

13.2.2 Suppose that the Gaussian curvature K of a surface S satisfies K ≤ −1 every-
where and that γγγ is a curvilinear n-gon on S whose sides are geodesics. Show
that n ≥ 3, and that, if n = 3, the area enclosed by γγγ must be less than π.

13.2.3 Suppose that the parameter curves of a surface S are geodesics that intersect at
a constant angle. By applying the Gauss-Bonnet theorem to a small curvilinear
quadrilateral whose sides are parameter curves, show that S is flat. Note that
this gives another solution of Exercise 10.1.9.

13.3.1 Show that, if a 3 × 3 matrix A has rows the vectors aaa,bbb, ccc, then

det(A) = aaa.(bbb× ccc).

13.3.2 Let n be a positive integer. Show that there are smooth functions ϕ1, ϕ2, . . . , ϕn−1

such that
(i) ϕk(t) > 0 for k−1

n < t < k+1
n and ϕk(t) = 0 otherwise;

(ii) ϕ1(t) + ϕ2(t) + · · ·+ ϕn−1(t) = 1 for all 0 < t < 1.

13.4.1 Show that, if a compact surface S is diffeomorphic to the torus T1, then

∫ ∫

S
K dA = 0

(cf. Exercise 8.1.9). Can such a surface S have K = 0 everywhere ?

13.4.2 Suppose that S is a compact surface whose Gaussian curvature K is > 0 ev-
erywhere. Show that S is diffeomorphic to a sphere. Is the converse of this
statement true ?
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13.4.3 Show that, if S is the ellipsoid

x2 + y2

p2
+
z2

q2
= 1,

where p and q are positive constants, then

∫ ∫

S
K dA = 4π.

By computing the above integral directly, deduce that

∫ π/2

−π/2

pq2 cos θ

(p2 sin2 θ + q2 cos2 θ)3/2
dθ = 2.

13.4.4 What is the Euler number of the compact surface in Exercise 5.4.1?

13.5.1 Prove Proposition 13.5.3.

13.5.2 Show that every triangulation of a compact surface of Euler number χ by curvi-
linear triangles has at least N(χ) vertices.

13.5.3 Show that diffeomorphic compact surfaces have the same chromatic number.

13.5.4 A cubic map is a map in which exactly three edges meet at each vertex (like the
edges of a cube). Suppose that a cubic map on a surface of Euler number χ has
cn countries with n-edges, for each n ≥ 2. Show that

∞∑

n=2

(6 − n)cn = 6χ.

13.5.5 Show that:
(i) A soccer ball must have exactly 12 pentagons (a soccer ball is a cubic map
with only pentagons and hexagons).
(ii) If the countries of a cubic map on a sphere are all quadrilaterals or hexagons,
there are exactly 6 quadrilaterals.

13.6.1 Let σσσ(θ, ϕ) be the parametrization of the torus in Exercise 4.2.5. Show that the
holonomy around a circle θ = θ0 is 2π(1 − sin θ0). Why is it obvious that the
holonomy around a circle ϕ = constant is 2π? Note that these circles are not

simple closed curves on the torus.

13.6.2 Calculate the holonomy around the parameter circle v = 1 on the cone σσσ(u, v) =
(v cosu, v sinu, v), and conclude that the converse of Proposition 13.6.5 is false.

13.6.3 In the situation of Proposition 13.6.2, what can we say if γγγ is a closed, but not
necessarily simple, curve?
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13.6.4 Let vvv be a parallel vector field along a unit-speed curve γγγ on a surface σσσ, and let

ϕ be the oriented angle ̂̇γγγvvv. Show that

‖ v̇vv ‖= |κn cosϕ+ τg sinϕ|,

where κn is the normal curvature of γγγ and τg is its geodesic torsion (Exercise
7.3.22).

13.7.1 Let k be a non-zero integer and let VVV(x, y) = (α, β) be the vector field on the
plane given by

α+ iβ =

{
(x+ iy)k if k > 0,

(x− iy)−k if k < 0.

Show that the origin is a stationary point of VVV of multiplicity k.

13.7.2 Show that the definition of a smooth tangent vector field is independent of the
choice of surface patch. Show also that a tangent vector field VVV on S is smooth
if and only if, for any surface patch σσσ of S, the three components of VVV at the
point σσσ(u, v) are smooth functions of (u, v).

13.7.3 Show that the Definition 13.7.2 of the multiplicity of a stationary point of a
tangent vector field VVV is independent of the ‘reference’ vector field ξξξ.

13.8.1 Show directly that the definitions of a critical point (13.8.1), and whether it is
non-degenerate (13.8.2), are independent of the choice of surface patch. Show
that the classification of non-degenerate critical points into local maxima, local
minima and saddle points is also independent of this choice.

13.8.2 For which of the following functions on the plane is the origin a non-degenerate
critical point ? In the non-degenerate case(s), classify the origin as a local max-
imum, local minimum or saddle point.
(i) x2 − 2xy + 4y2.
(ii) x2 + 4xy.
(iii) x3 − 3xy2.

13.8.3 Let S be the torus obtained by rotating the circle (x − 2)2 + z2 = 1 in the
xz-plane around the z-axis, and let F : S → R be the distance from the plane
x = −3. Show that F has four critical points, all non-degenerate, and classify
them as local maxima, saddle points, or local minima. (See Exercise 4.2.5 for a
parametrization of S.)

13.8.4 Show that a smooth function on a torus all of whose critical points are non-
degenerate must have at least four critical points.

13.8.5 A rod is attached to a fixed point at one end and a second rod is joined to its
other end. Both rods may rotate freely and independently in a vertical plane.
Explain why there is a bijection from the torus to the set of possible positions
of the two rods.
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The potential energy of the rods is a linear combination (with positive coeffi-
cients) of the heights of the mid-points of the two rods above some fixed hor-
izontal plane. Show that the corresponding function on the torus has exactly
four critical points, all of which are non-degenerate. (These points correspond
to the static equilibrium positions of the rods.) Determine whether each critical
point is a local maximum, local minimum or saddle point, and verify the result
of Theorem 13.8.6.
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