88-826 DIFFERENTIAL GEOMETRY HOMEWORK SET 1

1. The lattice L_{E} of Eisenstein integers is the lattice in $\mathbb{C}=\mathbb{R}^{2}$ spanned by the cube roots of unity. Find the dual lattice L_{E}^{*} to the lattice L_{E} and compute $\lambda_{1}\left(L_{E}^{*}\right)$.
2. The lattice of Gaussian integers is the lattice $L_{G} \subset \mathbb{C}=\mathbb{R}^{2}$ consisting of elements with integer coordinates, i.e. spanned by $(1, i)$. Find its dual lattice L_{G}^{*} in $\mathbb{C}=\mathbb{R}^{2}$ and compute $\lambda_{1}\left(L_{G}^{*}\right)$.
3. Let $a, b>0$. Consider the lattice $L_{a, b} \subset \mathbb{R}^{2}$ spanned by $a e_{1}$ and $b e_{2}$. Find the lattice $L_{a, b}^{*}$ dual to $L_{a, b}$ and compute $\lambda_{1}\left(L_{a, b}^{*}\right)$.
4. The 1 -forms $d r$ and $r d \theta$ form an orthonormal basis for the cotangent plane T_{p}^{*} at a point p of the plane other than the origin, in polar coordinates (r, θ). Find an orthonormal basis for the tangent plane T_{p}, by modifying the basis $\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}$.
5. Consider the cotangent line $T_{p}^{*} S^{1}$ at a point p of the circle of radius $r_{0}>0$. Consider the lattice $L_{0} \subset T_{p}^{*}$ spanned by the 1 -form $d \theta$. Calculate $\lambda_{1}\left(L_{0}\right)$.
6. Consider the tangent line T_{p} at a point p of the circle of radius $r_{0}>0$. Consider the lattice $L \subset T_{p}$ spanned by $\frac{\partial}{\partial \theta}$. Calculate $\lambda_{1}\left(L_{1}\right)$.
7. Prove that every skew-symmetric 3 by 3 matrix is orthogonally conjugate to a matrix of the form $\left(\begin{array}{ccc}0 & \lambda & 0 \\ -\lambda & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and conjecture a 4dimensional generalisation.
8. Consider the unit circle $S^{1} \subset \mathbb{R}^{2}$, and its tangent bundle (eged hameshik) $T S^{1}$. Prove that $T S^{1}$ is diffeomorphic to $S^{1} \times \mathbb{R}$.
9. Let V be a finite dimensional real vector space equipped with an real inner product \langle,$\rangle . Construct a natural isomorphism between V$ and its dual V^{*}.
10. A natural basis for the tangent plane of the (x, y)-plane is given by the vectors $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$. Consider the curve $\alpha(t)$ parametrizing the standard parabola: $\alpha(t)=\left(t, t^{2}\right)$. Identify the tangent vector $\alpha^{\prime}(0)$ in terms of the natural basis.

Date: July 21, 2009.

