Differential geometry 88-826 homework set 5

1. Consider the following segment of the exterior differential complex on a manifold M:

$$\Omega^1(M) \xrightarrow{d_1} \Omega^2(M) \xrightarrow{d_2} \Omega^3(M).$$

Prove that the segment is exact, i.e., $d_2 \circ d_1(\xi) = 0$ for all 1-forms $\xi \in \Omega^1(M)$.

- 2. Compute the Gaussian curvature of the metric $f^2(dx^2+dy^2)$ with conformal factor $f(x,y)=\frac{1}{1+C(x^2+y^2)},\,C\in\mathbb{R}.$
- 3. Let \mathbb{T}^n be the *n*-dimensional torus. Compute the de Rham cohomology group $H^0_{dR}(\mathbb{T}^n)$.
- 4. Let S^1 be the circle. Compute the de Rham cohomology group $H^1_{dR}(S^1)$.
- 5. Let $r \in \mathbb{R}$ and let D be the unbounded region

$$D = \{(x, y) \in \mathbb{R}^2 \colon x^2 + y^2 \ge r^2\}$$

endowed with the standard orientation $dx \wedge dy$. Determine if the induced orientation on ∂D is clockwise or counterclockwise.