May 27, 2021

Differential geometry 88-826 homework set 5

Due Date: 9 june ' 21

1. Consider the following segment of the exterior differential complex on a manifold M :

$$
\Omega^{1}(M) \xrightarrow{d_{1}} \Omega^{2}(M) \xrightarrow{d_{2}} \Omega^{3}(M) .
$$

Prove that the segment is exact, i.e., $d_{2} \circ d_{1}(\xi)=0$ for all 1-forms $\xi \in \Omega^{1}(M)$.
2. Compute the Gaussian curvature of the metric $f^{2}\left(d x^{2}+d y^{2}\right)$ with conformal factor $f(x, y)=\frac{1}{1+C\left(x^{2}+y^{2}\right)}, C \in \mathbb{R}$.
3. Let \mathbb{T}^{n} be the n-dimensional torus. Compute the de Rham cohomology group $H_{d R}^{0}\left(\mathbb{T}^{n}\right)$.
4. Let S^{1} be the circle. Compute the de Rham cohomology group $H_{d R}^{1}\left(S^{1}\right)$.
5. Let $r \in \mathbb{R}$ and let D be the unbounded region

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \geq r^{2}\right\}
$$

endowed with the standard orientation $d x \wedge d y$. Determine if the induced orientation on ∂D is clockwise or counterclockwise.

